JPH036136Y2 - - Google Patents

Info

Publication number
JPH036136Y2
JPH036136Y2 JP4356584U JP4356584U JPH036136Y2 JP H036136 Y2 JPH036136 Y2 JP H036136Y2 JP 4356584 U JP4356584 U JP 4356584U JP 4356584 U JP4356584 U JP 4356584U JP H036136 Y2 JPH036136 Y2 JP H036136Y2
Authority
JP
Japan
Prior art keywords
zero
current
input
voltage
ground fault
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4356584U
Other languages
Japanese (ja)
Other versions
JPS60156829U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP4356584U priority Critical patent/JPS60156829U/en
Publication of JPS60156829U publication Critical patent/JPS60156829U/en
Application granted granted Critical
Publication of JPH036136Y2 publication Critical patent/JPH036136Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Description

【考案の詳細な説明】 本考案は、非接地系の配電線の地絡保護に用い
る地絡方向継電器に関するものである。
[Detailed Description of the Invention] The present invention relates to a ground fault directional relay used for ground fault protection of ungrounded distribution lines.

第1図に通常の非接地系配電用変電所のバンク
構成例を示す。第1図において、Tは電源に接続
された変圧器であり、その2次側にはフイーダ
F1〜F3が接続されるとともに、接地形計器用変
圧器GPTが接続されている。各フイーダF1〜F3
には零相変流器ZCT1〜ZCT3が挿設され、それに
地絡方向継電器DG1〜DG3が接続されている。ま
た、前記接地形計器用変圧器GPTの3次巻線に
よつて構成されるオープンデルタ回路には制限抵
抗CLRが接続されており、地絡故障時にその両
端間に生じる零相電圧V0を前記地絡方向継電器
DG11〜DG3に入力するようになつている。
Figure 1 shows an example of a bank configuration of a normal non-grounded power distribution substation. In Figure 1, T is a transformer connected to the power supply, and a feeder is connected to the secondary side of the transformer.
F 1 to F 3 are connected, and a ground voltage instrument transformer GPT is also connected. Each feeder F 1 ~ F 3
Zero-phase current transformers ZCT 1 to ZCT 3 are inserted, and ground fault direction relays DG 1 to DG 3 are connected thereto. In addition, a limiting resistor CLR is connected to the open delta circuit constituted by the tertiary winding of the ground potential transformer GPT, and the zero-sequence voltage V 0 generated between the ends of the circuit in the event of a ground fault is reduced. The earth fault direction relay
It is designed to be input to DG 11 to DG 3 .

このようなバンク構成において、例えばフイー
ダF1に地絡故障が発生すると、接地形計器用変
圧器GPTの3次側におけるオープンデルタ回路
に接続された制限抵抗CLRの両端に零相電圧V0
が発生し、また各フイーダF1〜F3の零相変流器
ZCT1〜ZCT3に零相電流I0が流れる。この零相電
圧V0と零相電流I0が各フイーダの地絡方向継電器
DG1〜DG3に導入され、その位相関係から地絡フ
イーダが選択される。
In such a bank configuration, if a ground fault occurs in feeder F 1 , for example, a zero-sequence voltage V 0 will be generated across the limiting resistor CLR connected to the open delta circuit on the tertiary side of the ground potential transformer GPT.
occurs, and the zero-phase current transformer of each feeder F 1 to F 3
Zero-sequence current I 0 flows through ZCT 1 to ZCT 3 . This zero-sequence voltage V 0 and zero-sequence current I 0 are the ground fault direction relays of each feeder.
It is introduced into DG 1 to DG 3 , and the ground fault feeder is selected based on the phase relationship.

この場合、地絡方向継電器の位相特性は、零相
電圧V0に対する零相電流I0の位相がバンク構成や
線路の対地容量C1〜C3によつて0゜から進み90゜位
まで変化するので、通常45゜進みで最高感度とな
るような特性とするのが普通である。
In this case, the phase characteristics of the earth-fault directional relay are such that the phase of the zero-sequence current I 0 with respect to the zero-sequence voltage V 0 advances from 0° and changes to about 90° depending on the bank configuration and the ground capacitance C 1 to C 3 of the line. Therefore, it is normal to set the characteristics such that the maximum sensitivity is achieved at a 45° advance.

ところで、最近は配電線としてケーブルが多用
される傾向にあり、配電線の地絡は間欠地絡が多
くなる。その地絡電流は第2図aのように、また
零相変流器で検出される故障フイーダと健全フイ
ーダの零相電流I01,I02は第2図b,cのように
パルス状となり、零相電圧V0の波形は第2図d
のように矩形波となることが多くなる。
By the way, recently there has been a tendency for cables to be used frequently as power distribution lines, and intermittent ground faults are becoming more common in the distribution line. The ground fault current is as shown in Figure 2a, and the zero-sequence currents I 01 and I 02 of the faulty feeder and healthy feeder detected by the zero-sequence current transformer are pulse-like as shown in Figures 2b and c. , the waveform of the zero-sequence voltage V 0 is shown in Figure 2 d.
It often becomes a square wave like this.

このため、このような波形に対しても感度良
く、かつ正確に故障フイーダを選択できるように
地絡方向継電器が構成されており、その例を第3
図に示す。第3図において、TAは零相変流器の
2次側に接続される入力変圧器であり、2次側に
零相電流I0に比例した電流I0aが流れ、これに応じ
た電圧V10が生じる。BPF1はこの電圧V10を入力
とする基本波用のアクテイブバンドパスフイル
タ、TVは接地形計器用変圧器の3次側に接続さ
れる入力変圧器であり、零相電圧を取込むための
ものである。BPF2は零相電圧入力部に設けたバ
ンドパスフイルタであり、前記フイルタBPF1
同様に基本波分のみを取出すためにQの高いもの
が用いられている。PSは移相回路、PCは位相比
較回路であり、各基本波の位相比較を行うための
ものである。IDは零相電流検出回路、ANDはこ
の零相電流検出回路IDの出力と位相比較回路PC
の出力とを入力とするアンド回路、Xはこのアン
ド回路ANDの出力で駆動される出力リレーであ
る。
For this reason, ground fault direction relays are configured so that they are sensitive to such waveforms and can accurately select the fault feeder.
As shown in the figure. In Figure 3, TA is an input transformer connected to the secondary side of the zero-sequence current transformer, and a current I 0a proportional to the zero-sequence current I 0 flows through the secondary side, and a corresponding voltage V 10 occurs. BPF 1 is an active bandpass filter for the fundamental wave that inputs this voltage V 10 , TV is an input transformer connected to the tertiary side of the ground voltage instrument transformer, and is used to take in the zero-sequence voltage. It is something. BPF 2 is a band pass filter provided at the zero-phase voltage input section, and like the filter BPF 1 , a filter with a high Q is used in order to extract only the fundamental wave component. PS is a phase shift circuit, and PC is a phase comparison circuit, which is used to compare the phases of each fundamental wave. ID is the zero-sequence current detection circuit, AND is the output of this zero-sequence current detection circuit ID and the phase comparison circuit PC
An AND circuit whose input is the output of the AND circuit, and X is an output relay driven by the output of the AND circuit.

このようにI0入力部及びV0入力部にQの高いア
クテイブバンドパスフイルタBPF1,BPF2を設け
て各波形の基本波分のみを取出し、その出力を位
相比較し、かつI0検出を行つてそのアンド出力で
リレーXを駆動するようにすると、フイーダF1
でケーブル地絡が発生した場合には、フイーダ
F1の零相電流I01′と健全フイーダF2の零相電流
I02′の基本波分は零相電圧V0の基本波分に対して
第4図のような位相関係になり、正常に動作す
る。即ち、零相電流I01′が動作範囲(斜線領域側)
に入る。
In this way, high Q active bandpass filters BPF 1 and BPF 2 are provided at the I 0 input section and V 0 input section, extracting only the fundamental wave component of each waveform, comparing the phases of the outputs, and performing I 0 detection. If you go to the AND output and drive relay X, feeder F 1
If a cable ground fault occurs in the feeder
Zero-sequence current I 01 ′ of F 1 and zero-sequence current of healthy feeder F 2
The fundamental wave component of I 02 ' has a phase relationship as shown in FIG. 4 with respect to the fundamental wave component of the zero-sequence voltage V 0 , and the device operates normally. In other words, the zero-sequence current I 01 ' is the operating range (shaded area side)
to go into.

ここで、零相変流器の及ぼす影響について検討
してみる。零相変流器の等価回路は、巻線の抵抗
分を無視すれば第5図のようになる。図中、X0
は零相変流器の励磁インピーダンス、RLは零相
変流器の負荷抵抗である。零相変流器の負荷はリ
ード線、補助変流器、継電器のインピーダンスを
合成したものであるが、そのインダクタンス分は
抵抗分にくらべて小さいので無視し、純抵抗とし
て扱う。
Let us now consider the influence of zero-phase current transformers. The equivalent circuit of a zero-phase current transformer is as shown in FIG. 5, if the resistance of the winding is ignored. In the diagram, X 0
is the excitation impedance of the zero-phase current transformer, and R L is the load resistance of the zero-phase current transformer. The load of a zero-phase current transformer is a combination of the impedance of the lead wire, auxiliary current transformer, and relay, but the inductance component is small compared to the resistance component, so it is ignored and treated as pure resistance.

今、零相変流器の入力として第6図aのような
パルス状の地絡電流が流れた場合に零相変流器の
2次側にいかなる電流が流れるかを以下に説明す
る。
Now, when a pulsed ground fault current as shown in FIG. 6a flows as an input to the zero-phase current transformer, what kind of current flows in the secondary side of the zero-phase current transformer will be explained below.

第6図において、時刻tがt0≦t<t1の範囲で
は、パルス状の入力電流I0は負荷抵抗RLに流れる
成分IpLと、励磁インピーダンスX0に流れる成分
IpXとして分流する。励磁インピーダンスX0は負
荷抵抗RLの数10倍程度の大きさを持つのでt0≦t
<t1の範囲では電流I0,IpL,IpXおよび電圧Vの間
には以下の関係が成り立つ。
In Fig. 6, when time t is in the range t 0 ≦ t < t 1 , the pulsed input current I 0 consists of a component I pL flowing through the load resistance R L and a component flowing through the excitation impedance X 0 .
Divided as I pX . Since the excitation impedance X 0 is several tens of times as large as the load resistance R L , t 0 ≦t
In the range <t 1 , the following relationship holds between the currents I 0 , I pL , I pX and the voltage V.

I0=IpL+IpX≒IpL (1) V=RL・IpL (2) 次に、時刻t=t1において、励磁インピーダン
スX0に流れる電流IpX(t1)は、(1),(2)式を用いて IpX(t1)=1/L0t1 0Vdt=RL/L0t1 0IpLdt≒RL
/L0t1 0I0dt(3) 但、L0はインピーダンスX0のリアクタンスと
なり、IpX(t1)は入力電流I0の積分値すなわち、
パルス状波形の面積に比例している。この電流
IpX(t1)は、すでに入力電流I0がoになつている
ため、負荷抵抗RLを通じて放電することになる。
I 0 = I pL + I pX ≒ I pL (1) V = R L・I pL (2) Next, at time t = t 1 , the current I pX (t 1 ) flowing through the excitation impedance X 0 is (1 ), using equation (2), I pX (t 1 )=1/L 0t1 0 Vdt=R L /L 0t1 0 I pL dt≒R L
/L 0t1 0 I 0 dt(3) However, L 0 is the reactance of the impedance X 0 , and I pX (t 1 ) is the integral value of the input current I 0 , that is,
It is proportional to the area of the pulsed waveform. this current
Since the input current I 0 has already reached o, I pX (t 1 ) will be discharged through the load resistor RL .

すなわち時刻tがt1≦t<t2の範囲では、回路
がX0とRLの閉回路となり電流IpL,IpXは(4),(5)式
で表わされる。
That is, when the time t is in the range of t 1 ≦t<t 2 , the circuit becomes a closed circuit between X 0 and R L , and the currents I pL and I pX are expressed by equations (4) and (5).

IpX=IpX(t1)ε-t/〓 (4) IpL=−IpX=−IpX(t1)ε-t/〓 =RL/L0t1 0I0dt・ε-t/〓 (5) 但、時定数τ=L0/RL このようにt1≦t<t2において負荷抵抗RLに流
れる電流は、入力電流I0が印加された時とは、逆
方向に流れ、その大きさは時定数τ=L0/RLで減衰 していく。零相変流器においてこの時定数τは
0.1秒程度であるから商用周波数の半サイクル約
10m秒程度の時間ではほとんど減衰せず第6図b
のIpCのような矩形波状の電流波形となり、その
大きさは(5)式より入力電流の積分値、すなわちパ
ルス状電流の面積に比例する。
I pX = I pX (t 1-t/ 〓 (4) I pL = −I pX = −I pX (t 1-t/ 〓 =RL/L 0t1 0 I 0 dt・ε - t/ 〓 (5) However, time constant τ=L 0 /R L Thus, at t 1 ≦ t < t 2 , the current flowing through the load resistor R L is opposite to that when the input current I 0 is applied. direction, and its magnitude attenuates with the time constant τ=L 0 /R L . In a zero-phase current transformer, this time constant τ is
Since it is about 0.1 seconds, it is about half a cycle of the commercial frequency.
There is almost no attenuation in a time of about 10 msec, Figure 6b.
The current waveform becomes a rectangular wave like I pC , and its magnitude is proportional to the integral value of the input current, that is, the area of the pulsed current, according to equation (5).

この電流IpCは、配電線の対地容量が小さく、
パルス電流が小さいときは殆ど問題とならない
が、最近のようにケーブル配電線が増加して対地
容量が増してくると、大きな問題となる。
This current I pC is due to the small ground capacity of the distribution line.
This is hardly a problem when the pulse current is small, but as the number of cable distribution lines increases and the ground capacity increases, it becomes a big problem.

なぜならば、第3図のバンドパスフイルタ
BPF1はアクテイブバンドパスフイルタであるた
め、その出力は制御電圧以上にすることはでき
ず、ダイナミツクレンジはこの制御電圧以上とす
ることができない。もし、制御電圧以上の入力を
入れるとアクテイブフイルタの機能が失われるた
め、入力をこの範囲内に制限するために第3図の
ようにバリスタV1をバンドパスフイルタBPF1
零相端間に接続して入力の上限値をクリツプし、
第4図のような位相特性を得ているのが普通であ
る。
This is because the bandpass filter shown in Figure 3
Since BPF 1 is an active bandpass filter, its output cannot exceed the control voltage, and the dynamic range cannot exceed this control voltage. If an input higher than the control voltage is input, the active filter function will be lost, so in order to limit the input within this range, varistor V 1 is connected between the zero-phase terminal of bandpass filter BPF 1 as shown in Figure 3. Connect and clip the upper limit of the input,
It is common to obtain phase characteristics as shown in FIG.

ところが、地絡方向継電器は零相変流器の一次
で0.2Aというような高感度を要求されるので、
ダイナミツクレンジの上限を極端に大きくはとれ
ない。しかし、最近のケーブル地絡では、パルス
の幅は変わらないが、ピーク値が数100Aという
ような大きなパルス電流が流れるようになつてき
ている。特に、ケーブル地絡の対地容量が大きな
ときの地絡初期にこの傾向が顕著となる。
However, since ground fault directional relays require high sensitivity such as 0.2A at the primary of the zero-phase current transformer,
The upper limit of the dynamic range cannot be set extremely high. However, in recent cable ground faults, large pulse currents with peak values of several hundred amperes have started to flow, although the pulse width remains the same. This tendency is particularly noticeable at the beginning of a ground fault when the ground capacity of the cable ground fault is large.

例えば第10図のような等価回路により、パル
ス電流のピーク値を計算することができる。第1
0図においてEは地絡発生時の電圧値、Lは電源
インピーダンスのリアクタンス、Cは健全フイー
ダの対地容量を合計したもの、Rは接地形計器用
変圧器GPTの制限抵抗である。
For example, the peak value of the pulse current can be calculated using an equivalent circuit as shown in FIG. 1st
In Figure 0, E is the voltage value when a ground fault occurs, L is the reactance of the power supply impedance, C is the sum of the ground capacity of healthy feeders, and R is the limiting resistance of the ground voltage instrument transformer GPT.

第10図の等価回路による計算値を第11図に
示す。第12図からわかるようにケーブルの対地
容量が増すほどパルス電流のピーク値は大きくな
る。例えばケーブルの対地容量が5μFの場合、パ
ルス電流のピーク値は約400Aとなり零相変流器
の2次電流IpCは、(5)式により数Aとなる。
FIG. 11 shows the calculated values using the equivalent circuit of FIG. 10. As can be seen from FIG. 12, the peak value of the pulse current increases as the ground capacity of the cable increases. For example, if the ground capacity of the cable is 5 μF, the peak value of the pulse current will be approximately 400 A, and the secondary current I pC of the zero-phase current transformer will be several A according to equation (5).

この場合には、先に考察したように電流I0のパ
ルス面積が増加するので、零相変流器の2次電流
IpC(第6図bのIpL)が増加するのに対し、バリス
タV1のクリツプ電圧は一定であるので、バンド
パスフイルタBPF1の入力は第6図dのV10のよ
うな波形になつてくる。この波形はバンドパスフ
イルタで基本波を取り出すと第6図eのような波
形(点線はバリスタがないとき)となり、位相特
性上では、故障フイーダの零相電流I01、健全フ
イーダの零相電流I02の見掛け上の位相は第4図
のようになり、故障フイーダの地絡方向継電器は
誤不動作、健全フイーダの地絡方向継電器は誤動
作となつて、本来の期待した動作とは全く逆の判
定となり、大きな問題となる。
In this case, as discussed earlier, the pulse area of current I 0 increases, so the secondary current of the zero-phase current transformer
Since I pC (I pL in Figure 6b) increases while the clip voltage of varistor V 1 remains constant, the input of bandpass filter BPF 1 has a waveform like V 10 in Figure 6d. I'm getting old. When the fundamental wave is extracted with a bandpass filter, this waveform becomes the waveform shown in Figure 6e (the dotted line indicates when there is no varistor), and on the phase characteristics, the zero-sequence current I 01 of the failed feeder and the zero-sequence current of the healthy feeder. The apparent phase of I 02 is as shown in Figure 4, and the faulty feeder's ground-fault direction relay malfunctions, and the healthy feeder's ground-fault direction relay malfunctions, completely opposite to the originally expected operation. This becomes a big problem.

なお、健全側のI0C2(第2図のI02)には接地形
計器用変圧器GPTの中性点を通つて放電される
電流Igptが先のIpC相当分に重畳されることになる。
In addition, on the healthy side I 0C2 (I 02 in Figure 2), the current I gpt discharged through the neutral point of the ground voltage voltage transformer GPT is superimposed on the current equivalent to the previous I pC . Become.

本考案は上記のような問題点を解消するために
なされたもので、I0入力部の基本波用アクテイブ
バンドパスフイルタの入力側にローパスまたはバ
ンドパスのパツシブフイルタを挿設するにより、
対地容量が大きな場合にも的確に地絡保護を行う
ことが可能な地絡方向継電器を提供することを目
的とする。
The present invention was made to solve the above problems, and by inserting a low-pass or band-pass passive filter on the input side of the fundamental wave active band-pass filter of the I0 input section,
It is an object of the present invention to provide a ground fault directional relay that can provide accurate ground fault protection even when the ground capacity is large.

以下、本考案を図示の実施例に基づいて詳細に
説明する。
Hereinafter, the present invention will be explained in detail based on illustrated embodiments.

第7図は本考案の一実施例を示すもので、TA
及びTVは入力変圧器、BPF1はI0基本波用のアク
テイブバンドパスフイルタ、BPF2はV0基本波用
のアクテイブバンドパスフイルタ、PSは移相回
路、PCは位相比較回路、IDは零相電流検出回路、
ANDはアンド回路、Xは出力リレー、V1は入力
制限用のバリスタ(クリツパー)、PFは前記I0
のバンドパスフイルタBPF1及びクリツパーV1
入力側に挿設したパツシブフイルタ(ローパスま
たはバンドパス)であり、このパツシブフイルタ
PFを設けたことが従来(第3図)と異なつてい
る。このパツシブフイルタPFは、その入力I01
して予測できる最大のパルスが印加されたときに
もその出力のピーク値がクリツパーV1のクリツ
プ電圧V1C以下となるように回路定数を選定して
いる。
Figure 7 shows an embodiment of the present invention.
and TV is the input transformer, BPF 1 is the active bandpass filter for I 0 fundamental wave, BPF 2 is the active bandpass filter for V 0 fundamental wave, PS is the phase shift circuit, PC is the phase comparison circuit, ID is zero phase current detection circuit,
AND is an AND circuit , path) and this passive filter
The difference from the conventional model (Figure 3) is that it has a PF. The circuit constants of this passive filter PF are selected so that even when the maximum predictable pulse is applied to its input I01 , the peak value of its output remains below the clipping voltage V1C of the clipper V1 .

第8図は前記パツシブフイルタPFの具体的な
回路構成を示すものであり、抵抗R1,R2とコン
デンサCによりT形回路を構成し、ローパスフイ
ルタとしている。この場合、予測できる入力パル
スの最大値に対しても出力V10のピーク値がクリ
ツパーV1のクリツプ電圧以下となるようにR1C
の時定数を選定する。
FIG. 8 shows a specific circuit configuration of the passive filter PF, in which resistors R 1 and R 2 and a capacitor C constitute a T-shaped circuit, forming a low-pass filter. In this case, R 1 C is set so that the peak value of the output V 10 is less than the clipping voltage of the clipper V 1 even for the maximum value of the input pulse that can be predicted.
Select the time constant of

なお、抵抗R2は、入力パルスのピーク値が異
常に大きくて、コンデンサCの端子電圧がクリツ
パーV1のクリツプ電圧以上になつても、コンデ
ンサCへの充電を可能にし、I0パルス電流のエネ
ルギーを有効にバンドパスフイルタBPF1へ取入
れるためのものである。
Note that the resistor R2 allows charging of the capacitor C even if the peak value of the input pulse is abnormally large and the terminal voltage of the capacitor C exceeds the clipping voltage of the clipper V1 . This is to effectively incorporate energy into the band pass filter BPF 1 .

次に、動作について述べる。入力変圧器TAの
入力I0がクリツパーV1のクリツプ電圧以下となる
ような大きさの場合には、従来と同様に零相電流
I0、零相電圧V0の基本波が制限を受けることなく
アクテイブバンドパスフイルタによつて抽出さ
れ、その位相比較が行われる。その結果、所定の
位相関係にあり、しかも検出回路IDによつて零
相電流I0が所定レベル以上であることが検出され
ると、アンド回路ANDの出力でリレーXが駆動
され、地絡保護が行われる。
Next, the operation will be described. If the input transformer TA's input I0 is below the clipping voltage of the clipper V1 , the zero-sequence current
The fundamental waves of I 0 and zero-phase voltage V 0 are extracted by the active bandpass filter without being restricted, and their phases are compared. As a result, if there is a predetermined phase relationship and the detection circuit ID detects that the zero-sequence current I0 is above a predetermined level, the relay X is driven by the output of the AND circuit AND, and the ground fault protection will be held.

また、入力I0がクリツプ電圧以上となるような
大きさの場合には、パツシブフイルタPFの入力
I01も第9図のようにクリツプ電圧以上の高いピ
ーク値を有するようになるが、フイルタPF通過
後は第9図のV10のようにクリツプ電圧V1C以下
に抑えられ、これがアクテイブバンドパスフイル
タBPF1の入力となる。この結果、ピーク値の高
いパルス入力であつてもクリツパーV1によつて
切り取られることなくアクテイブバンドパスフイ
ルタBPF1に有効に取入れられるようになり、的
確に地絡方向の判定が行われる。
In addition, if the input I0 is large enough to exceed the clip voltage, the input of the passive filter PF
I 01 also has a high peak value that is higher than the clip voltage as shown in Fig. 9, but after passing through the filter PF it is suppressed to below the clip voltage V 1C as shown in V 10 in Fig. 9, and this is the active band pass. Input to filter BPF 1 . As a result, even a pulse input with a high peak value can be effectively input to the active bandpass filter BPF 1 without being cut off by the clipper V 1 , and the ground fault direction can be accurately determined.

なお、パツシブフイルタPFはRCの2段、3段
のローパスフイルタを用いたり、LCによるロー
パスフイルタやバンドパスフイルタを用いてもよ
い。
Note that the passive filter PF may be a two-stage or three-stage RC low-pass filter, or an LC low-pass filter or band-pass filter.

以上のように本考案によれば、I0用のアクテイ
ブバンドパスフイルタの入力側にこのフイルタの
ダイナミツクレンジの上限以下の出力となるよう
に回路定数が選定されたパツシブフイルタを挿設
したので、配電線ケーブルの対地容量が増大して
ケーブル地絡時のパルス電流のピーク値が高くな
つても、パツシブフイルタによつてそのエネルギ
ーが有効にアクテイブバンドパスフイルタに取り
入れられるようになり、故障、健全の判定を的確
に行うことができる。従つて、対地容量の大きな
バンク構成であつても誤動作、誤不動作のおそれ
がなくなり、信頼性の向上が図れる。
As described above, according to the present invention, a passive filter whose circuit constants are selected so that the output is below the upper limit of the dynamic range of this filter is inserted on the input side of the active bandpass filter for I0 . Even if the ground capacity of the distribution line cable increases and the peak value of pulse current at the time of a cable ground fault increases, the passive filter allows that energy to be effectively incorporated into the active bandpass filter, preventing malfunctions and damage to the system. Judgments can be made accurately. Therefore, even with a bank configuration having a large ground capacity, there is no risk of malfunction or malfunction, and reliability can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は配電用変電所のバンク構成図、第2図
a〜dは地絡故障時の電流、電圧の波形図、第3
図は従来の地絡方向継電器の一例を示すブロツク
図、第4図は同地絡方向継電器の位相特性図、第
5図は零相変流器の等価回路図、第6図a〜eは
I0基本波用のバンドパスフイルタの波形図、第7
図は本考案に係る地絡方向継電器の一実施例を示
すブロツク図、第8図は同実施例におけるパツシ
ブフイルタの回路図、第9図は動作説明のための
波形図、第10図は地絡発生時の系統の等価回路
図、第11図はケーブルの対地容量とパルス電流
のピーク値との関係を示すグラフである。 ZCT……零相変流器、GPT……接地形計器用
変圧器、TA及びTV……入力変圧器、BPF1及び
BPF2……基本波用のバンドパスフイルタ、PC…
…位相比較回路、ID……零相電流検出回路、
AND……アンド回路、X……出力リレー、V1
…入力制限用クリツパー(バリスタ)、PF……パ
ツシブフイルタ、R1及びR2……抵抗、C……コ
ンデンサ。
Figure 1 is a bank configuration diagram of a distribution substation, Figures 2 a to d are current and voltage waveform diagrams at the time of a ground fault, and Figure 3
The figure is a block diagram showing an example of a conventional ground fault directional relay, Figure 4 is a phase characteristic diagram of the same ground fault directional relay, Figure 5 is an equivalent circuit diagram of a zero-phase current transformer, and Figures 6 a to e are
Waveform diagram of bandpass filter for I 0 fundamental wave, 7th
The figure is a block diagram showing one embodiment of the ground fault directional relay according to the present invention, Figure 8 is a circuit diagram of a passive filter in the same embodiment, Figure 9 is a waveform diagram for explaining operation, and Figure 10 is a ground fault diagram. FIG. 11, which is an equivalent circuit diagram of the system at the time of occurrence, is a graph showing the relationship between the ground capacity of the cable and the peak value of the pulse current. ZCT...Zero-phase current transformer, GPT...Grounding voltage transformer, TA and TV...Input transformer, BPF 1 and
BPF 2 ...Band pass filter for fundamental wave, PC...
...Phase comparison circuit, ID...Zero-sequence current detection circuit,
AND...AND circuit, X...output relay, V 1 ...
...Input limiting clipper (varistor), PF...passive filter, R1 and R2 ...resistor, C...capacitor.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 零相電流と零相電圧の基本波をアクテイブバン
ドパスフイルタで抽出してその位相比較を行い、
所定の位相関係にあつて、しかも零相電流が所定
レベル以上のとき出力リレーを動作させる地絡方
向継電器において、前記零相電流入力部のアクテ
イブバンドパスフイルタの入力側に、その出力が
このアクテイブバンドパスフイルタのダイナミツ
クレンジの上限以下となるように回路定数を選定
したパツシブフイルタを挿設したことを特徴とす
る地絡方向継電器。
The fundamental waves of zero-sequence current and zero-sequence voltage are extracted using an active bandpass filter, and their phases are compared.
In a ground fault direction relay that operates an output relay when the zero-sequence current is at a predetermined level or higher with a predetermined phase relationship, the output is connected to the input side of the active bandpass filter of the zero-sequence current input section. A ground fault directional relay characterized in that a passive filter is inserted, the circuit constant of which is selected to be below the upper limit of the dynamic range of the bandpass filter.
JP4356584U 1984-03-27 1984-03-27 Earth fault directional relay Granted JPS60156829U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4356584U JPS60156829U (en) 1984-03-27 1984-03-27 Earth fault directional relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4356584U JPS60156829U (en) 1984-03-27 1984-03-27 Earth fault directional relay

Publications (2)

Publication Number Publication Date
JPS60156829U JPS60156829U (en) 1985-10-18
JPH036136Y2 true JPH036136Y2 (en) 1991-02-15

Family

ID=30555352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4356584U Granted JPS60156829U (en) 1984-03-27 1984-03-27 Earth fault directional relay

Country Status (1)

Country Link
JP (1) JPS60156829U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013113632A (en) * 2011-11-25 2013-06-10 Jfe Steel Corp Ground fault detecting method

Also Published As

Publication number Publication date
JPS60156829U (en) 1985-10-18

Similar Documents

Publication Publication Date Title
US6437955B1 (en) Frequency-selective circuit protection arrangements
Hou et al. Capacitive voltage transformer: transient overreach concerns and solutions for distance relaying
DE69931347T2 (en) ZONE-BY-STEP ARC FLASH DETECTION
US4228475A (en) Ground monitoring system
KR100206027B1 (en) Field ground fault detector and field ground fault relay for detecting ground fault corresponding to dc component extracted from ground fault current
US6025980A (en) Earth leakage protective relay
US5654857A (en) Ground fault circuit interrupt system including auxiliary surge suppression ability
DE102007007263A1 (en) Residual-current device
EP1206823B1 (en) Protective device, in particular a fault current protective device
DE102011011983A1 (en) Fault current protective device for protecting electrical systems against e.g. ignited fires, has transformer for detecting low and high fault currents, and protective circuitry switched parallel to winding and acting as crowbar circuit
JPS61196718A (en) Ground-fault protector
JP3376834B2 (en) Ground fault detecting device and earth leakage breaker using this ground fault detecting device
JPH036136Y2 (en)
CN110031716B (en) Distributed fault detection method for power distribution system with resonant grounding
DE19940343A1 (en) Residual current device
US20230223744A1 (en) Method and device for monitoring a three-phase network operated in a compensated manner for a tuning change of the arc suppression coil
US7593209B2 (en) MOV failure mode identification
JP3388482B2 (en) Earth leakage detection device
Paulson Monitoring neutral-grounding resistors
JP3841248B2 (en) Ground fault suppression system and ground fault suppression method
DE2715219C2 (en)
RU2096885C1 (en) Method and device for ground fault protection of generator stator winding
JPH0522455B2 (en)
JP3386465B2 (en) Power line failure detection
DE3307443C2 (en)