JPH0361669A - Turbulent flow generating device - Google Patents

Turbulent flow generating device

Info

Publication number
JPH0361669A
JPH0361669A JP1195172A JP19517289A JPH0361669A JP H0361669 A JPH0361669 A JP H0361669A JP 1195172 A JP1195172 A JP 1195172A JP 19517289 A JP19517289 A JP 19517289A JP H0361669 A JPH0361669 A JP H0361669A
Authority
JP
Japan
Prior art keywords
flapper
fuel
opening degree
intake
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1195172A
Other languages
Japanese (ja)
Inventor
Muneyoshi Nanba
宗義 難波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP1195172A priority Critical patent/JPH0361669A/en
Publication of JPH0361669A publication Critical patent/JPH0361669A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/04Modifying induction systems for imparting a rotation to the charge in the cylinder by means within the induction channel, e.g. deflectors
    • F02B31/06Movable means, e.g. butterfly valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10006Air intakes; Induction systems characterised by the position of elements of the air intake system in direction of the air intake flow, i.e. between ambient air inlet and supply to the combustion chamber
    • F02M35/10078Connections of intake systems to the engine
    • F02M35/10085Connections of intake systems to the engine having a connecting piece, e.g. a flange, between the engine and the air intake being foreseen with a throttle valve, fuel injector, mixture ducts or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10209Fluid connections to the air intake system; their arrangement of pipes, valves or the like
    • F02M35/10216Fuel injectors; Fuel pipes or rails; Fuel pumps or pressure regulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/104Intake manifolds
    • F02M35/108Intake manifolds with primary and secondary intake passages
    • F02M35/1085Intake manifolds with primary and secondary intake passages the combustion chamber having multiple intake valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To accelerate fuel atomization by pivotally supporting the basic edge onto the upstream side of a fuel adhesion part on the inner wall surface of a suction port and installing a flapper which holds the turning angle larger as the output becomes smaller and setting the turning edge of the flapper at the min. turning angle position so as to be opposed to the fuel adhesion part. CONSTITUTION:A controller 22 executes the main routine of the engine control and executes a variety of subroutines at the same time. In the fuel injection routine, the injection timing is calculated on the basis of the engine revolution speed information and carries out fuel injection in an intake passage 10. When the opening degree control routine is reached, the operation state information is taken out, and the frapper opening degree theta is calculated, and opening degree correction is carried out on the basis of the map. The output electric current corresponding to the flapper opening degree theta is outputted into a flapper driving device 23, and the opening degree of a flapper 30 is kept. Therefore, the flapper can be kept at an optimum gap (t) according to a variety of operation states, and an eddy current in the vertical direction is allowed to flow down on a fuel adhesion part (a), and fuel atomization can be accelerated.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は内燃機関の吸気ポート内での燃料の霧化を促進
できる乱流生成装置、特に、燃料が燃料噴射弁により吸
気ポート内に噴射される燃料系を備えた内燃機関の乱流
生成装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a turbulence generating device capable of promoting atomization of fuel within an intake port of an internal combustion engine. The present invention relates to a turbulence generating device for an internal combustion engine equipped with a fuel system.

(従来の技術) 従来、内燃機関の燃料供給系において、各吸気ポート毎
に燃料噴射弁を配備したいわゆるマルチポイントインジ
ェクション(MPIシステム)を採用したものが知られ
ている。
(Prior Art) Conventionally, in the fuel supply system of an internal combustion engine, a so-called multi-point injection (MPI system) in which a fuel injection valve is provided for each intake port is known.

この場合、各燃料噴射弁はその噴射タイミングと開弁時
間とを制御手段の制御信号に応じて可変させ、これによ
り、エンジン運転状態に応じて最適な空燃比が得られる
ように制御されている。
In this case, each fuel injection valve is controlled to vary its injection timing and valve opening time in accordance with a control signal from the control means, thereby obtaining the optimum air-fuel ratio depending on the engine operating state. .

ところで、第9図に示すように、この種の燃料噴射弁l
が所定タイミング、例えば各気筒の排気行程で噴射作動
した場合、燃料噴射弁1からの燃料は吸気ポート2の内
壁面に付着する。この内壁面上の燃料付着部aの燃料は
、吸気弁3の開作動と共に生じる吸気流Aにより気化を
促進され、燃焼室4側に流動し、同室内で更にスワール
等の影響を受けて、空気中に拡散し、燃焼し、これによ
リ機関の出力を発生させている6 (発明が解決しようとする課題) 処が、吸気ボート2内の吸気流の断面方向の流速分布は
ほぼ層流状を成しており、乱流の発生量は極めて少なく
、燃料の霧化の促進が十分になされていない、特に、ア
ルコール燃料の場合、この問題は顕著となっている。
By the way, as shown in FIG. 9, this type of fuel injection valve l
When the fuel injection valve 1 performs an injection operation at a predetermined timing, for example, during the exhaust stroke of each cylinder, the fuel from the fuel injection valve 1 adheres to the inner wall surface of the intake port 2. The fuel in the fuel adhesion part a on the inner wall surface is accelerated to vaporize by the intake air flow A generated with the opening operation of the intake valve 3, flows to the combustion chamber 4 side, and is further influenced by swirl etc. in the same chamber. (Problem to be solved by the invention) However, the flow velocity distribution in the cross-sectional direction of the intake air flow in the intake boat 2 is almost layered. This problem is particularly acute in the case of alcohol fuel, which has a flow-like shape and generates very little turbulence, and does not sufficiently promote atomization of the fuel.

このため、燃料付着部aの燃料の気化を促進する上で吸
気ポート2内の気流中に乱流を生成することが望ましい
、そこで、例えば吸気ボート2中の燃料噴射弁1の上流
位置にバタフライ弁5(第1O図中に示した)を設け、
その弁を特に気流速度の低下を生じ易い部分負荷時にし
ぼり作動させ、吸気速度を高め、ボート内壁面に付着す
る燃料の霧化を促進させるということが行なわれている
For this reason, it is desirable to generate turbulence in the airflow in the intake port 2 in order to promote the vaporization of the fuel in the fuel adhesion part a. A valve 5 (shown in Figure 1O) is provided;
The valve is operated by throttling during partial loads when the airflow velocity is particularly likely to decrease, thereby increasing the intake velocity and promoting atomization of the fuel adhering to the inner wall surface of the boat.

しかし、この場合、バタフライ弁5の両側を通過するこ
とにより生成された渦流はバタフライ弁の下流位置で互
いに衝突してその運動エネルギを低減させ、早期に消滅
することとなり、燃料の霧化促進を十分確実に図ること
となっていない。
However, in this case, the vortices generated by passing on both sides of the butterfly valve 5 collide with each other at the downstream position of the butterfly valve, reducing their kinetic energy and disappearing early, which promotes atomization of the fuel. It is not supposed to be done with sufficient certainty.

更に、吸気2弁式のエンジンの場合において、2つの吸
気ボートの片蜀を部分負荷時に閉じ、開放ボート側の流
速を早めることが行なわれている。
Furthermore, in the case of a two-valve intake engine, one side of the two intake boats is closed during partial load to increase the flow velocity on the open boat side.

しかし、この場合も、燃焼室4内のスワール生成には役
立つが、吸気ポート2中での流れに乱流を生成すること
ヒはできず、内壁の付着燃料の霧化促進を十分に図るこ
ととなっていない。
However, even in this case, although it is useful for generating swirl in the combustion chamber 4, it is not possible to generate turbulence in the flow in the intake port 2, and it is necessary to sufficiently promote the atomization of the fuel adhering to the inner wall. It is not.

本発明の目的は、吸気ボート内壁面に付着する燃料の霧
化の促進を確実に図れる乱流生成装を提供することにあ
る。
An object of the present invention is to provide a turbulence generating device that can reliably promote atomization of fuel adhering to the inner wall surface of an intake boat.

(課題を解決するための手段) 上述の目的を達成するために本発明は、内燃機関の吸気
ポートに対設され燃料を噴射する燃料噴射弁と、上記燃
料噴射弁の噴射燃料が付着する上記吸気ポートの内壁面
上の燃料付着部に対してその上流側に基端が枢支される
と共に回動端が上記吸気ポートの断面をしぼる方向にそ
の回動角を増減させるよう形成されたフラッパと、上記
内燃機関の出力情報を発する出力情報発生手段と、上記
内燃機関の出力が小さいほど上記フラッパの回動角を大
きく保持するように上記フラッパを操作するフラッパ騨
動手段とを有し、最小回動角位置にある上記フラッパの
回動端が上記燃料付着部に対向するように構成されてい
ることを特徴とする。
(Means for Solving the Problems) In order to achieve the above-mentioned object, the present invention provides a fuel injection valve that is disposed opposite to an intake port of an internal combustion engine and injects fuel, and a fuel injection valve that is disposed opposite to an intake port of an internal combustion engine and injects fuel, and a fuel injection valve that injects fuel from the fuel injection valve. a flapper whose base end is pivotally supported upstream of the fuel adhering portion on the inner wall surface of the intake port, and whose rotating end is formed to increase or decrease its rotation angle in a direction that narrows the cross section of the intake port; and output information generation means for generating output information of the internal combustion engine, and flapper control means for operating the flapper so that the rotation angle of the flapper is held larger as the output of the internal combustion engine is smaller, The invention is characterized in that the rotation end of the flapper at the minimum rotation angle position is configured to face the fuel adhering portion.

(作  用) フラッパの回動端を所要の回動角位置側に保持して吸気
ポートの断面をしぼる時、吸気はフラッパの回動端を通
過することにより流速を早め、しかも、回動端より燃料
付着部方向に向けて縦向で巻き込むような渦流が生成さ
れる様に成り、この渦流により燃料付着部の燃料の霧化
促進がなされる。
(Function) When the rotating end of the flapper is held at the required rotating angle position to narrow the cross section of the intake port, the intake air passes through the rotating end of the flapper, increasing the flow velocity, and A vortex flow that wraps vertically toward the fuel adhering portion is generated, and this vortex flow promotes atomization of the fuel in the fuel adhering portion.

(実 施 例) 第1図の乱流生成装置は吸気路IOに燃料噴射弁11を
対設したアルコール燃料を使用するエンジン12に装着
されている。
(Embodiment) The turbulence generating device shown in FIG. 1 is installed in an engine 12 that uses alcohol fuel and has a fuel injection valve 11 disposed opposite to the intake passage IO.

このエンジン12は4気筒のマルチポイントインジェク
ションタイプであり、吸気ポートI3の下流部を分岐さ
せ2つの吸気弁16を同時作動させて吸気を燃焼室14
内に吸入させるものである。
This engine 12 is a four-cylinder multi-point injection type, and the downstream part of the intake port I3 is branched, and two intake valves 16 are operated simultaneously to send intake air into the combustion chamber 14.
It is meant to be inhaled internally.

シリンダヘッド15にはフラッパ支持用のボディー18
を介して多岐管171及びサージタンク172が一体化
された吸気マニホウルド17が接続されている。
The cylinder head 15 has a body 18 for supporting the flapper.
An intake manifold 17 in which a manifold 171 and a surge tank 172 are integrated is connected through the intake manifold 17 .

更に、そのマニホウルド17の他端には、吸気管34を
介して図示しないエアクリーナが接続されている。
Furthermore, an air cleaner (not shown) is connected to the other end of the manifold 17 via an intake pipe 34.

ボディー18の各気筒対向位置にはぞれぞれの土壁に燃
料噴射弁11が、下壁にフラッパ20が取付けられてい
る。燃料噴射弁11は燃料供給系21より一定圧のアル
コール燃料を受け、後述のコントローラ22の原動電流
を受けて開弁作動し、噴射を行なう、この弁の噴射軌跡
は第2図に示したように、各気筒毎に一対ある吸気ポー
トの分岐部にそれぞれ2分割して噴射され、これにより
各分岐部の低壁面上に2つの燃料付着部aを形成するよ
うに構成されている。
A fuel injection valve 11 is attached to each earthen wall at a position facing each cylinder of the body 18, and a flapper 20 is attached to the lower wall. The fuel injection valve 11 receives alcohol fuel at a constant pressure from the fuel supply system 21, and receives a driving current from a controller 22, which will be described later, to open the valve and perform injection.The injection trajectory of this valve is as shown in Fig. 2. Then, the fuel is injected in two parts into the branch parts of a pair of intake ports for each cylinder, thereby forming two fuel adhering parts a on the lower wall surfaces of each branch part.

燃料供給系21は燃料管24と、その中の燃料中のアル
コール濃度情報を出力するアルコール濃度センサ25と
、燃料管24を延出させる燃料タンク2Gとで構成され
ている。
The fuel supply system 21 includes a fuel pipe 24, an alcohol concentration sensor 25 that outputs information on the alcohol concentration in the fuel contained therein, and a fuel tank 2G from which the fuel pipe 24 extends.

フラッパ20はあおり作動する肉厚弁体状を呈し。The flapper 20 has the shape of a thick-walled valve body that operates in a tilting manner.

閉位置(第1図に2点鎖線で示す位置)HOに位置する
時、その上面が吸気路10の他の底面とほぼ連続するよ
うに形成され、その基端201をフラッパ駆動装置23
に枢支され、回動端202を燃料付着部aに対設するよ
うに構成されている。そして、フラッパ20がその回動
角を最大とする全開度値M(第1図に実線で示す位置)
Hlに保持された場合、その回動端202と吸気路の上
壁面との隙間tは十分にしぼられる。この隙間tはここ
を通過した吸気の流速を早めると共にフラッパ20の後
方位置の燃料付着部aに向けて流下する気流中に縦向き
(上下方向)に巻き込む渦流を多数生成することができ
る。
When it is in the closed position (the position shown by the two-dot chain line in FIG. 1) HO, its upper surface is formed to be substantially continuous with the other bottom surface of the intake passage 10, and its base end 201 is connected to the flapper drive device 23.
The rotating end 202 is arranged opposite to the fuel adhering portion a. Then, the full opening value M at which the flapper 20 maximizes its rotation angle (the position shown by the solid line in FIG. 1)
When held at Hl, the gap t between the rotation end 202 and the upper wall surface of the intake passage is sufficiently narrowed. This gap t can increase the flow velocity of the intake air passing through the gap t, and can generate a large number of vortices that are drawn vertically (in the vertical direction) into the airflow flowing down toward the fuel adhering portion a at the rear position of the flapper 20.

フラッパ駆動装置23はコントローラ22の駆動電流に
より駆動するモータとそのモータの出力する回転を減速
してフラッパ20に伝達する減速機とからなる。
The flapper drive device 23 includes a motor driven by the drive current of the controller 22 and a speed reducer that reduces the rotation speed output by the motor and transmits the rotation to the flapper 20.

第1図中符号27はスロットル弁を示しており、符号2
8はスロットル開度補正弁を示している。ここで、スロ
ットル弁27は図示しないアクセルペダルの踏み込み量
に応じた作動力を受けて回動し、その開度に応じた量の
吸気が吸気路10内に流れ込む様に構成されている。
Reference numeral 27 in FIG. 1 indicates a throttle valve, and reference numeral 27 indicates a throttle valve.
8 indicates a throttle opening correction valve. Here, the throttle valve 27 is configured to rotate in response to an operating force corresponding to the amount of depression of an accelerator pedal (not shown), so that intake air flows into the intake passage 10 in an amount corresponding to the opening degree thereof.

ここで、フラッパのしぼり作動により吸気路10の流路
抵抗が増加するが、これによりスロットル弁27を通過
する吸気量が低下し、フラッパが閉位置HOにある場合
との吸入空気量に差がでる。これを補正するため、ここ
ではスロットル開度補正弁28を利用している。このス
ロットル開度補正弁28はコントローラ22に接続され
、コントローラの発する開動電流により閉状態より開放
作動するものであり、ここでは第6図のマツプに基づき
コントローラ22が負荷情報に基づき弁開度を算出し、
その開度に応じた駆動電流をスロットル開度補正弁28
に出力するように構成されている。
Here, the flow resistance of the intake passage 10 increases due to the squeezing operation of the flapper, but this reduces the amount of intake air passing through the throttle valve 27, resulting in a difference in the amount of intake air compared to when the flapper is in the closed position HO. Out. In order to correct this, a throttle opening correction valve 28 is used here. This throttle opening correction valve 28 is connected to the controller 22, and is opened from the closed state by the opening current generated by the controller. Here, the controller 22 adjusts the valve opening based on the load information based on the map shown in FIG. Calculate,
Throttle opening correction valve 28 adjusts the drive current according to the opening.
is configured to output to .

なお、ここでは負荷の増加、即ち、スロットル弁の開放
作動と共にスロットル開度補正弁28を閉弁するように
設定されている。
Here, the throttle opening correction valve 28 is set to close when the load increases, that is, when the throttle valve opens.

コントローラ22は周知の電子制御装置であり、その入
力端にはエンジン回転数情報を出力する回転センサ29
、図示しないアクセルペダルの踏み込み量情報を出力す
る負荷センサ19.吸気温情報を出力する吸気温センサ
30.吸気圧情報を出力する吸気圧センサ31.水温情
報を出力する水温センサ32、フラッパ20の閉位置情
報を出力するポジションセンサ33、アルコール濃度セ
ンサ25等より各信号が入力される。コントローラの出
力端からは燃料噴射弁11.フラッパ開動装置23及び
スロットル開度補正弁28にそれぞれ出力が発せられる
ように各出力回路が構成されている。
The controller 22 is a well-known electronic control device, and has a rotation sensor 29 at its input terminal that outputs engine rotation speed information.
, a load sensor 19 that outputs information on the amount of depression of the accelerator pedal (not shown). Intake temperature sensor 30 that outputs intake temperature information. Intake pressure sensor 31 that outputs intake pressure information. Signals are input from a water temperature sensor 32 that outputs water temperature information, a position sensor 33 that outputs information on the closed position of the flapper 20, an alcohol concentration sensor 25, and the like. From the output end of the controller, a fuel injection valve 11. Each output circuit is configured so that an output is issued to the flapper opening device 23 and the throttle opening correction valve 28, respectively.

コントローラ22の制御回路は周知の燃料噴射制御処理
を行なうと共に、第7@に示したような開度制御処理を
行なう。
The control circuit of the controller 22 performs a well-known fuel injection control process and also performs an opening control process as shown in the seventh @.

以下、第1図の乱流生成装置の作動を第4図(a)、(
b)の燃料噴射タイミング説明図及び第7図の開度制御
ルーチと共に説明する。
Below, the operation of the turbulence generator shown in Fig. 1 will be explained in Figs. 4(a) and 4(a).
This will be explained together with the explanatory diagram of fuel injection timing in b) and the opening control routine in FIG.

コントローラ22はエンジン制御のメインルーチンを実
行すると同時に、各種割込み条件に応じて各種サブルー
チンを実行する。
The controller 22 executes a main routine for engine control, and at the same time executes various subroutines in response to various interrupt conditions.

燃料噴射ルーチンにおいて、機関回転数情報。In the fuel injection routine, engine speed information.

アクセルペダルの踏み込み量に応じた負荷情報、吸気温
情報、吸気圧情報、水温情報等に基づき噴射量に相当す
る噴射時間ftを算出する。そして、図示しないクラン
ク各センサの出力に応じて各気筒の噴射時期を算出し、
同時期に達する毎に燃料噴射弁11を駆動させ、吸気路
1o中に燃料噴射を行なう。
The injection time ft corresponding to the injection amount is calculated based on load information, intake temperature information, intake pressure information, water temperature information, etc. according to the amount of depression of the accelerator pedal. Then, the injection timing for each cylinder is calculated according to the output of each crank sensor (not shown),
Every time the same timing is reached, the fuel injection valve 11 is driven to inject fuel into the intake passage 1o.

この場合1機関が安定した駆動状態にあるとシーケンシ
ャル制御パターンを採り、その時は、各気筒には2回転
に一回排気行程で燃料噴射を行ない(第4図にFlとし
て示した)、低温始動時にあると低温始動パターンを採
り、その時は、金気筒に1回転当り2回の燃料噴射を行
なう(第4図にF2として示した)。
In this case, when one engine is in a stable driving state, a sequential control pattern is adopted, and at that time, fuel is injected into each cylinder during the exhaust stroke once every two revolutions (shown as Fl in Fig. 4), and the engine is started at a low temperature. At times, a cold start pattern is adopted, in which case fuel is injected into the gold cylinder twice per revolution (shown as F2 in Figure 4).

そして、開度制御ルーチに達すると、ここではまず、運
転状態情報である機関回転数情報、負荷情報、吸気温情
報、吸気圧情報、水温情報等を取り込み、フラッパ開度
θを算出する。この場合、第5図(a)、(b)、(c
)、(d)の各マツプに基づき。
When the opening control loop is reached, the engine speed information, load information, intake temperature information, intake pressure information, water temperature information, etc., which are operating state information, are first taken in, and the flapper opening degree θ is calculated. In this case, FIGS. 5(a), (b), (c)
), (d) based on each map.

づき機関回転数N、負荷P、水温Tw、アルコール濃度
αに応じ、各フラッパ開度の補正量θ1乃至θ4を算出
し、これらに基づきフラッパ開度θを求める。
The correction amounts θ1 to θ4 for each flapper opening are calculated according to the engine speed N, load P, water temperature Tw, and alcohol concentration α, and the flapper opening θ is determined based on these.

ステップa3ではスロットル開度補正量を負荷情報に基
づき開度算出マツプ(第6図参照)を参照して算出する
In step a3, the throttle opening correction amount is calculated based on the load information with reference to the opening calculation map (see FIG. 6).

ステップa4では、フラッパ開度θに応じた出力電流を
フラッパ駆動装置23に出力し、フラッパ20を算出し
た開度に保つ、そして、フラッパ20による流量低下分
を補正すべくスロットル開度補正弁28に対して腿動電
流を出力して、メインルーチンに戻る。
In step a4, an output current corresponding to the flapper opening degree θ is outputted to the flapper driving device 23 to maintain the flapper 20 at the calculated opening degree, and the throttle opening correction valve 28 is used to correct the flow rate reduction caused by the flapper 20. Outputs the thigh dynamic current to and returns to the main routine.

この様に第1図の乱流生成装置は機関の運転状態に応じ
て、フラッパ開度θを算出し、フラッパを各運転状態に
応じ、最適な隙間tに保持でき、各燃料付着部aに上下
方向の渦流を十分に流下させることができる。特に、燃
料付着部aに向けて流下する渦流は、これと反対側(こ
こでは下方側)よりの渦の発生が無いため、バタフライ
弁のように互いに逆巻きの渦が互いに打ち消しあうこと
による渦エネルギの早期消滅を防げ、十分な燃料の霧化
促進を図れる。
In this way, the turbulence generating device shown in Fig. 1 calculates the flapper opening degree θ according to the operating state of the engine, and can hold the flapper at the optimum gap t according to each operating state, and allows each fuel adhesion part a to A sufficient amount of vertical vortex flow can be achieved. In particular, the vortex flowing down toward the fuel adhesion part a does not generate vortices from the opposite side (in this case, the lower side), so the vortex energy is generated by canceling each other out from oppositely wound vortices like in a butterfly valve. It is possible to prevent premature disappearance of the fuel and promote sufficient atomization of the fuel.

この結果、燃料付着部aの燃料の気化を十分に促進でき
、低負荷時の燃焼を安定化でき、始動性も向上し、燃料
噴射量を従来より低減でき燃費の向上を図れ、排ガスが
改善される。特に、気化性の悪いアルコール燃料であっ
ても、その始動性の向上を図り易い。
As a result, the vaporization of the fuel in the fuel adhesion part a can be sufficiently promoted, combustion can be stabilized at low loads, startability is improved, the amount of fuel injection can be reduced compared to before, fuel efficiency can be improved, and exhaust gas has been improved. be done. In particular, it is easy to improve the startability of alcohol fuel, which has poor vaporizability.

上述の処において、スロットル弁27はアクセルペダル
に連動して作動するものとし、フラッパ20はコントロ
ーラ22よりしぼり作動するものとしたが、これに代え
て、第8図に示すようにスロットル弁を徘除し、この働
きをフラッパ20aに兼用させてもよい、なお、ここで
は第1図乱流生成装置と同一部材を多数使用しており、
同一部材には同一符号を付し、その重複説明を略す、こ
の場合、コントローラ22aは、アクセルペダルの踏み
込み量情報を負荷センサ19より取り込み、この踏み込
み量に応じた基本フラッパ開度を求め、これを更に、機
関回転数情報、負荷情報、吸気温情報、吸気圧情報、水
温情報等により補正して最適なフラッパ開度を算出する
。そして、そのフラッパ開度を確保する出力電流をフラ
ッパ駆動装置23aに出力し、フラッパ20aをその開
度に保持するように制御しても良い、この場合も、吸入
空気量調整をフラッパ20aにより行なうと同時に、こ
れが燃料付着部aに向けて渦流を供給でき、燃料の霧化
促進を図れ、第1図の乱流生成装置と同様の作用効果を
得ることができる。特に、スロットル弁を排除でき装置
の簡素化を図れる。
In the above description, the throttle valve 27 is operated in conjunction with the accelerator pedal, and the flapper 20 is operated by squeezing the controller 22. However, instead of this, the throttle valve 27 is operated in conjunction with the accelerator pedal. This function may also be used by the flapper 20a. Note that many of the same members as in the turbulence generating device shown in Fig. 1 are used here.
Identical members are given the same reference numerals and redundant explanations will be omitted. In this case, the controller 22a takes in information on the amount of depression of the accelerator pedal from the load sensor 19, determines the basic flapper opening degree according to this amount of depression, and calculates the basic flapper opening degree according to this amount of depression. is further corrected using engine speed information, load information, intake temperature information, intake pressure information, water temperature information, etc. to calculate the optimal flapper opening degree. Then, an output current that secures the flapper opening may be outputted to the flapper drive device 23a, and the flapper 20a may be controlled to be maintained at the opening.In this case, the intake air amount is also adjusted by the flapper 20a. At the same time, this can supply a vortex toward the fuel adhering portion a, promoting atomization of the fuel, and achieving the same effects as the turbulent flow generating device shown in FIG. 1. In particular, the throttle valve can be eliminated and the device can be simplified.

上述の処において、エンジンはアルコールエンジンであ
り、吸気2弁式の4気筒のマルチポイントインジェクシ
ョンタイプであったが、これに代えて、ガソリンエンジ
ンに本発明を適用できる。
In the above, the engine is an alcohol engine, and is a four-cylinder multi-point injection type with two intake valves, but the present invention can be applied to a gasoline engine instead.

更に、吸気1弁弐のマルチポイントインジェクションタ
イプのエンジンにも本発明を適用でき。
Furthermore, the present invention can also be applied to a multi-point injection type engine with one intake valve and two intake valves.

2弁式のものと同様の作用効果を得るこヒができる。It is possible to obtain the same effects as the two-valve type.

(発明の効果) 以上の様に本発明は、フラッパの回動端を通過して燃料
付着部方向に向けて流動する吸気流中に縦向の渦流を生
成できる。特に、巻き込み方向が一方向の渦のため、互
いに打ち消しあってエネルギーロスを伴うような渦流の
発生が無く、この渦流により燃料付着部の燃料の霧化促
進を十分に図れ、低負荷時の燃焼を安定化でき、始動性
を向上でき、燃料噴射量を従来より低減でき燃費の向上
を図れ、排ガスの改善をも図れる。
(Effects of the Invention) As described above, the present invention can generate a vertical vortex flow in the intake air flow that passes through the rotating end of the flapper and flows toward the fuel adhering portion. In particular, since the vortices are drawn in in one direction, there is no generation of vortices that cancel each other out and cause energy loss, and this vortex sufficiently promotes atomization of the fuel at the fuel adhesion area, resulting in combustion at low loads. It is possible to stabilize the engine, improve startability, reduce the amount of fuel injection compared to conventional systems, improve fuel efficiency, and improve exhaust gas emissions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例としての乱流生成装置の全体
構成図、第2図は同上装置の主要部材の概略透視斜視図
、第3図は同上装置のボディ一部分の縦断面図、第4図
(a)、(b)は同上装置の装着されるエンジンのクラ
ンク角位置及び行程説明図、第5図(a)、(b)、(
c)、(d)は同上装置のコントローラが行なう制御で
用いるフラッパ開度の算出マツプの特性線図、第6図は
同上装置のコントローラが行なう制御で用いるスロット
ル開度補正弁28の開度算出マツプの特性線図、第7図
は同上装置のコントローラが行なう制御で用いる開度演
算処理の制御プログラムのフローチャート、第8図は本
発明のその他の実施例としての乱流生成装置の全体構成
図、第9図及び第10図は各々異なる従来装置の要部断
面図である。 10・・・吸気路、11・・・燃料噴射弁、12・・・
エンジン、 13・・・吸気ポート、20・・・フラッ
パ、22・・・コントローラ、23・・・フラッパ駆動
装置、a・・・燃料付着部、201・・・フラッパの基
端、202・・・フラッパの回動端。 第 う 図 第 ワ 図 傭 図 ヘ 、\
FIG. 1 is an overall configuration diagram of a turbulence generating device as an embodiment of the present invention, FIG. 2 is a schematic perspective view of main components of the same device, and FIG. 3 is a vertical sectional view of a part of the body of the same device. Figures 4(a) and (b) are illustrations of the crank angle position and stroke of the engine to which the same device is installed, and Figures 5(a), (b), (
c) and (d) are characteristic diagrams of the flapper opening calculation map used in the control performed by the controller of the above device, and Fig. 6 is the opening calculation of the throttle opening correction valve 28 used in the control performed by the controller of the same device. MAP characteristic diagram, FIG. 7 is a flowchart of a control program for opening calculation processing used in control performed by the controller of the above device, and FIG. 8 is an overall configuration diagram of a turbulence generating device as another embodiment of the present invention. , FIG. 9, and FIG. 10 are sectional views of essential parts of different conventional devices. 10... Intake path, 11... Fuel injection valve, 12...
Engine, 13... Intake port, 20... Flapper, 22... Controller, 23... Flapper drive device, a... Fuel adhesion part, 201... Base end of flapper, 202... The rotating end of the flapper. Figure U, Figure W, Figure 1, \

Claims (1)

【特許請求の範囲】[Claims] 内燃機関の吸気ポートに対設され燃料を噴射する燃料噴
射弁と、上記燃料噴射弁の噴射燃料が付着する上記吸気
ポートの内壁面上の燃料付着部に対してその上流側に基
端が枢支されると共に回動端が上記吸気ポートの断面を
しぼる方向にその回動角を増減させるよう構成されたフ
ラッパと、上記内燃機関の出力情報を発する出力情報発
生手段と、上記内燃機関の出力が小さいほど上記フラッ
パの回動角を大きく保持するように上記フラッパを操作
するフラッパ駆動手段とを有し、最小回動角位置にある
上記フラッパの回動端が上記燃料付着部に対向するよう
に構成されている乱流生成装置。
A fuel injection valve is arranged opposite to an intake port of an internal combustion engine and injects fuel; a flapper configured to be supported and whose rotating end increases or decreases its rotational angle in a direction that narrows the cross section of the intake port; an output information generating means for generating output information of the internal combustion engine; and an output of the internal combustion engine. and a flapper driving means for operating the flapper so that the rotation angle of the flapper is held larger as A turbulence generator configured in
JP1195172A 1989-07-27 1989-07-27 Turbulent flow generating device Pending JPH0361669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1195172A JPH0361669A (en) 1989-07-27 1989-07-27 Turbulent flow generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1195172A JPH0361669A (en) 1989-07-27 1989-07-27 Turbulent flow generating device

Publications (1)

Publication Number Publication Date
JPH0361669A true JPH0361669A (en) 1991-03-18

Family

ID=16336641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1195172A Pending JPH0361669A (en) 1989-07-27 1989-07-27 Turbulent flow generating device

Country Status (1)

Country Link
JP (1) JPH0361669A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5797365A (en) * 1996-07-05 1998-08-25 Hyundai Motor Co., Ltd. Intake port device for an engine of a vehicle
WO2007093916A2 (en) * 2006-02-17 2007-08-23 Toyota Jidosha Kabushiki Kaisha Intake port structure of internal combustion engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5797365A (en) * 1996-07-05 1998-08-25 Hyundai Motor Co., Ltd. Intake port device for an engine of a vehicle
WO2007093916A2 (en) * 2006-02-17 2007-08-23 Toyota Jidosha Kabushiki Kaisha Intake port structure of internal combustion engine
JP2007218198A (en) * 2006-02-17 2007-08-30 Toyota Motor Corp Intake port structure of internal combustion engine
WO2007093916A3 (en) * 2006-02-17 2007-11-15 Toyota Motor Co Ltd Intake port structure of internal combustion engine
JP4492556B2 (en) * 2006-02-17 2010-06-30 トヨタ自動車株式会社 Intake port structure of internal combustion engine
US7938099B2 (en) 2006-02-17 2011-05-10 Toyota Jidosha Kabushiki Kaisha Intake port structure of internal combustion engine

Similar Documents

Publication Publication Date Title
KR19990062686A (en) Direct injection engine controller
JPH0361669A (en) Turbulent flow generating device
JPH05272437A (en) Fuel injector for engine
JP3617691B2 (en) Engine intake control device
JP2002188522A (en) Egr control device for engine with turbocharger
JP3181858B2 (en) Air-assisted electromagnetic fuel injection valve
JP4662173B2 (en) Control device for internal combustion engine
KR950013210B1 (en) Fuel-ejecting apparatus for i.c. engine
JP3937547B2 (en) Engine intake system
JPS6013934A (en) Secondary-air supplying apparatus for engine with turbocharger
JP2586596B2 (en) Air-assisted electronically controlled fuel injection device
JP2529417Y2 (en) Fuel supply device for internal combustion engine
JP2987658B2 (en) Assist air supply device for internal combustion engine
JP2574089Y2 (en) Assist air system for supercharged internal combustion engine
JPH0666226A (en) Fuel injector for internal combustion engine
JPH09280066A (en) Intake air controller of internal combustion engine
JP2765153B2 (en) Auxiliary air control for fuel injection valve
JPH048251Y2 (en)
JPH0642435A (en) Intake controller for internal combustion engine
JPH0680825U (en) Engine intake system using gas fuel
JPH02196128A (en) Intake air controller for internal combustion engine
JPS61160520A (en) Intake-air control device in internal-combustion engine
JPH0633851A (en) Fuel feeding device for internal combustion engine
JPH06317237A (en) Fuel injection device for multicylinder internal combustion engine
JPH07208185A (en) Swirl control valve of engine