JPH0360908B2 - - Google Patents

Info

Publication number
JPH0360908B2
JPH0360908B2 JP57028937A JP2893782A JPH0360908B2 JP H0360908 B2 JPH0360908 B2 JP H0360908B2 JP 57028937 A JP57028937 A JP 57028937A JP 2893782 A JP2893782 A JP 2893782A JP H0360908 B2 JPH0360908 B2 JP H0360908B2
Authority
JP
Japan
Prior art keywords
amorphous alloy
wear resistance
magnetic
alloy
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57028937A
Other languages
Japanese (ja)
Other versions
JPS58147539A (en
Inventor
Hiroshi Tateishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP2893782A priority Critical patent/JPS58147539A/en
Publication of JPS58147539A publication Critical patent/JPS58147539A/en
Publication of JPH0360908B2 publication Critical patent/JPH0360908B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 本発明は、磁気ヘツド用非晶質合金に関し、更
に詳しくは、耐摩耗性及び磁気特性が改良された
磁気ヘツド用非晶質合金に関する。 〔発明の技術的背景とその問題点〕 従来、磁気記録装置等における磁気ヘツドに
は、例えば、Fe−Ni合金(パーマロイ)或いは
Fe−Si−Al合金(センダスト)等の結晶構造を
有する高透磁率材料が使用されている。しかしな
がら、Fe−Ni合金は、透磁率が高い反面、耐摩
耗性が劣り、又、Fe−Si−Al合金は、耐摩耗性
には優れているものの、機械的強度が弱く、脆い
ために塑性加工が極めて困難であるとの問題点を
有している。 これらに対し、結晶構造を持たない非晶質合金
が、近年、優れた機械的特性及び磁気的特性を有
していることが見い出されたため、新たな磁気ヘ
ツド用材料として注目されている。しかしなが
ら、非晶質合金は、一般に、ビツカース硬度が
1000にも達する高い値を示すにも拘らず、磁気ヘ
ツドに使用した場合には、磁気テープ等によるヘ
ツドの摩耗が大きく、実用上大きな問題点となつ
ている。 このような非晶質合金を磁気ヘツドに使用した
場合の摩耗機構に関しては、種々の議論がなされ
ており、磁気テープ等による機械的摩耗と、腐食
等の化学的因子に基づく摩耗とが主要因であると
されている。 しかし、本発明者による研究の結果、非晶質合
金のビツカース硬度と摩耗量との間には、相関性
が認められず、磁気ヘツドの場合には、むしろ、
化学的な要因が大きな影響を与えていることが知
見された。従つて、腐食等の化学的因子に基づく
ヘツドの摩耗に対し、より優れた耐摩耗性を有す
る非晶質合金の出現が望まれている。 〔発明の目的〕 本発明の目的は、上記した問題点を解消し、高
透磁率を有し、且つ、耐摩耗性が優れた磁気ヘツ
ド用非晶質合金を提供することにある。 〔発明の概要〕 本発明の磁気ヘツド用非晶質合金は、次式
〔〕 (Co1-a-bFeaRub100-x-ySixBy 〔〕 (式中、a,b,x及びyは原子濃度ないしその
パラメータであり、それぞれ 0.02≦a≦0.08、0.07≦b≦0.20、0<x<20、
9<y≦27及び9>x+y≦29 の関係を満足する数を表わす。) で示され、かつ全原子を100としたときのRuの原
子濃度が8を超えることを特徴とするものであ
る。 又、本発明の磁気ヘツド用非晶質合金は、次式
〔〕 (Co1-a-b-cFeaRubMc100-x-ySixBy 〔〕 (式中、MはTi,V,Cr,Zr,Nb,Mo,Hf,
Ta及びWから成る群より選ばれた少なくとも1
種の金属元素を表わし、a,b,c,x及びyは
原子濃度ないしそのパラメータであり、それぞれ 0.02≦a≦0.08、0.10≦b≦0.20、0.01≦c≦
0.10、0<x<20、9<y≦27及び9<x+y≦
29 の関係を満足する数を表わす。) で示され、かつ全原子を100としたときのRuの原
子濃度が8を超えることを特徴とするものであ
る。 以下において、本発明を更に詳しく説明する。 本発明の上記式〔〕及び〔〕で示される非
晶質合金において、各元素の添加理由、組成比並
びにその限定理由は以下のとおりである。 本発明の式〔〕及び〔〕で示される非晶質
合金は、共に、コバルト(Co)を主体とするも
のである。Coを主体とした理由は、磁気ヘツド
用材料として透磁率が高く、磁歪が小さいもので
あるために最適であることによる。 本発明の非晶質合金において、式〔〕及び
〔〕に共通の添加元素について説明すると、鉄
(Fe)は、非晶質合金の透磁率を高める作用をな
すものであり、金属成分中における組成比aが、
原子濃度で0.02≦a≦0.08である。組成比が0.02
未満であるか、又は、0.08を超えると透磁率が低
下する。 ルテニウム(Ru)は、本発明非晶質合金の耐
摩耗性改良に大きく寄与するものであり、金属成
分中における組成比bは、原子濃度で0.07≦b≦
0.20の範囲である。bが0.07未満であると耐摩耗
性の改良効果が充分ではなく、一方、0.20を超え
ると、添加量に比例した耐摩耗性の改良効果が見
られず、且つ、飽和磁束密度が低下する上に、コ
ストが上昇する。上記範囲の中でも優れた耐摩耗
性を有する非晶質合金が得られることから、とり
わけ、bが0.10〜0.20範囲にあることが好まし
い。さらに、優れた耐摩耗性を得るには、全原子
を100としたときのRuの原子濃度が8を超えるこ
とが必要である。この値が8以下のものは、満足
する耐摩耗性が得られない。尚、Ruは、白金
(Pt)、パラジウム(Pd)、ロジウム(Rh)等と
共に白金族に属する元素であるが、Pt,Pd等は
非晶質化しにくいため適当ではなく、又、Rhは
耐摩耗性の改良に多少の効果はみられるものの、
十分ではない。本発明の非晶質合金は、白金族元
素の中でも、特に、Ruを選択することにより、
特定範囲の添加量において、顕著な耐摩耗性の改
良効果を有するものである。 次に、非金属元素であるケイ素(Si)及びホウ
素(B)について説明すると、これらは共に、本発明
合金の非晶質化に最も有効な作用をなすものであ
る。これらの中で、Siの合金中組成比xは、原子
濃度で0<x<20の範囲である。Siの組成比xは
低くても、Bが添加されていれば本発明合金の非
晶質化は可能である。一方、Siの量が20以上にな
ると、非晶質化が困難となるため好ましくない。 Bは、合金の非晶質化を助長すると共に、更
に、合金の物理的特性を改善する作用をも有する
ものであり、その組成比yは、原子濃度で9<y
≦27の範囲である。Bの組成比yが、9以下又は
27を超えると、非晶質合金の結晶化温度が十分高
い値を示さないため、非晶質合金化後の熱安定性
の保持及び歪の除去を目的とした熱処理が困難と
なる。 又、上記非金属元素の添加量は、Si及びBの合
計量(x+y)が、原子濃度で9<x+y≦29の
範囲にあるものである。 上記x+yが29を超えると非晶質合金の飽和磁
束密度が低下する。 本発明の〔〕式で示される非晶質合金に添加
される金属元素Mは、Ruとの相乗効果により、
本発明非晶質合金の耐摩耗性を著しく改良するも
のであり、更に、透磁率を高め、保持力を減少さ
せ、且つ、熱安定性を向上させる効果をも有す
る。この金属元素Mは、チタン(Ti)、バナジウ
ム(V)、クロム(Cr)、ジルコニウム(Zr)、ニ
オブ(Nb)、モリブデン(Mo)、ハフニウム
(Hf)、タンタル(Ta)及びタングステン(W)
等から成る群より選ばれた少なくとも1種のもの
である。Mの金属成分中における組成比cは、原
子濃度で0.01≦c≦0.10の範囲である。cが0.01
未満であると、添加効果が十分に得られず、一
方、0.10を超えると、添加量に比例した耐摩耗性
の改良効果が得られず、又、透磁率が低下する。 本発明の磁気ヘツド用非晶質合金は、上記した
Co,Fe,Ru,Si及びB、或いは更にM(前記と
同意義である。)の各成分を所定の割合で混合し
た後、溶融し、これを、例えば、液体(溶湯)急
冷法等によつて非晶質合金化し、必要に応じて熱
処理を施すことにより、容易に製造することがで
きるものである。 〔発明の実施例〕 実施例 1 第1表に示した組成の非晶質合金2種類(試料
番号1〜2)を、それぞれ液体急冷法により作製
した。即ち、上記組成の溶融合金を、高速回転す
る単ロール表面上に、石英管ノズルからアルゴン
ガス圧(1.0〜2.0Kg/cm2)で噴出させ、得られた
薄帯を急冷して厚さ20μm、幅12mm及び長さ12m
の非晶質合金薄帯試料としてそれぞれ得た。 得られた2種類の薄帯試料を、外径10mmφ、内
径8mmφを有するリング状に打ち抜き、層間絶縁
物を介在させて積層した。次いで、この積層物
を、非晶質合金のキユリー温度以上、結晶化温度
以下の温度で10分間熱処理を施した後、これらを
10枚ラミネートして、ラミネートコアを得た。こ
のラミネートコアに、一次コイル及び二次コイル
を巻きつけてヘツドコアとし、それぞれの非晶質
合金を用いたヘツドコアについて、実効透磁率、
保磁力及び飽和磁束密度を測定した。 尚、実効透磁率は、周波数が100KHzまではマ
ツクスウエルブリツジを用いて、又、MHz帯域で
は無線周波数ブリツジを用いて夫々測定し、保磁
力及び飽和磁束密度については、自動自記磁束計
を用いて直流磁化曲線を測定し、計算により求め
た。 次いで、それぞれの非晶質合金薄帯試料から、
オーデイオ用磁気ヘツドコアの形状を打ち抜き、
磁気ヘツドを試作して、耐摩耗性及び硬度を測定
した。耐摩耗性の評価は、試作磁気ヘツドを用い
て、γ−Fe2O3塗布のオーデイオ用カセツトテー
プを1000時間走行させた前後における、磁気ヘツ
ドのテープ摺動面の変化を、表面粗さ計を用いて
測定し、これを100時間当りに換算した摩耗量を
求めた。又、硬度は、マイクロビツカース硬度計
を用いて、ビツカース硬度(Hv)を測定した。 これらの結果を、第1表に組成と共に示す。
尚、実効透磁率は1KHzにおける値(μ′1K)であ
る。 比較例 1 非晶質合金の組成が異なる他は、実施例1と同
様の操作にて、5種類(試料番号3〜7)の非晶
質合金薄帯試料を得た。 尚、試料番号3はRuの量が本発明のものより
少ないもの、試料番号4はRuの量が同じく多い
もの、試料番号5はRuの代わりにRhを用いたも
の、試料番号6はRuの代わりにCrを用いたもの
並びに試料番号7はRuを全く含有しないもので
ある。 これらの試料について、実施例1と同様の方法
にて実効透磁率、保磁力、飽和磁束密度、摩耗量
及びビツカース硬度をそれぞれ測定した。それら
の組成及び試験結果を第1表に実施例と共に示
す。
[Technical Field of the Invention] The present invention relates to an amorphous alloy for a magnetic head, and more particularly to an amorphous alloy for a magnetic head having improved wear resistance and magnetic properties. [Technical background of the invention and its problems] Conventionally, magnetic heads in magnetic recording devices, etc. have been made of, for example, Fe-Ni alloy (permalloy) or
A high magnetic permeability material having a crystal structure such as Fe-Si-Al alloy (Sendust) is used. However, although Fe-Ni alloy has high magnetic permeability, it has poor wear resistance, and Fe-Si-Al alloy has excellent wear resistance, but has low mechanical strength and is brittle, resulting in plasticity. The problem is that it is extremely difficult to process. In contrast, amorphous alloys, which do not have a crystalline structure, have recently been found to have excellent mechanical and magnetic properties, and are therefore attracting attention as new materials for magnetic heads. However, amorphous alloys generally have a hardness of
Although it shows a high value of up to 1000, when used in a magnetic head, the wear of the head due to magnetic tape and the like is large, which is a major problem in practical use. Various discussions have been made regarding the wear mechanism when such amorphous alloys are used in magnetic heads, and the main causes are mechanical wear due to magnetic tape, etc., and wear due to chemical factors such as corrosion. It is said that However, as a result of research conducted by the present inventor, no correlation was found between the Vickers hardness of amorphous alloys and the amount of wear; in the case of magnetic heads, rather,
It was found that chemical factors have a large influence. Therefore, it is desired to develop an amorphous alloy that has better wear resistance against head wear caused by chemical factors such as corrosion. [Object of the Invention] An object of the present invention is to solve the above-mentioned problems and provide an amorphous alloy for a magnetic head that has high magnetic permeability and excellent wear resistance. [Summary of the Invention] The amorphous alloy for magnetic heads of the present invention has the following formula [] (Co 1-ab Fe a Rub ) 100-xy Si x B y [] (where a, b, x and y is the atomic concentration or its parameter, 0.02≦a≦0.08, 0.07≦b≦0.20, 0<x<20, respectively.
It represents a number that satisfies the relationships 9<y≦27 and 9>x+y≦29. ) and is characterized by an atomic concentration of Ru exceeding 8 when all atoms are taken as 100. Further, the amorphous alloy for magnetic heads of the present invention has the following formula [] (Co 1-abc Fe a Rub M c ) 100-xy Si x B y [] (where M is Ti, V, Cr , Zr, Nb, Mo, Hf,
At least one selected from the group consisting of Ta and W
represents the metal element of the species, a, b, c, x and y are the atomic concentration or its parameters, respectively 0.02≦a≦0.08, 0.10≦b≦0.20, 0.01≦c≦
0.10, 0<x<20, 9<y≦27 and 9<x+y≦
Represents a number that satisfies the relationship 29. ) and is characterized by an atomic concentration of Ru exceeding 8 when all atoms are taken as 100. In the following, the invention will be explained in more detail. In the amorphous alloy represented by the above formulas [] and [] of the present invention, the reason for adding each element, the composition ratio, and the reason for its limitation are as follows. The amorphous alloys represented by formulas [] and [] of the present invention both contain cobalt (Co) as a main component. The reason why Co is used as the main material is that it is optimal as a material for magnetic heads because it has high magnetic permeability and low magnetostriction. In the amorphous alloy of the present invention, to explain the common additive elements in formulas [] and [], iron (Fe) has the effect of increasing the magnetic permeability of the amorphous alloy, and is The composition ratio a is
The atomic concentration is 0.02≦a≦0.08. Composition ratio is 0.02
If it is less than 0.08 or more than 0.08, the magnetic permeability will decrease. Ruthenium (Ru) greatly contributes to improving the wear resistance of the amorphous alloy of the present invention, and the composition ratio b in the metal component is 0.07≦b≦ in terms of atomic concentration.
It is in the range of 0.20. If b is less than 0.07, the effect of improving wear resistance will not be sufficient; on the other hand, if it exceeds 0.20, the effect of improving wear resistance in proportion to the amount added will not be seen, and the saturation magnetic flux density will decrease. As a result, costs will rise. Since an amorphous alloy having excellent wear resistance within the above range can be obtained, it is particularly preferable that b is in the range of 0.10 to 0.20. Furthermore, in order to obtain excellent wear resistance, it is necessary that the atomic concentration of Ru exceeds 8 when the total number of atoms is 100. If this value is 8 or less, satisfactory wear resistance cannot be obtained. Note that Ru is an element that belongs to the platinum group along with platinum (Pt), palladium (Pd), rhodium (Rh), etc., but Pt, Pd, etc. are not suitable because they are difficult to become amorphous, and Rh has Although some effects were seen in improving wear resistance,
Not enough. The amorphous alloy of the present invention can be produced by selecting Ru in particular among platinum group elements.
It has a remarkable effect of improving wear resistance when added in a specific range of amount. Next, silicon (Si) and boron (B), which are nonmetallic elements, will be explained. Both of these have the most effective effect on making the alloy of the present invention amorphous. Among these, the composition ratio x of Si in the alloy is in the range of 0<x<20 in terms of atomic concentration. Even if the Si composition ratio x is low, the alloy of the present invention can be made amorphous if B is added. On the other hand, if the amount of Si is 20 or more, it is not preferable because it becomes difficult to make it amorphous. B not only promotes the amorphization of the alloy, but also has the effect of improving the physical properties of the alloy, and its composition ratio y is such that the atomic concentration is 9<y
The range is ≦27. The composition ratio y of B is 9 or less, or
If it exceeds 27, the crystallization temperature of the amorphous alloy will not be sufficiently high, making it difficult to perform heat treatment for the purpose of maintaining thermal stability and removing strain after forming the amorphous alloy. Further, the amount of the nonmetallic element added is such that the total amount (x+y) of Si and B is in the range of 9<x+y≦29 in terms of atomic concentration. When x+y exceeds 29, the saturation magnetic flux density of the amorphous alloy decreases. The metal element M added to the amorphous alloy represented by the formula [] of the present invention has a synergistic effect with Ru,
This significantly improves the wear resistance of the amorphous alloy of the present invention, and also has the effects of increasing magnetic permeability, reducing coercive force, and improving thermal stability. This metal element M includes titanium (Ti), vanadium (V), chromium (Cr), zirconium (Zr), niobium (Nb), molybdenum (Mo), hafnium (Hf), tantalum (Ta), and tungsten (W).
At least one type selected from the group consisting of, etc. The composition ratio c of M in the metal component is in the range of 0.01≦c≦0.10 in terms of atomic concentration. c is 0.01
If it is less than 0.10, the effect of the addition will not be sufficient, while if it exceeds 0.10, the effect of improving wear resistance in proportion to the amount added will not be obtained, and the magnetic permeability will decrease. The amorphous alloy for magnetic heads of the present invention is as described above.
Co, Fe, Ru, Si, and B, or even M (same definition as above) are mixed in a predetermined ratio and then melted, for example, by a liquid (molten metal) rapid cooling method. Therefore, it can be easily manufactured by forming an amorphous alloy and subjecting it to heat treatment if necessary. [Examples of the Invention] Example 1 Two types of amorphous alloys (sample numbers 1 and 2) having the compositions shown in Table 1 were each produced by a liquid quenching method. That is, the molten alloy having the above composition is jetted from a quartz tube nozzle at argon gas pressure (1.0 to 2.0 Kg/cm 2 ) onto the surface of a single roll rotating at high speed, and the obtained ribbon is rapidly cooled to a thickness of 20 μm. , width 12mm and length 12m
Each was obtained as an amorphous alloy ribbon sample. The two types of ribbon samples obtained were punched into ring shapes having an outer diameter of 10 mmφ and an inner diameter of 8 mmφ, and were laminated with an interlayer insulating material interposed therebetween. Next, this laminate was heat-treated for 10 minutes at a temperature above the Curie temperature and below the crystallization temperature of the amorphous alloy, and then
A laminated core was obtained by laminating 10 sheets. A primary coil and a secondary coil are wound around this laminate core to form a head core.Effective magnetic permeability,
Coercive force and saturation magnetic flux density were measured. In addition, the effective magnetic permeability was measured using a Maxwell bridge for frequencies up to 100 KHz, and a radio frequency bridge for the MHz band, and the coercive force and saturation magnetic flux density were measured using an automatic self-recording magnetometer. The DC magnetization curve was measured and calculated. Next, from each amorphous alloy ribbon sample,
Punching out the shape of the audio magnetic head core,
A prototype magnetic head was manufactured and its wear resistance and hardness were measured. Wear resistance was evaluated by using a surface roughness meter to measure changes in the tape sliding surface of the magnetic head before and after running an audio cassette tape coated with γ-Fe 2 O 3 for 1000 hours using a prototype magnetic head. The amount of wear was calculated by converting the amount of wear per 100 hours. Further, the hardness was measured by Vickers hardness (Hv) using a micro-Vickers hardness meter. These results are shown in Table 1 along with the composition.
Note that the effective magnetic permeability is the value (μ′1K) at 1KHz. Comparative Example 1 Five types (sample numbers 3 to 7) of amorphous alloy ribbon samples were obtained in the same manner as in Example 1 except that the composition of the amorphous alloy was different. In addition, sample number 3 has a smaller amount of Ru than that of the present invention, sample number 4 has a larger amount of Ru, sample number 5 uses Rh instead of Ru, and sample number 6 has a smaller amount of Ru than that of the present invention. The sample in which Cr was used instead and sample number 7 contained no Ru at all. Regarding these samples, effective magnetic permeability, coercive force, saturation magnetic flux density, wear amount, and Vickers hardness were measured in the same manner as in Example 1. Their compositions and test results are shown in Table 1 along with examples.

【表】 表から明らかなように、Ru量が少ないと耐摩
耗性が低下し、一方、多過ぎると飽和磁束密度が
低下するのに対し、本発明の非晶質合金は耐摩耗
性及び磁気特性共に優れたものであることが確認
された。又、Ruの代わりにRh又はCrを添加する
か、或いはRuを添加していないものは、耐摩耗
性が劣ることが確認された。 実施例 2 第2表に示した組成の3種類(試料番号8〜
10)の溶融合金を、実施例1と同様の操作にて非
晶質合金化し、それぞれ薄帯試料を作製した。こ
れらの非晶質合金薄帯試料について、実施例1と
同様の方法にて実効透磁率、保磁力、飽和磁束密
度、摩耗量及びビツカース硬度をそれぞれ測定し
た。これらの結果を第2表に組成と共に示す。 比較例 2 非晶質合金の組成が異なる他は、実施例1と同
様の操作にて、3種類(試料番号11〜13)の非晶
質合金薄帯試料を得た。 尚、試料番号11はMの量が本発明のものより多
いもの、試料番号12はRuの量が本発明のものよ
り少ないもの並びに試料番号13はRu及びMを全
く含有しないものである。 これらの試料について、実施例1と同様の方法
にて実効透磁率、保磁力、飽和磁束密度、摩耗量
及びビツカース硬度をそれぞれ測定した。それら
の組成及び試験結果を第2表に実施例と共に示
す。
[Table] As is clear from the table, when the amount of Ru is small, the wear resistance decreases, while when it is too large, the saturation magnetic flux density decreases, whereas the amorphous alloy of the present invention has good wear resistance and magnetic flux density. It was confirmed that both characteristics were excellent. Furthermore, it was confirmed that the wear resistance was inferior in the case where Rh or Cr was added instead of Ru, or when no Ru was added. Example 2 Three types of compositions shown in Table 2 (sample numbers 8-
The molten alloy of 10) was made into an amorphous alloy in the same manner as in Example 1, and ribbon samples were produced. Regarding these amorphous alloy ribbon samples, the effective magnetic permeability, coercive force, saturation magnetic flux density, wear amount, and Vickers hardness were measured in the same manner as in Example 1. These results are shown in Table 2 together with the composition. Comparative Example 2 Three types (sample numbers 11 to 13) of amorphous alloy ribbon samples were obtained in the same manner as in Example 1 except that the composition of the amorphous alloy was different. Incidentally, sample number 11 has a larger amount of M than that of the present invention, sample number 12 has a smaller amount of Ru than that of the present invention, and sample number 13 contains no Ru or M at all. Regarding these samples, effective magnetic permeability, coercive force, saturation magnetic flux density, wear amount, and Vickers hardness were measured in the same manner as in Example 1. Their compositions and test results are shown in Table 2 along with examples.

〔発明の効果〕〔Effect of the invention〕

本発明の磁気ヘツド用非晶質合金は、ルテニウ
ムを添加することにより耐摩耗性が著しく改良さ
れたものであり、且つ、高透磁率を有するもので
ある。又、ルテニウムとTi,V,Cr,Zr,Nb,
Mo,Hf,Ta及びW等の金属とを添加して成る
非晶質合金は、これらの相剰作用により、更に耐
摩耗性及び磁気特性が改良されたものであり、磁
気ヘツド用材料として優れた適性を有するもので
ある。
The amorphous alloy for magnetic heads of the present invention has significantly improved wear resistance by adding ruthenium, and has high magnetic permeability. Also, ruthenium and Ti, V, Cr, Zr, Nb,
Amorphous alloys made by adding metals such as Mo, Hf, Ta, and W have further improved wear resistance and magnetic properties due to their additive effects, making them excellent materials for magnetic heads. Those who have the appropriate aptitude.

Claims (1)

【特許請求の範囲】 1 次式: (Co1-a-bFeaRub100-x-ySixBy (式中、a,b,x及びyは原子濃度ないしその
パラメータであり、それぞれ 0.02≦a≦0.08、0.07≦b≦0.20、0<x<20、
9y≦及び9<x+y≦29 の関係を満足する数を表わす。) で示され、かつ全原子を100としたときのRuの原
子濃度が8を超えることを特徴とする磁気ヘツド
用非晶質合金。 2 次式: (Co1-a-b-cFeaRubMc100-x-ySixBy (式中、MはTi,V,Cr,Zr,Nb,Mo,Hf,
Ta及びWからなる群より選ばれた少なくとも1
種の金属元素を表わし、a,b,c,x及びyは
原子濃度ないしそのパラメータであり、それぞれ 0.02≦a≦0.08、0.10≦b≦0.20、0.01≦c≦
0.10、0<x<20、9<y≦27及び9<x+y≦
29 の関係を満足する数を表わす。) で示され、かつ全原子を100としたときのRuの原
子濃度が8を超えることを特徴とする磁気ヘツド
用非晶質合金。
[Claims] Primary formula: (Co 1-ab Fe a Ru b ) 100-xy Si x B y (wherein a, b, x and y are atomic concentrations or their parameters, each 0.02≦ a≦0.08, 0.07≦b≦0.20, 0<x<20,
It represents a number that satisfies the relationships 9y≦ and 9<x+y≦29. ), and has an atomic concentration of Ru of more than 8 when all atoms are taken as 100. Quadratic formula: (Co 1-abc Fe a Rub M c ) 100-xy Si x B y (where M is Ti, V, Cr, Zr, Nb, Mo, Hf,
At least one selected from the group consisting of Ta and W
represents the metal element of the species, a, b, c, x and y are the atomic concentration or its parameters, respectively 0.02≦a≦0.08, 0.10≦b≦0.20, 0.01≦c≦
0.10, 0<x<20, 9<y≦27 and 9<x+y≦
Represents a number that satisfies the relationship 29. ), and has an atomic concentration of Ru of more than 8 when all atoms are taken as 100.
JP2893782A 1982-02-26 1982-02-26 Amorphous alloy for magnetic head Granted JPS58147539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2893782A JPS58147539A (en) 1982-02-26 1982-02-26 Amorphous alloy for magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2893782A JPS58147539A (en) 1982-02-26 1982-02-26 Amorphous alloy for magnetic head

Publications (2)

Publication Number Publication Date
JPS58147539A JPS58147539A (en) 1983-09-02
JPH0360908B2 true JPH0360908B2 (en) 1991-09-18

Family

ID=12262312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2893782A Granted JPS58147539A (en) 1982-02-26 1982-02-26 Amorphous alloy for magnetic head

Country Status (1)

Country Link
JP (1) JPS58147539A (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52114421A (en) * 1976-03-23 1977-09-26 Tohoku Daigaku Kinzoku Zairyo Amorphous alloy for magnetic heads with low magnetostriction and high wear resistance property
JPS5347321A (en) * 1976-10-12 1978-04-27 Res Inst Iron Steel Tohoku Univ Magnetic head material
JPS5675542A (en) * 1979-11-20 1981-06-22 Tdk Corp Amorphous magnetic alloy material
JPS56130449A (en) * 1980-03-19 1981-10-13 Takeshi Masumoto Amorphous cobalt alloy with very low magnetostriction and high permeability
JPS57116740A (en) * 1981-01-10 1982-07-20 Tdk Corp Amorphous magnetic alloy material for magnetic head
JPS57152441A (en) * 1981-03-14 1982-09-20 Tdk Corp Amorphous magnetic alloy material for magnetic head
JPS57185947A (en) * 1981-05-06 1982-11-16 Hitachi Metals Ltd Amorphous alloy
JPS57198522A (en) * 1981-05-30 1982-12-06 Tdk Corp Core for magnetic head
JPS57198606A (en) * 1981-05-30 1982-12-06 Toshiba Corp Magnetic recording medium
JPS57202710A (en) * 1981-06-07 1982-12-11 Tdk Corp Amorphous magnetic alloy sheet metal for magnetic head and core for magnetic head

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52114421A (en) * 1976-03-23 1977-09-26 Tohoku Daigaku Kinzoku Zairyo Amorphous alloy for magnetic heads with low magnetostriction and high wear resistance property
JPS5347321A (en) * 1976-10-12 1978-04-27 Res Inst Iron Steel Tohoku Univ Magnetic head material
JPS5675542A (en) * 1979-11-20 1981-06-22 Tdk Corp Amorphous magnetic alloy material
JPS56130449A (en) * 1980-03-19 1981-10-13 Takeshi Masumoto Amorphous cobalt alloy with very low magnetostriction and high permeability
JPS57116740A (en) * 1981-01-10 1982-07-20 Tdk Corp Amorphous magnetic alloy material for magnetic head
JPS57152441A (en) * 1981-03-14 1982-09-20 Tdk Corp Amorphous magnetic alloy material for magnetic head
JPS57185947A (en) * 1981-05-06 1982-11-16 Hitachi Metals Ltd Amorphous alloy
JPS57198522A (en) * 1981-05-30 1982-12-06 Tdk Corp Core for magnetic head
JPS57198606A (en) * 1981-05-30 1982-12-06 Toshiba Corp Magnetic recording medium
JPS57202710A (en) * 1981-06-07 1982-12-11 Tdk Corp Amorphous magnetic alloy sheet metal for magnetic head and core for magnetic head

Also Published As

Publication number Publication date
JPS58147539A (en) 1983-09-02

Similar Documents

Publication Publication Date Title
JP5445889B2 (en) Soft magnetic alloy, manufacturing method thereof, and magnetic component
KR930012182B1 (en) Magnetic grains and method of producing same
JPH044393B2 (en)
JPH03219009A (en) Production of fe-base soft-magnetic alloy
JPS6133900B2 (en)
JPS6020882B2 (en) Manufacturing method of magnetic head using high magnetic permeability amorphous alloy
JP3231149B2 (en) Noise filter
JP2823203B2 (en) Fe-based soft magnetic alloy
JPH0230375B2 (en)
WO1992009714A1 (en) Iron-base soft magnetic alloy
JPH0321626B2 (en)
US4464208A (en) Amorphous alloy for magnetic head
JPS6358902B2 (en)
JPH0867911A (en) Method for heat-treating nano-crystalline magnetic alloy
JPH0360908B2 (en)
JP4310738B2 (en) Soft magnetic alloys and magnetic parts
JPH0480980B2 (en)
JPH0413420B2 (en)
JP3228427B2 (en) Ultra-microcrystalline soft magnetic alloy
JPH01290746A (en) Soft-magnetic alloy
JPH05267031A (en) Magnetic core material
JP2878471B2 (en) High saturation magnetic flux density Fe soft magnetic alloy
JPH0435552B2 (en)
JPH0270039A (en) Fe-based soft-magnetic alloy
JPS6135260B2 (en)