JPH02141626A - Method for measuring vibration mode - Google Patents

Method for measuring vibration mode

Info

Publication number
JPH02141626A
JPH02141626A JP63295389A JP29538988A JPH02141626A JP H02141626 A JPH02141626 A JP H02141626A JP 63295389 A JP63295389 A JP 63295389A JP 29538988 A JP29538988 A JP 29538988A JP H02141626 A JPH02141626 A JP H02141626A
Authority
JP
Japan
Prior art keywords
vibration
sample plate
mode
vibration mode
color
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63295389A
Other languages
Japanese (ja)
Inventor
Kenji Yokoyama
憲二 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Ameniplantex Ltd
Original Assignee
NEC Ameniplantex Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Ameniplantex Ltd filed Critical NEC Ameniplantex Ltd
Priority to JP63295389A priority Critical patent/JPH02141626A/en
Priority to US07/439,292 priority patent/US4955236A/en
Priority to EP89312151A priority patent/EP0370801A1/en
Publication of JPH02141626A publication Critical patent/JPH02141626A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To measure the two-dimensional vibration mode generated on a vibration surface by exciting an object by imparting damping properties thereto to optically detect infrared emitting energy emitted from the object and displaying the temp. change of each part of the vibration surface as a heat image. CONSTITUTION:A pasty damping material 12 based on an epoxy resin is built up on one surface of an iron plate (300X32X5mm) in a uniform thickness (5mm) and this iron plate is used as a sample plate and the central part thereof is horizontally mounted on an exciter 14 by a rivet 13 and a thermotracer 15 is arranged just above said exciter 14. The sample plate is excited at the resonance frequency of the bending moment thereof and the heat image obtained on the picture 16 of the tracer 15 is visually observed. For example, when the frequency of 1,218Hz corresponding to the secondary bending mode of the sample plate is applied to the sample plate 11 for 10min under gravity of 150G, a red color appears on the central region and the regions on both sides thereof of the sample plate and a yellow color appears between the red regions and both ends show a green color. That is, the loop part of a vibration waveform large in displacement appears at two places and a typical vibration secondary mode is clearly displayed on the picture 16 by a color change.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は構造物や材料に加えられた振動による振動モー
ドを視覚的に測定する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for visually measuring vibration modes caused by vibrations applied to structures or materials.

〔従来の技術〕[Conventional technology]

構造物や材料が加振されたときにその振動モードが如何
なる様相を示すかを知ることはfiM、!遺物の設計上
極めて重要である。
fiM is the best way to know what the vibration mode of a structure or material looks like when it is vibrated! This is extremely important in the design of the artifact.

従来、振動モードを直接検知する方法はなく、例えば構
造物に生ずる振動モードを測定するにはその表面の各所
に加速度センサーを取付け、いわゆるマルチポイント測
定によって行っていた。この方法は各測定ポイントに得
られた測定値を集めて、データをフーリエ変換し、ソフ
ト処理によりモーダル解析を用いて振動面の振動モード
を解析するらのである。
Conventionally, there has been no method for directly detecting vibration modes; for example, in order to measure the vibration modes occurring in a structure, acceleration sensors are attached to various locations on the surface of the structure, and the measurement is carried out by so-called multi-point measurement. This method collects the measured values obtained at each measurement point, performs Fourier transform on the data, and analyzes the vibration mode of the vibration surface using modal analysis through software processing.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

したがって、上記方法によるときには多数の加速センサ
ーを用い、または各点の繰返し測定による大規模な数値
処理を要し、データの取得にセンサーの取付け、ケーブ
ル配線を行わなければならないなど、その測定作業は厄
介を極める欠点がある。
Therefore, when using the above method, it is necessary to use a large number of acceleration sensors or perform large-scale numerical processing by repeatedly measuring each point, and the measurement work is complicated, such as installing sensors and wiring cables to acquire data. There are drawbacks that are extremely troublesome.

しかも、得られたデータは成る一瞬のものであるかまた
は定常的に長時間振動が加わった場合に限られ、刻々と
変化する振動に対してはこれをフォローすることができ
ない。
Moreover, the data obtained is limited to instantaneous data or when vibration is applied regularly for a long period of time, and it is not possible to follow vibrations that change from moment to moment.

一方、振動モードを計算によって知る方法として有限要
素法が知られているが、これはあくまでシュミレーショ
ンにずぎす、大量の数値計算を必要とし、かつ対象とな
る構造物に生ずる実際の振動モードとは必ずしも一致し
ない場合も多い。
On the other hand, the finite element method is known as a method for determining vibration modes through calculations, but this is only a simulation, requires a large amount of numerical calculations, and is not accurate to the actual vibration modes that occur in the target structure. In many cases, they do not necessarily match.

本発明の目的は上記問題点を解消し、振動面に生ずる2
次元振動モードを視覚的に測定しうる方法を提供するこ
とにある。
The purpose of the present invention is to solve the above-mentioned problems and to reduce the
The object of the present invention is to provide a method for visually measuring dimensional vibration modes.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、本発明による振動モードの測
定方法においては、振動モードを測定すべき構造物、材
料を含む物体の少くとも一部に制振性を付与して加振し
、物体より発せられる赤外放射エネルギーを光学的に検
知し、振動モードに対応して物体表面の制振にとらなう
振動面各部の温度変化の分布を熱画像として表示するも
のである。
In order to achieve the above object, in the vibration mode measurement method according to the present invention, at least a part of an object including a structure or material whose vibration mode is to be measured is vibrated with damping properties, and The system optically detects the emitted infrared radiation energy and displays the distribution of temperature changes at various parts of the vibrating surface as a thermal image, which corresponds to the vibration mode and is used to dampen vibrations on the object's surface.

〔原理・作用〕[Principle/effect]

試料を加振したときに試料に生ずる振動を熱変化に変換
すれば振動の大きさを熱変化量として測定できる。物体
は、その表面温度に対応した強さの電磁波を放射してお
り、物体の温度が高くなるにつれて放射エネルギーが増
すととらに短い波長の放射エネルギーが相対的に増加す
る。通常、温度測定の対象として考えられる−40〜1
 、600℃での放射エネルギーの波長はおよそ2〜1
3μfの赤外線である。そのため、放射赤外線量を測定
すれば非接触で物体の温度を知ることができ、この原理
を利用して物体から放射される赤外線を検知し、これを
電気信号に変換して物体の温度を表示する赤外線放射温
度計や、さらに光学系を含む撮像機能を内蔵し、物体表
面各部の温度分布を熱画像として画面に表示するサーモ
トレーサーが実用化されている。
If the vibrations that occur in a sample when it is vibrated are converted into thermal changes, the magnitude of the vibrations can be measured as the amount of thermal change. Objects emit electromagnetic waves whose intensity corresponds to their surface temperature, and as the temperature of the object increases, the radiant energy increases, and the radiant energy of short wavelengths increases relatively. -40 to 1, which is usually considered as a target for temperature measurement
, the wavelength of radiant energy at 600°C is approximately 2-1
This is 3 μf infrared radiation. Therefore, by measuring the amount of radiated infrared rays, it is possible to know the temperature of an object without contact.Using this principle, the infrared rays emitted from the object are detected, and this is converted into an electrical signal to display the temperature of the object. Thermotracers have been put into practical use that have built-in infrared radiation thermometers and imaging functions, including optical systems, to display the temperature distribution of each part of an object's surface as a thermal image on a screen.

したがって、サーモトレーサーを用いて物体を撮像すれ
ば物体表面各部の温度分布を示す熱画像が得られるが、
この物体をそのまま加振したとしても熱画像は振動面の
振動モードにしたがって変化するものではない。しかし
、物体の表面に制振材例えばエポキシ樹脂を主体とし、
これに充填剤を添加したペースト状の制振材(日本電気
環境エンジニアリング株式会社製DPO20)を盛り付
けて加振すると、物体は制振作用を受けて振動エネルギ
ーが熱エネルギーに変換され、物体の温度を上昇させる
6振動エネルギーは振動モードの腹の部分が大きく、節
の部分は小さいため、振動モードにしたがって温度分布
を生ずる。したがって、第1図に示すように制振材1の
盛り付けにより制振性を付与した物体2の表面を、赤外
線検出器3を内蔵したサーモトレーサー4で撮像すると
、物体の振動モードに正確に対応した温度分布を有する
熱画像がその画面5に表示される。本発明において、制
振材1は必ずしも物体2を撮像する側の面に形成する必
要はない。撮像面と反対側の面に制振材1を盛り付けた
ときでも、加振によって生じた振動のエネルギーが熱に
変換され、その熱によって物体の温度が上昇するのであ
れば、いずれの面を制振しても同じことである。制振材
は必ずしも盛り付ける場合に限らない。塗付け、貼付け
Therefore, if you image an object using a thermotracer, you can obtain a thermal image that shows the temperature distribution at each part of the object's surface.
Even if this object is vibrated as it is, the thermal image will not change according to the vibration mode of the vibrating surface. However, if the surface of the object is made of damping material such as epoxy resin,
When a paste-like vibration damping material (DPO20 manufactured by NEC Environmental Engineering Co., Ltd.) containing a filler is added to this material and it is vibrated, the object receives a damping effect and the vibration energy is converted into thermal energy, causing the temperature of the object to rise. The six vibration energy that increases the vibration mode has a large antinode part and a small node part, so a temperature distribution occurs according to the vibration mode. Therefore, as shown in Fig. 1, when the surface of an object 2 that has been given damping properties by applying damping material 1 is imaged with a thermotracer 4 equipped with an infrared detector 3, it will accurately correspond to the vibration mode of the object. A thermal image having a temperature distribution is displayed on the screen 5. In the present invention, the vibration damping material 1 does not necessarily need to be formed on the surface on the side where the object 2 is imaged. Even when the damping material 1 is placed on the surface opposite to the imaging surface, if the vibration energy generated by the excitation is converted to heat and the temperature of the object rises due to the heat, which surface can be suppressed? The same thing happens when you shake it. Damping materials are not necessarily limited to being piled up. Painting, pasting.

一体成形などの方法によってもよい。制振材の制振性能
が大きい程、制振による物体の温度上昇が高いため、振
動モードに対応した温度分布の縞模様が明瞭に現われる
。もつとも、測定すべき物体自体が制振性が大きい材質
で作られているものであれば、改めて制振性を付与する
ことは無意味である。
A method such as integral molding may also be used. The higher the damping performance of the damping material, the higher the temperature rise of the object due to damping, and therefore the striped pattern of temperature distribution corresponding to the vibration mode appears more clearly. However, if the object to be measured itself is made of a material with high vibration damping properties, it is meaningless to add vibration damping properties to the object.

〔実施例〕〔Example〕

以下に本発明の実施例を示す。 Examples of the present invention are shown below.

第2図において、300順X32mmX5止の鉄板11
の一面に制振材(日本電気環境エンジニアリング株式会
社製DPO20)12を5111fIの厚味に均一に盛
り付ける。以下この積層された板を試料板という。この
試料板の中央部分をビス13で加振機14に水平に取付
けた。一方、試料板をその曲げモーメントの共振周波数
で加振し、試料板の直上にサーモトレーサー(日本電気
三栄■製6T61)15を設置し、サーモトレーサー1
5の画面16に得られた試料板の熱画像を観察した。な
お、室温は24℃である。実施例に用いたサーモトレー
サーでは被写体の温度は色変化によって表示される形式
のものであり、温度上昇に件って青色B−緑色G−黄色
Y−赤色Rの順で温度の変化が現わされる。
In Figure 2, 300 x 32 mm x 5 iron plates 11
A damping material (DPO20 manufactured by NEC Environmental Engineering Co., Ltd.) 12 is evenly arranged on one side to a thickness of 5111 fI. Hereinafter, this laminated plate will be referred to as a sample plate. The center portion of this sample plate was horizontally attached to a vibrator 14 with screws 13. On the other hand, the sample plate was vibrated at the resonant frequency of its bending moment, a thermotracer (6T61 manufactured by NEC Sanei) 15 was installed directly above the sample plate, and the thermotracer 1
A thermal image of the sample plate obtained on the screen 16 of No. 5 was observed. Note that the room temperature was 24°C. In the thermotracer used in the example, the temperature of the subject is displayed by color change, and as the temperature rises, the temperature changes in the order of blue B - green G - yellow Y - red R. be done.

無振状態では試料板の表面全体が第3図(a)に示すよ
うに23.1〜23.4℃の温度範囲を示す青色Bを示
したが、試料板の一次曲げモードの共振周波数に相当す
る223HZを150 (G )で10分間印加したと
ころ、試料板の中央領域が第3図(b)のように29〜
31℃の温度範囲を示す赤色Rを示し、その両側の領域
が25〜27℃の温度範囲を示す黄色Y、さらに両端部
は22〜23℃の温度範囲を示す緑色Gを呈し、全長に
わたって振動の一次モード波形が色の変化によって明瞭
に現われた。
In the non-vibration state, the entire surface of the sample plate exhibited blue color B, which indicates the temperature range of 23.1 to 23.4°C, as shown in Figure 3(a), but at the resonant frequency of the primary bending mode of the sample plate. When the corresponding 223Hz was applied at 150 (G) for 10 minutes, the central area of the sample plate became 29~29cm as shown in Figure 3(b).
A red R indicates a temperature range of 31℃, a yellow Y indicates a temperature range of 25 to 27℃ on both sides, and a green G indicates a temperature range of 22 to 23℃ at both ends. The primary mode waveform of was clearly appeared by the color change.

次に、試料板の二次曲げモードに相当する1218Hz
を150 (G )で10分間印加したところ、第3図
(C)のように、赤色Rが中火領域とその両側領域とに
現われ、各赤色領域の間は黄色Yを呈し、両端は緑色G
を呈した。すなわち、変位の大きい振動波形の腹の部分
が2個所に現われる典型的な振動二次モードの波形が色
の変化によって明確に画面に表示された。
Next, 1218Hz, which corresponds to the secondary bending mode of the sample plate.
was applied for 10 minutes at 150 (G), as shown in Figure 3 (C), a red color R appears in the medium heat area and the areas on both sides of it, yellow Y appears between each red area, and green color appears at both ends. G
It showed. That is, a typical vibration secondary mode waveform in which antinodes of a vibration waveform with large displacement appear at two locations was clearly displayed on the screen by changing the color.

〔比較例〕[Comparative example]

実施例に用いたものと同一サイズの鉄板をそのままを実
施例と同様に加振機に取付け、−次曲げモードの共振周
波数に相当する201Hzを200(G)で20分間印
加したが、第3図(d)に示すように全体的に緑色Gを
呈し、部分的に不規則に黄色Yが表われただけで振動モ
ードに対応した明確な色の変化は見られなかった。
A steel plate of the same size as that used in the example was attached as it was to the vibrator as in the example, and 201 Hz, which corresponds to the resonance frequency of the -order bending mode, was applied at 200 (G) for 20 minutes. As shown in Figure (d), the overall appearance was green G, and yellow Y only appeared irregularly in some areas, and no clear color change corresponding to the vibration mode was observed.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によるときには物体の振動モードを
明確な色の変化によって表示でき、したがって、加振さ
れている物体について、リアルタイムで、しかもリモー
ト・センシングにより、その振動モードの二次元像を視
覚を通じて直接に観察することができる。
As described above, according to the present invention, the vibration mode of an object can be displayed by a clear color change, and therefore, a two-dimensional image of the vibration mode of the vibrating object can be visually visualized in real time and by remote sensing. can be directly observed through

従って、本発明方法によれば、土木建築、lR械の分野
はもとより、無接触のため、走行中の自動車、船舶につ
いての振動モードのデータ、また、宇宙、航空の分野に
おける飛行物体についての振動モードのデータ、さらに
加速度センサーの取付が不可能なほど小さい表面(IC
等)の振動モードのデータを得てその評価を容易に行う
ことができる効果を有する。
Therefore, the method of the present invention can be applied not only to the fields of civil engineering and construction and IR machinery, but also to data on vibration modes of moving automobiles and ships, as well as vibrations of flying objects in the fields of space and aviation. mode data, as well as surfaces that are too small to mount an acceleration sensor (IC
This has the effect of making it possible to easily obtain and evaluate vibration mode data of (e.g.) vibration modes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の原理を示す図、第2図は実施例に
用いた装置を示す図、第3図(a)〜(d)は実施例と
比較例における振動モードの色変化を示す図である。 1・・・制振材、     2・・・物体。 3・・・赤外線検出器、  4・・・サーモトレーサー
5・・・画面。 4 サー干トし一す− 特許出願人   日本電気環境エンジニアリング株式会
社第1 図 15 サーモトレーザー / 第2図 (α) (b) (C) 第3図
Figure 1 is a diagram showing the principle of the method of the present invention, Figure 2 is a diagram showing the apparatus used in the example, and Figures 3 (a) to (d) are diagrams showing color changes in vibration modes in the example and comparative example. FIG. 1... Damping material, 2... Object. 3...Infrared detector, 4...Thermotracer 5...Screen. 4 Thermo-Traser - Patent Applicant Nippon Electric Environmental Engineering Co., Ltd. No. 1 Figure 15 Thermotraser / Figure 2 (α) (b) (C) Figure 3

Claims (1)

【特許請求の範囲】[Claims] (1)振動モードを測定すべき構造物、材料を含む物体
の少くとも一部に制振性を付与して加振し、物体より発
せられる赤外放射エネルギーを光学的に検知し、振動モ
ードに対応して物体表面の制振にともなう振動面各部の
温度変化の分布を熱画像として表示することを特徴とす
る振動モードの測定方法。
(1) Vibrate at least a part of the object, including the structure or material whose vibration mode is to be measured, by imparting vibration damping properties, optically detect the infrared radiation energy emitted from the object, and measure the vibration mode. A method for measuring vibration modes characterized by displaying the distribution of temperature changes at various parts of a vibration surface as a thermal image as a result of damping vibrations on an object surface.
JP63295389A 1988-11-22 1988-11-22 Method for measuring vibration mode Pending JPH02141626A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP63295389A JPH02141626A (en) 1988-11-22 1988-11-22 Method for measuring vibration mode
US07/439,292 US4955236A (en) 1988-11-22 1989-11-20 Method for observation of vibration mode
EP89312151A EP0370801A1 (en) 1988-11-22 1989-11-22 Method for observation of vibration mode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63295389A JPH02141626A (en) 1988-11-22 1988-11-22 Method for measuring vibration mode

Publications (1)

Publication Number Publication Date
JPH02141626A true JPH02141626A (en) 1990-05-31

Family

ID=17819990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63295389A Pending JPH02141626A (en) 1988-11-22 1988-11-22 Method for measuring vibration mode

Country Status (1)

Country Link
JP (1) JPH02141626A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6034524B1 (en) * 2016-04-08 2016-11-30 Jfeテクノリサーチ株式会社 Resonance frequency estimation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6034524B1 (en) * 2016-04-08 2016-11-30 Jfeテクノリサーチ株式会社 Resonance frequency estimation method

Similar Documents

Publication Publication Date Title
Ehrhardt et al. Full-field linear and nonlinear measurements using continuous-scan laser doppler vibrometry and high speed three-dimensional digital image correlation
Beberniss et al. High-speed 3D digital image correlation vibration measurement: Recent advancements and noted limitations
Helfrick et al. 3D digital image correlation methods for full-field vibration measurement
Mordant Are there waves in elastic wave turbulence?
Cranch et al. High-responsivity fiber-optic flexural disk accelerometers
Sung et al. The response of and sound power radiated by a clamped rectangular plate
EP2014019B1 (en) Triangulation with co-located sensors
US4717253A (en) Optical strain gauge
CN107884062A (en) A kind of three-dimensional micro- fiber-optic grating sensor that shakes having from temperature compensation characteristic
Avitabile et al. Noncontact measurement. Techniques for model correlation
Martarelli et al. Automated modal analysis by scanning laser vibrometry: problems and uncertainties associated with the scanning system calibration
US4955236A (en) Method for observation of vibration mode
Honzík et al. Acoustic fields in thin fluid layers between vibrating walls and rigid boundaries: integral method
La et al. Continuous scanning laser Doppler vibrometer for mode shape analysis
JPH02141626A (en) Method for measuring vibration mode
RU2535237C1 (en) Vibrations measurement method
JP2963968B2 (en) Vibration mode measurement method
Minardo et al. Experimental modal analysis of an aluminum rectangular plate by use of the slope-assisted BOTDA method
US6655215B2 (en) Inverse corner cube for non-intrusive three axis vibration measurement
Bruns Sinusoidal torque calibration: a design for traceability in dynamic torque calibration
Tonin et al. Time-averaged holography for the study of three-dimensional vibrations
Comesana et al. Influence of background noise on non-contact vibration measurements using particle velocity sensors
Drvárová et al. Effect of accelerometer mass on the natural frequencies of the measured structure
RU2107306C1 (en) Method determining kinematic parameters of movement of object which moves faster than waves emitted by it
RU2153162C1 (en) Method of location and determination of form of concentrators of mechanical stresses in structure of solid- propellant rocket engine