JPH0361033B2 - - Google Patents
Info
- Publication number
- JPH0361033B2 JPH0361033B2 JP58114280A JP11428083A JPH0361033B2 JP H0361033 B2 JPH0361033 B2 JP H0361033B2 JP 58114280 A JP58114280 A JP 58114280A JP 11428083 A JP11428083 A JP 11428083A JP H0361033 B2 JPH0361033 B2 JP H0361033B2
- Authority
- JP
- Japan
- Prior art keywords
- shield
- dry gas
- discharge
- pump case
- cryopump
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 10
- 230000008020 evaporation Effects 0.000 claims description 9
- 238000001704 evaporation Methods 0.000 claims description 9
- 238000009833 condensation Methods 0.000 claims description 3
- 230000005494 condensation Effects 0.000 claims description 3
- 230000008929 regeneration Effects 0.000 claims description 3
- 238000011069 regeneration method Methods 0.000 claims description 3
- 239000007788 liquid Substances 0.000 description 5
- 238000007789 sealing Methods 0.000 description 3
- 230000002542 deteriorative effect Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B37/00—Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
- F04B37/06—Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means
- F04B37/08—Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means by condensing or freezing, e.g. cryogenic pumps
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
Description
【発明の詳細な説明】 本発明はクライオポンプの再生装置に関する。[Detailed description of the invention] The present invention relates to a cryopump regeneration device.
一般に、クライオポンプが多量の水分を排気し
たときに、該クライオポンプの内部に凝結した水
分を液体に戻して該クライオポンプの再生を行な
うことが必要になるが、従来は、その再生の際に
発生する液体は、ロータリーポンプによる真空排
気により排除するのが通常であつた。しかし、か
かる真空排気方式では、ロータリーポンプの油が
水分を吸収し、ロータリーポンプの到達真空度が
悪くなつたり故障の原因になつたりする不都合が
あつた。 Generally, when a cryopump exhausts a large amount of water, it is necessary to regenerate the cryopump by returning the water that has condensed inside the cryopump to liquid. The generated liquid was usually removed by vacuum evacuation using a rotary pump. However, such a vacuum evacuation method has the disadvantage that the oil in the rotary pump absorbs moisture, which deteriorates the degree of vacuum achieved by the rotary pump or causes a malfunction.
本発明は、かかる不都合を解消することを目的
とするもので、クライオポンプのポンプケース内
に設けた凝縮パネルの外側にカツプ状のシールド
を設けるようにしたものに於て、該シールドに水
を一箇所に集めて放出する放出口を開口形成し、
該放出口に連なる放出路を該ポンプケースの下部
に設け、該放出路に、蒸気排出路と、ヒータで外
周を囲繞した水分蒸発部とを設け、更に該放出路
を挿通して、乾燥ガス源に連なり且つ噴出口を該
シールド内に開口させた乾燥ガス供給路を設けた
ことを特徴とする。 The purpose of the present invention is to eliminate such inconveniences, and in a cryopump in which a cup-shaped shield is provided on the outside of a condensation panel provided in the pump case, water is poured into the shield. A discharge port is formed to collect and discharge in one place,
A discharge path connected to the discharge port is provided in the lower part of the pump case, and the discharge path is provided with a steam discharge path and a moisture evaporation section surrounded by a heater, and the discharge path is inserted through the dry gas discharge path. It is characterized by providing a dry gas supply path connected to the source and having an ejection port opened in the shield.
本発明の実施例を図面に基づき説明すると、図
面で符号1は冷凍機、2はポンプケースを示し、
該ポンプケース2内には、該冷凍機1のコールド
ヘツド2段3に取付けられる凝縮パネル4と該冷
凍機1のコールドヘツド1段5に取付けられるシ
ールド6とが内外2層に設けられる。該シールド
6には、その内部に溜まる水を一箇所に集めて放
出する放出口7を開口形成し、該放出口7に該ポ
ンプケース2内の空間を介して連なる放出路8を
該ポンプケース2の下部に設けるようにした。該
放出路8には、第1バルブ9を介して大気に開放
される蒸気排出路10と、大気確認器11に連な
る連通路12と、ヒータ13を外周に囲繞した水
分蒸発部14とが設けられ、更に第2バルブ15
を介して乾燥ガス源に連なり且つ噴出口がシール
ド6内に開口した乾燥ガス供給路16が該放出口
7及び放出路8を挿通して設けられる。クライオ
ポンプの再生時に該シールド6内に溜まる水は、
該乾燥ガス供給路16を伝つて水分蒸発部14に
溜まり、該乾燥ガス供給部16と該放出口7の内
周縁との間の間隔は、該乾燥ガス供給路16とシ
ールド6との間の熱伝導を遮断する作用を営み、
クライオポンプの運転時に該シールド6の温度上
昇が防止される。尚、図示の例では、該ポンプケ
ース2の外周にもヒータ17を設け、更に、該ポ
ンプケース2に第3バルブ18を介して図示しな
い粗引ポンプを接続させた。図中、19はバツフ
ルを示す。 An embodiment of the present invention will be described based on the drawings. In the drawings, reference numeral 1 indicates a refrigerator, 2 indicates a pump case,
Inside the pump case 2, a condensing panel 4 attached to the second stage 3 of the cold head of the refrigerator 1 and a shield 6 attached to the first stage 5 of the cold head of the refrigerator 1 are provided in two layers: inside and outside. The shield 6 is formed with a discharge port 7 that collects and discharges water accumulated inside the shield 6, and a discharge path 8 is connected to the discharge port 7 through a space inside the pump case 2. It was set at the bottom of 2. The discharge path 8 is provided with a steam exhaust path 10 opened to the atmosphere via a first valve 9, a communication path 12 connected to an atmosphere checker 11, and a moisture evaporation section 14 surrounding a heater 13. and further the second valve 15
A dry gas supply path 16 is provided through the discharge port 7 and the discharge path 8, which is connected to the dry gas source via the discharge port 7 and the discharge path 8 and has a jet port opening into the shield 6. The water that collects in the shield 6 during cryopump regeneration is
The water passes through the dry gas supply path 16 and accumulates in the evaporation section 14, and the distance between the dry gas supply section 16 and the inner peripheral edge of the discharge port 7 is equal to the distance between the dry gas supply path 16 and the shield 6. Acts to block heat conduction,
This prevents the temperature of the shield 6 from rising during operation of the cryopump. In the illustrated example, a heater 17 is also provided on the outer periphery of the pump case 2, and a roughing pump (not shown) is further connected to the pump case 2 via a third valve 18. In the figure, 19 indicates a battle.
次にその動作を説明する。 Next, its operation will be explained.
クライオポンプが多くの水分を凝縮してその排
気能力が低下すると、該ポンプの運転を停止し、
放出路8の周囲とポンプケース2の周囲の各ヒー
タ13,17を作動させると同時に第2バルブ1
5を開く。そして、該ポンプケース2の内の圧力
が大気圧になつたことを大気確認器11により確
認したのち、該大気確認器11からの信号又は手
動により蒸気排出路10の第1バルブ9を開く。
該ポンプケース2内の温度が0℃以上になると、
凝縮パネル4やシールド6に凝縮した水分が溶け
て液体となり、これが該シールド6の放出口7か
ら放出路8内の水分蒸発部14に落下し、そこで
蒸発する。この蒸発に伴う蒸気は、乾燥ガス供給
路16からシールド6内に噴出し更に放出口7か
ら放出路8へと流れる乾燥ガスと共に蒸気排出路
10から外部に放出排除される。該ポンプケース
2内の水分が完全に無くなると、各ヒータ13,
17の加熱を停止すると共に各第1、第2バルブ
9,15を閉じ、次いで第3バルブ18を開いて
該ポンプケース2内の粗引を行ない、該クライオ
ポンプの真空排気作動の用意が完了する。前記液
体中の不純物が、該蒸気排出路10を密閉する第
1バルブ9のバルブシートに付着すると、その密
閉性が悪くなり所定の高真空が得られなくなる
が、本発明の如く気体状態で排出すれば該第1バ
ルブ9に不純物が付着することがなく、密閉性が
悪化することがない。クライオポンプの運転中
は、該シールド6と乾燥ガス供給路16との間の
熱伝導が遮断されているので、該シールド6を40
〜60Kの低温に維持することが出来、真空排気性
能は低下しない。 When a cryopump condenses a lot of water and its pumping capacity decreases, the operation of the pump is stopped,
At the same time when the heaters 13 and 17 around the discharge path 8 and the pump case 2 are activated, the second valve 1 is activated.
Open 5. After confirming by the atmosphere checker 11 that the pressure inside the pump case 2 has reached atmospheric pressure, the first valve 9 of the steam exhaust path 10 is opened by a signal from the atmosphere checker 11 or manually.
When the temperature inside the pump case 2 becomes 0°C or higher,
The moisture condensed on the condensation panel 4 and the shield 6 melts into liquid, which falls from the discharge port 7 of the shield 6 to the moisture evaporation section 14 in the discharge path 8 and evaporates there. The steam accompanying this evaporation is ejected from the dry gas supply path 16 into the shield 6 and is discharged to the outside from the steam exhaust path 10 together with the dry gas flowing from the discharge port 7 to the discharge path 8. When the moisture in the pump case 2 is completely eliminated, each heater 13,
17, the first and second valves 9 and 15 are closed, and the third valve 18 is then opened to perform rough evacuation of the inside of the pump case 2, completing preparations for evacuation operation of the cryopump. do. If impurities in the liquid adhere to the valve seat of the first valve 9 that seals the steam exhaust path 10, the sealing performance will deteriorate and a predetermined high vacuum cannot be obtained. This prevents impurities from adhering to the first valve 9 and prevents the sealing performance from deteriorating. During operation of the cryopump, heat conduction between the shield 6 and the dry gas supply path 16 is interrupted, so the shield 6 is
It can be maintained at a low temperature of ~60K, and the vacuum pumping performance does not deteriorate.
このように、本発明によるときは、シールド内
の水をポンプケースに設けた放出路の水分蒸発部
に集め、これをヒータで加熱蒸発させ、その蒸気
を該シールド内に乾燥ガス供給路から噴出する乾
燥ガスと共に蒸気排出路から外部に気体状態で放
出させるようにしたから、上述した従来例のよう
にロータリーポンプで排出するものにおける不都
合を解消でき、気体状態で水分を排出してポンプ
の再生を行なうので、蒸気排出路のバルブの密閉
性が低下することもなく、放出路の水分蒸発部で
ヒータにより直接液体を蒸発させるので、短時間
でポンプ外に排出することができ、ポンプ性能が
低下することもない等の効果がある。 As described above, according to the present invention, the water in the shield is collected in the water evaporation part of the discharge path provided in the pump case, is heated and evaporated with a heater, and the steam is ejected from the dry gas supply path into the shield. Since the dry gas is released in a gaseous state from the steam exhaust path to the outside, it is possible to eliminate the inconvenience caused by the rotary pump used in the conventional example mentioned above, and to regenerate the pump by discharging moisture in a gaseous state This prevents the sealing performance of the valve in the vapor discharge path from deteriorating, and the liquid is evaporated directly by the heater in the moisture evaporation section of the discharge path, allowing it to be discharged outside the pump in a short time, improving pump performance. It has the effect of not causing any deterioration.
図面は本発明の実施例の縦断面図である。
2……ポンプケース、6……シールド、7……
放出口、8……放出路、10……蒸気排出路、1
4……水分蒸発部、16……乾燥ガス供給路、1
3,17……ヒータ。
The drawing is a longitudinal sectional view of an embodiment of the invention. 2...Pump case, 6...Shield, 7...
Release port, 8...Discharge path, 10...Steam exhaust path, 1
4...Moisture evaporation section, 16...Dry gas supply path, 1
3,17...Heater.
Claims (1)
縮パネルの外側にカツプ状のシールドを設けるよ
うにしたものに於て、該シールドに水を一箇所に
集めて放出する放出口を開口形成し、該放出口に
連なる放出路を該ポンプケースの下部に設け、該
放出路に、蒸気排出路と、ヒータで外周を囲繞し
た水分蒸発部とを設け、更に該放出路を挿通し
て、乾燥ガス源に連なり且つ噴出口を該シールド
内に開口させた乾燥ガス供給路を設けたことを特
徴とするクライオポンプの再生装置。1. In a cryopump in which a cup-shaped shield is provided on the outside of the condensation panel provided in the pump case, a discharge port is formed in the shield to collect water in one place and discharge it. A discharge passage connected to the outlet is provided at the bottom of the pump case, a steam discharge passage and a moisture evaporation part surrounded by a heater are provided in the discharge passage, and the discharge passage is further inserted to connect to a dry gas source. A cryopump regeneration device comprising a dry gas supply path that is continuous and has a spout opening in the shield.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11428083A JPS608480A (en) | 1983-06-27 | 1983-06-27 | Cryopump regenerating method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11428083A JPS608480A (en) | 1983-06-27 | 1983-06-27 | Cryopump regenerating method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS608480A JPS608480A (en) | 1985-01-17 |
JPH0361033B2 true JPH0361033B2 (en) | 1991-09-18 |
Family
ID=14633874
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11428083A Granted JPS608480A (en) | 1983-06-27 | 1983-06-27 | Cryopump regenerating method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS608480A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5228299A (en) * | 1992-04-16 | 1993-07-20 | Helix Technology Corporation | Cryopump water drain |
US5261244A (en) * | 1992-05-21 | 1993-11-16 | Helix Technology Corporation | Cryogenic waterpump |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5244405B2 (en) * | 1972-03-18 | 1977-11-08 | ||
JPS57146072A (en) * | 1981-03-03 | 1982-09-09 | Nec Corp | Cryopump regenerating mechanism |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2321609A1 (en) * | 1975-08-22 | 1977-03-18 | Air Liquide | REGENERATION CRYOPUMP |
-
1983
- 1983-06-27 JP JP11428083A patent/JPS608480A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5244405B2 (en) * | 1972-03-18 | 1977-11-08 | ||
JPS57146072A (en) * | 1981-03-03 | 1982-09-09 | Nec Corp | Cryopump regenerating mechanism |
Also Published As
Publication number | Publication date |
---|---|
JPS608480A (en) | 1985-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6035015Y2 (en) | Purge device for refrigeration system | |
US6705100B2 (en) | Purge | |
CN104864645B (en) | Compression refrigerating machine | |
KR940702587A (en) | CRYOGENIC PUMP | |
CN106595138A (en) | Air conditioning system and method for reducing liquid storage of gas-liquid separator | |
JPH0361033B2 (en) | ||
JP2020037881A5 (en) | ||
CN208127721U (en) | A kind of cool-down dehumidification switchgear | |
CN208127720U (en) | A kind of cool-down dehumidification device for switchgear | |
JPS6022555A (en) | Air dryer device for vehicle | |
JP3977895B2 (en) | Reclaimed solvent recycling device and vacuum drying device | |
JP2888093B2 (en) | Vacuum cooling device | |
JPS6144126Y2 (en) | ||
JPH0774635B2 (en) | Vacuum exhaust device | |
JPH08136089A (en) | Refrigerant recovering device | |
JPH08327192A (en) | Evaporator of freezer | |
JP2558853Y2 (en) | Bleeding device for absorption refrigerator | |
JPH06323698A (en) | Refrigerant gas collector | |
JPS599193Y2 (en) | Decompression steam generator | |
JPH0882226A (en) | Air cooler | |
JPH07280417A (en) | Drain hose for refrigerator of container | |
JPS6317975Y2 (en) | ||
US2118263A (en) | Heat transfer apparatus | |
JPH10235132A (en) | Refrigeration type air dryer | |
JPH02208465A (en) | Refrigerant recovering device |