JPH0360577B2 - - Google Patents

Info

Publication number
JPH0360577B2
JPH0360577B2 JP27819487A JP27819487A JPH0360577B2 JP H0360577 B2 JPH0360577 B2 JP H0360577B2 JP 27819487 A JP27819487 A JP 27819487A JP 27819487 A JP27819487 A JP 27819487A JP H0360577 B2 JPH0360577 B2 JP H0360577B2
Authority
JP
Japan
Prior art keywords
power
vibration
frequency
vibrator
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP27819487A
Other languages
Japanese (ja)
Other versions
JPH01122645A (en
Inventor
Katsuhiko Yui
Ryuichi Hiratsuka
Juichi Kato
Tetsuo Nakamura
Masamitsu Wakao
Kenzo Sawada
Masaji Uehara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP62278194A priority Critical patent/JPH01122645A/en
Priority to CA000575784A priority patent/CA1316325C/en
Priority to ES198888113989T priority patent/ES2034073T3/en
Priority to EP88113989A priority patent/EP0305930B1/en
Priority to DE8888113989T priority patent/DE3873451T2/en
Priority to US07/237,740 priority patent/US4867226A/en
Priority to AU21623/88A priority patent/AU603251B2/en
Priority to KR1019880010986A priority patent/KR920004972B1/en
Publication of JPH01122645A publication Critical patent/JPH01122645A/en
Publication of JPH0360577B2 publication Critical patent/JPH0360577B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/166Controlling or regulating processes or operations for mould oscillation

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、金属の連続鋳造において、鋳型を超
音波で振動制御する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method of controlling vibration of a mold using ultrasonic waves in continuous metal casting.

[従来の技術] 金属の連続鋳造において、溶湯のメニスカス近
傍の鋳型内壁を振動させるために、多数の超音波
振動子(本明細書では超音波振動子を振動子と略
記する)を鋳型に配設し、隣り合う振動子の振動
周波数を変えて加振する技術については例えば特
願昭60−197617号等にも記載の如く公知である。
第1図は振動子1−1〜1−6を配設した連続鋳
造用鋳型と超音波発振器2−1〜2−6の外観の
例を示す図である。鋳型3の内壁は振動子1−1
〜1−6による加振によつて振動せしめるが、例
えば鋳型内壁面と溶湯4との焼付きやステツキン
グを防止するためには鋳型内壁はメニスカス近傍
部の全ての壁面部が常に望ましい振動に保たれて
いる事が必要である。この振動を制御する従来の
方法では、例えば第2図に示すように、それぞれ
の振動子1−1〜1−6に超音波発振器2−1〜
2−6を接続し、あらかじめ超音波発振器に設け
られた周波数設定器7−1〜7−6及びパワー設
定器6−1〜6−6でそれぞれ周波数、パワーを
設定し振動させるいわゆる他励方式では、オープ
ンループ制御のため負荷変動(インピーダンス変
動)に対してパワーが変動し、振動振幅を一定に
維持することが困難であつた。又第5図の点線で
示すような、周波数変動に対して振幅変化が著し
い軽負荷に対する振動制御方法は、例えば第3
図、第4図に示すような周波数自動追尾定振幅制
御法が一般的である。この自動追尾定振幅制御法
は、まず振動振幅検知法として振動子端子の電圧
E〓、電流I〓、制御インピーダンスZ〓d、機械端子の
速度υ〓、力係数A〓とすると下式の関係が示される。
[Prior Art] In continuous metal casting, a large number of ultrasonic transducers (ultrasonic transducers are abbreviated as transducers in this specification) are arranged in a mold in order to vibrate the inner wall of the mold near the meniscus of molten metal. A technique for vibrating adjacent vibrators by changing their vibration frequencies is well known, as described, for example, in Japanese Patent Application No. 1976-17-1983.
FIG. 1 is a diagram showing an example of the external appearance of a continuous casting mold in which transducers 1-1 to 1-6 are arranged and ultrasonic oscillators 2-1 to 2-6. The inner wall of mold 3 is vibrator 1-1
Although the vibration is caused by the excitation described in steps 1-6 to 1-6, for example, in order to prevent seizure or sticking between the inner wall surface of the mold and the molten metal 4, the inner wall of the mold must be kept at a desired level of vibration at all wall surfaces near the meniscus. It is necessary to be able to stand. In the conventional method of controlling this vibration, for example, as shown in FIG.
2-6 is connected, and the frequency and power are set and vibrated using frequency setters 7-1 to 7-6 and power setters 6-1 to 6-6 provided in advance in the ultrasonic oscillator. However, due to open-loop control, the power fluctuates in response to load fluctuations (impedance fluctuations), making it difficult to maintain a constant vibration amplitude. Furthermore, as shown by the dotted line in Fig. 5, the vibration control method for light loads where the amplitude changes significantly with respect to frequency fluctuations is, for example, the third method.
A frequency automatic tracking constant amplitude control method as shown in FIG. 4 is common. This automatic tracking constant amplitude control method first uses the voltage at the vibrator terminal as a vibration amplitude detection method.
E〓, current I〓, control impedance Z〓d, mechanical terminal speed υ〓, and force coefficient A〓, the following equation shows the relationship.

E〓=Z〓dI〓+A〓υ〓=(Z〓d+Z〓m)I〓 Z〓mI〓=A〓υ〓 上式のように振動子のインピーダンスは振動に
無関係な制御インピーダンスZ〓dと振動にもとず
くZ〓mとの和で与えられる。従つて振動子の電気
的端子電圧から制御インピーダンスZ〓dによる電
圧降下を差引けば振動に比例する電圧が得られ
る。この具体的検知法の一例として、第3図に示
すように振動子とインピーダンスZ〓1〜Z〓3のブ
リツジ回路を組み、Z〓mI〓に比例する出力電圧E2
を検知する方法が一般的である。
E〓=Z〓dI〓+A〓υ〓=(Z〓d+Z〓m)I〓 Z〓mI〓=A〓υ〓 As shown in the above equation, the impedance of the vibrator is equal to the control impedance Z〓d which is unrelated to vibration. It is given by the sum of Z〓m, which is based on vibration. Therefore, by subtracting the voltage drop due to the control impedance Z〓d from the electrical terminal voltage of the vibrator, a voltage proportional to the vibration can be obtained. As an example of this specific detection method, as shown in FIG.
A common method is to detect

次に周波数自動追尾法は、第4図に示すように
超音波発振器増幅部13(増幅部伝達関数:μ〓)
と第3図の振動検知回路を帰還部(帰還部伝達係
数:β〓)に用い閉回路を形成すると、発振条件μ〓β

=I〓が成立し、発振周波数は<μ〓+<β〓=2nπ(
n:
整数)が満足する周波数が自動的に選ばれる。
Next, in the automatic frequency tracking method, as shown in FIG.
When a closed circuit is formed using the vibration detection circuit shown in Fig. 3 as a feedback section (feedback section transfer coefficient: β〓), the oscillation condition μ〓β

=I〓 is established, and the oscillation frequency is <μ〓+<β〓=2nπ(
n:
(an integer) is automatically selected.

次に定振幅制御法は第4図に示すように、あら
かじめ振幅設定器11により設定されたその出力
と振動検知回路出力E2を電圧入力アンプ17で
増幅した信号とが、電圧比較制御回路12で比較
され、制御信号を発振器増幅部へ入力し、常に定
振幅となるよう制御される。
Next, in the constant amplitude control method, as shown in FIG. A control signal is input to the oscillator amplifier section, and the amplitude is controlled to always be constant.

以上のように、従来の周波数自動追尾定振幅制
御では、第5図の点線で示すように周波数変動に
対して振幅変化が著しい軽負荷に対する振動制御
方法となる。
As described above, the conventional automatic frequency tracking constant amplitude control is a vibration control method for light loads where the amplitude changes significantly with respect to frequency fluctuations, as shown by the dotted line in FIG.

そのため、複数個の超音波振動子を配設し、隣
り合う振動子の振動周波数を変えて加振する超音
波振動モールドの振動制御方法においては、例え
ば、隣の超音波振動子の周波数を変えようとすれ
ば、振幅が著しく低減し、モールド幅方向の振幅
が第9図に示すように不均一となり、振幅ムラが
生じ、モールドに焼きつきやステイツキング等が
発生し、問題となる。
Therefore, in a vibration control method for an ultrasonic vibration mold in which a plurality of ultrasonic vibrators are arranged and vibrated by changing the vibration frequency of adjacent vibrators, for example, by changing the frequency of the adjacent ultrasonic vibrators, If this is attempted, the amplitude will be significantly reduced, and the amplitude in the mold width direction will become non-uniform as shown in FIG. 9, resulting in uneven amplitude, causing problems such as burning and staking in the mold.

なお、上記複数個の超音波振動子を配設し、隣
り合う振動子の振動周波数を変えて加振する超音
波振動モールドの振動制御方法については、 本発明者等が本発明出願前に出願した特願昭62
−214174号の連続鋳造用超音波振動モールドの加
振方法の発明において、振動特性が等しい振動子
を複数個配設した連続鋳造用鋳型の、各振動子の
加振周波数の差を2KHz以内の範囲で加振周波数
を変えて加振すると、隣同士の超音波の干渉等が
小さくなり、均一でかつ、振幅が増大するような
モールドの加振ができることが明らかになつてい
る。
Regarding the vibration control method for an ultrasonic vibrating mold in which a plurality of ultrasonic vibrators are arranged and vibrated by changing the vibration frequency of adjacent vibrators, the present inventors filed an application before filing the present invention. Special request made in 1986
In the invention of No. 214174 of an excitation method for an ultrasonic vibration mold for continuous casting, the difference in the excitation frequency of each vibrator of a continuous casting mold in which a plurality of vibrators with the same vibration characteristics are arranged is within 2KHz. It has been found that by changing the excitation frequency within a range, interference between adjacent ultrasonic waves is reduced, and it is possible to excite the mold uniformly and with increased amplitude.

[発明が解決しようとする問題点] 本発明は複数個の超音波振動子を配設し、隣り
合う振動子の振動周波数を変えて加振する超音波
振動モールドにおいて、各振動子の周波数を任意
に可変設定でき、かつ定振幅制御を可能とするこ
とで、鋳型内壁のメニスカス近傍の全ての壁面部
に、望ましい振動を常に与えるための振動制御方
法を目的としている。
[Problems to be Solved by the Invention] The present invention provides an ultrasonic vibration mold in which a plurality of ultrasonic vibrators are arranged and vibrates the adjacent vibrators by changing their vibration frequencies. The purpose of this method is to provide a vibration control method that can be set arbitrarily and can be set at a constant amplitude, thereby constantly applying desired vibrations to all wall surfaces near the meniscus of the inner wall of the mold.

[問題点を解決するための手段] 本発明は 複数個の超音波振動子を配設し、隣り合う振動
子の振動周波数を変えて加振する超音波振動モー
ルドの振動制御方法において、各振動子1に、周
波数発生器21、パワー設定比較器22、高周波
トランス24、分流器27、分圧器30、電力制
御回路26を設け、周波数発生器21により必要
な周波数を発生させ、パワー設定比較器22に入
力し、そのパワー設定比較器22で振動子1へ供
給する初期電力を予め設定し、その初期電力を高
周波出力トランス24を介して、振動子へ投入
し、前記出力トランス24の一次側に具備した分
流器27と分圧器30で振動子に実際に供給され
ている電流と電圧を検出し、その電流と電圧を電
力制御回路26へ入力することで、振動子に供給
された真の電力を積算し、その積算した真の電力
をパワー設定比較器22に入力し、予め設定した
初期電力と突き合わせ比較を行い、常に振動子へ
供給する真の電力を初期設定電力と同じになるよ
うに制御し、超音波振動振幅を一定値にすること
を特徴とする金属の連続鋳造用超音波振動モール
ドの振動制御方法である。
[Means for Solving the Problems] The present invention provides a vibration control method for an ultrasonic vibration mold in which a plurality of ultrasonic vibrators are arranged and the vibration frequencies of adjacent vibrators are changed and vibrated. The child 1 is provided with a frequency generator 21, a power setting comparator 22, a high frequency transformer 24, a shunt 27, a voltage divider 30, and a power control circuit 26, so that the frequency generator 21 generates a necessary frequency, and the power setting comparator 22, the power setting comparator 22 sets in advance the initial power to be supplied to the vibrator 1, the initial power is input to the vibrator via the high frequency output transformer 24, and the primary side of the output transformer 24 is By detecting the current and voltage actually supplied to the vibrator using the current shunt 27 and voltage divider 30 provided in the The power is integrated, the integrated true power is input to the power setting comparator 22, and compared with the initial power set in advance, so that the true power supplied to the vibrator is always the same as the initial setting power. This is a vibration control method for an ultrasonic vibration mold for continuous metal casting, which is characterized by controlling the ultrasonic vibration amplitude to a constant value.

[作用] 本発明の加振対象物は金属の連続鋳造鋳型であ
り、適用事例の多い超音波洗浄器等に比べ重負荷
である。第5図に示すように周波数に対する振幅
変化は重負荷(実線)ほどなだらかとなる。従つ
て周波数変動に対する振幅変化量は小さくなる。
一方、超音波発振器パワーP(出力トランス1次
側電圧×電流)に対する振幅Aの関係は第6図に
示すようにA=k√(k:係数)の関係が重負
荷状態での実測結果より得られている。
[Function] The object to be vibrated in the present invention is a metal continuous casting mold, and the load is heavier than that of an ultrasonic cleaner or the like, which is often used. As shown in FIG. 5, the amplitude change with respect to frequency becomes more gradual as the load becomes heavier (solid line). Therefore, the amount of amplitude change with respect to frequency fluctuation becomes small.
On the other hand, as shown in Figure 6, the relationship between the amplitude A and the ultrasonic oscillator power P (output transformer primary side voltage x current) is A = k√ (k: coefficient) based on the actual measurement results under heavy load conditions. It has been obtained.

本発明はこの関係に基づきパワー一定制御を行
うことで、振動振幅をほぼ一定に制御を行うもの
である。パワー変動の要因として、溶湯注入前後
あるいは振動子温度変動等によるインピーダンス
変動に起因するものが挙げられるが、このような
ケースでも、定パワー制御によりほぼ振動振幅は
一定に保たれる。
The present invention performs constant power control based on this relationship, thereby controlling the vibration amplitude to be substantially constant. Power fluctuations can be caused by impedance fluctuations before and after pouring the molten metal or due to changes in the vibrator temperature, but even in such cases, the vibration amplitude can be kept almost constant by constant power control.

第7図は本発明の方法を行う際に用いる振動制
御回路で、この振動制御回路は、各振動子毎にそ
れぞれ設けられている。あらかじめ周波数発生器
21により、振動周波数を設定し、又パワー設定
比較器22により、パワーを設定する。パワー設
定信号により、出力整合インバーター23から出
力トランス24、インピーダンス整合コイル25
を介して振動子へパワーを投入する。
FIG. 7 shows a vibration control circuit used in carrying out the method of the present invention, and this vibration control circuit is provided for each vibrator. The vibration frequency is set in advance by the frequency generator 21, and the power is set by the power setting comparator 22. The output matching inverter 23, the output transformer 24, and the impedance matching coil 25 are controlled by the power setting signal.
Power is input to the vibrator through the oscillator.

一方分流器27により出力トランス一次側の電
流を検出し又分圧器30により出力トランス1次
側の電圧を検出し、その信号をそれぞれ増幅器2
8,31で増幅し、制御回路29,32を介して
電力制御回路26に入力する。このように入力パ
ワーを検知し、その出力をパワー設定比較器22
へ入れ、つき合せ比較を行い、常に設定パワーと
等しくなるようにパワーを制御することで、振幅
を一定制御した。
On the other hand, the shunt 27 detects the current on the primary side of the output transformer, the voltage divider 30 detects the voltage on the primary side of the output transformer, and the signals are sent to the amplifier 2.
8 and 31 and input to the power control circuit 26 via control circuits 29 and 32. In this way, the input power is detected and the output is sent to the power setting comparator 22.
The amplitude was controlled at a constant level by comparing the power and controlling the power so that it was always equal to the set power.

[実施例] 本発明の一実施例を第7図に基づき説明する。[Example] An embodiment of the present invention will be described based on FIG.

連続鋳造用鋳型の溶湯のメニスカス近傍に多数
の振動子を配設し、その各振動子に本発明の定電
力制御を行うことで振幅制御を行う回路が内臓さ
れた超音波発振器を接続し、振動子に電力を供給
する。具体的に説明すると、第7図に示す様に、
予め周波数発生器21により、10〜30KHz程度の
範囲で鋳型に振動子を組み込んだ状態での共振周
波数近傍に設定し、パワー設定比較器22によ
り、各振動子1台当り、数百Wのパワーを設定す
る。パワー設定信号により、出力整合インバータ
ー23から出力トランス24、インピーダンス整
合コイル25を介して振動子へパワーを投入す
る。一方、分流器27により出力トランス一次側
の電流を検出し、又、分圧器30により出力トラ
ンス一次側の電圧を検出する。本実施例でのそれ
ぞれの電圧、電流の値は、例えば、初期設定電力
を100Wとした時、25V、4Aとなる。この時の振
動子1の実際の消費電力である出力トランス二次
側の電圧、電流は、500V、0.2A程度になつてい
ると仮定すると、検出した電圧、電流信号をそれ
ぞれ増幅器28,31で増幅し制御回路29,3
2を介して電力制御回路26に入力する。その真
の電力をパワー設定器22へ入れ、突合わせ比較
を行い、常に初期設定パワーと等しくなるように
パワーを制御する。消費パワーの変動要因とし
て、例えば振動子温度が変動する様な振動負荷が
変動すると、等価的に電気インピーダンス(=二
次側電圧/二次側電流)が変動する。今、仮にイ
ンピーダンスが2倍に大きくなつた場合、二次側
電圧、電流は、500V、0.1Aとなり、その結果、
一次側電圧、電流は、25V、2Aとなり、パワー
が50Wと設定値に対して半減する。本発明の定電
力制御により、パワーが設定値になるように、一
次電圧を増加させる。この場合では35.5V(=初
期電圧25V×√インピーダンス変化比2)に増加
制御を行う。定電力制御の結果、一次電圧、電流
は35.5V、2.83A約100Wとなり、二次電圧、電流
は、710V、0.139Aとなり初期設定電力は約100W
に自動調整される。この様に、パワーを制御する
ことで、振幅を一定にした各振動子で、鋳型内壁
を振動させることで、メニスカス部の鋳型内壁の
振幅分布は従来の振幅分布に比較して、はるかに
均一化することが実測により確認されている。ま
た、この様な鋳型内壁の振幅状態で、鋳造した製
品鋳片表面品質は、欠陥の少ない滑らかな品質が
確認されている。
A large number of vibrators are arranged near the meniscus of the molten metal in a continuous casting mold, and each vibrator is connected to an ultrasonic oscillator with a built-in circuit that performs amplitude control by performing the constant power control of the present invention, Supply power to the vibrator. To explain specifically, as shown in Figure 7,
The frequency generator 21 sets in advance a frequency of about 10 to 30 KHz close to the resonant frequency when the vibrator is installed in the mold, and the power setting comparator 22 generates a power of several hundred W for each vibrator. Set. In response to the power setting signal, power is applied from the output matching inverter 23 to the vibrator via the output transformer 24 and the impedance matching coil 25. On the other hand, the shunt 27 detects the current on the primary side of the output transformer, and the voltage divider 30 detects the voltage on the primary side of the output transformer. In this embodiment, the respective voltage and current values are, for example, 25V and 4A when the initial setting power is 100W. Assuming that the voltage and current on the secondary side of the output transformer, which are the actual power consumption of the vibrator 1 at this time, are approximately 500V and 0.2A, the detected voltage and current signals are transmitted to the amplifiers 28 and 31, respectively. Amplification and control circuit 29,3
2 to the power control circuit 26. The true power is input to the power setter 22, a comparison is made, and the power is controlled so that it is always equal to the initial setting power. As a factor of variation in power consumption, for example, when a vibration load such as a variation in vibrator temperature varies, electrical impedance (=secondary side voltage/secondary side current) changes equivalently. Now, if the impedance were to double, the secondary voltage and current would be 500V and 0.1A, and as a result,
The primary side voltage and current are 25V and 2A, and the power is 50W, which is half the set value. The constant power control of the present invention increases the primary voltage so that the power is at the set value. In this case, control is performed to increase the voltage to 35.5V (=initial voltage 25V×√impedance change ratio 2). As a result of constant power control, the primary voltage and current are 35.5V and 2.83A, approximately 100W, and the secondary voltage and current are 710V and 0.139A, and the initial setting power is approximately 100W.
automatically adjusted. In this way, by controlling the power and vibrating the inner wall of the mold with each vibrator with a constant amplitude, the amplitude distribution on the inner wall of the mold in the meniscus area is much more uniform than the conventional amplitude distribution. It has been confirmed through actual measurements that the In addition, it has been confirmed that the surface quality of the product slab cast under such an amplitude state of the mold inner wall is smooth with few defects.

[発明の効果] 本発明は、制御回路が簡易な他励方式による周
波数制御と電力制御による振幅制御のため、保守
が容易で制御設備コストも少なくてすむ。本発明
により、振動子個々の周波数を任意に可変設定で
き、かつ定振幅制御が可能となつたことで、鋳型
内壁のメニスカス近傍の全ての壁面部に所望の振
動を常に与えることが可能となつた。
[Effects of the Invention] In the present invention, since the control circuit performs frequency control using a simple separate excitation method and amplitude control using power control, maintenance is easy and the cost of control equipment can be reduced. According to the present invention, the frequency of each vibrator can be arbitrarily set variably and constant amplitude control is possible, making it possible to always apply desired vibrations to all wall surfaces near the meniscus of the inner wall of the mold. Ta.

従つて溶湯とモールド内壁の焼付等が解消さ
れ、ブレークアウト事故等が防止できるし、又鋳
片表面の品質が向上するため疵取りや、表面手入
が簡易化されあるいは不必要となり、歩留りや能
率が大幅に向上する。
Therefore, seizure of the molten metal and the inner wall of the mold is eliminated, and breakout accidents can be prevented. Also, since the quality of the slab surface is improved, scratch removal and surface maintenance are simplified or unnecessary, resulting in lower yields and Efficiency is greatly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は多数の振動子を配設した連続鋳造用鋳
型と超音波発振器の外観を示す図、第2図は多数
の振動子を配設した連続鋳造用鋳型の横断面の例
と振動子に接続される超音波発振器の従来の制御
例を示す図、第3図はブリツジ法による振動振幅
検知回路例を示す図、第4図は従来の周波数自動
追尾定振幅制御ブロツク図、第5図は負荷による
周波数に対する振幅の関係を示す図、第6図は実
験で確認されたパワー(電圧×電流)と振幅の関
係を示す図、第7図は本発明の振動制御回路の一
実施例を示す図。 1,1−1〜1−6:振動子、2,2−1〜2
〜6:超音波発振器,3:鋳型、4:溶湯,5:
アンプ,6:パワー設定器,7:周波数設定器,
11:振幅設定器,12:電圧比較制御回路,1
3:増幅部,14:共振位相回路,15:出力整
合インバーター回路,16:帰還部,17:電圧
入力アンプ,21:周波数発生器,22:パワー
設定比較器,23:出力整合インバーター,2
4:出力トランス,25:インピーダンス整合コ
イル,26:電圧制御回路,27:分流器,2
8:電流増幅器,29:電流制御回路,30:分
圧器,31:電圧増幅器,32:電圧制御回路。
Figure 1 is a diagram showing the appearance of a continuous casting mold equipped with a large number of transducers and an ultrasonic oscillator, and Figure 2 is an example of a cross section of a continuous casting mold equipped with a large number of transducers and the transducers. 3 is a diagram showing an example of a vibration amplitude detection circuit using the bridge method, FIG. 4 is a conventional frequency automatic tracking constant amplitude control block diagram, and FIG. is a diagram showing the relationship between amplitude and frequency due to load, Figure 6 is a diagram showing the relationship between power (voltage x current) and amplitude confirmed in experiments, and Figure 7 is an example of the vibration control circuit of the present invention. Figure shown. 1,1-1~1-6: Vibrator, 2,2-1~2
~6: Ultrasonic oscillator, 3: Mold, 4: Molten metal, 5:
Amplifier, 6: Power setting device, 7: Frequency setting device,
11: Amplitude setter, 12: Voltage comparison control circuit, 1
3: Amplification section, 14: Resonant phase circuit, 15: Output matching inverter circuit, 16: Feedback section, 17: Voltage input amplifier, 21: Frequency generator, 22: Power setting comparator, 23: Output matching inverter, 2
4: Output transformer, 25: Impedance matching coil, 26: Voltage control circuit, 27: Current shunt, 2
8: current amplifier, 29: current control circuit, 30: voltage divider, 31: voltage amplifier, 32: voltage control circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 複数個の超音波振動子を配設し、隣り合う振
動子の振動周波数を変えて加振する超音波振動モ
ールドの振動制御方法において、各振動子1に、
周波数発生器21、パワー設定比較器22、高周
波トランス24、分流器27、分圧器30の電力
制御回路26を設け、周波数発生器21により周
波数を発生させ、パワー設定比較器22に入力
し、そのパワー設定比較器22で振動子1へ供給
する初期電力を予め設定し、その初期電力を高周
波出力トランス24を介して、振動子へ投入し、
前記出力トランス24の一次側に具備した分流器
27と分圧器30で振動子に実際に供給されてい
る電流と電圧を検出し、その電流と電圧を電力制
御回路26へ入力することで、振動子に供給され
た真の電力を積算し、その積算した真の電力をパ
ワー設定比較器22に入力し、予め設定した初期
電力と突き合わせ比較を行い、常に振動子へ供給
する真の電力を初期設定電力と同じになるように
制御することを特徴とする金属の連続鋳造用超音
波振動モールドの振動制御方法。
1 In a vibration control method for an ultrasonic vibration mold in which a plurality of ultrasonic vibrators are arranged and vibrated by changing the vibration frequency of adjacent vibrators, each vibrator 1 is
A power control circuit 26 including a frequency generator 21, a power setting comparator 22, a high frequency transformer 24, a shunt 27, and a voltage divider 30 is provided, and the frequency generator 21 generates a frequency, inputs it to the power setting comparator 22, and outputs the frequency. The initial power to be supplied to the vibrator 1 is set in advance by the power setting comparator 22, and the initial power is input to the vibrator via the high frequency output transformer 24.
The shunt 27 and voltage divider 30 provided on the primary side of the output transformer 24 detect the current and voltage actually supplied to the vibrator, and input the current and voltage to the power control circuit 26 to reduce vibration. The true power supplied to the transducer is integrated, the integrated true power is input to the power setting comparator 22, and compared with the preset initial power, the true power supplied to the transducer is always set to the initial value. A vibration control method for an ultrasonic vibration mold for continuous casting of metal, characterized in that the vibration is controlled to be the same as a set electric power.
JP62278194A 1987-08-29 1987-11-05 Method for controlling vibration of ultrasonic vibrating mold for continuous casting of metal Granted JPH01122645A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP62278194A JPH01122645A (en) 1987-11-05 1987-11-05 Method for controlling vibration of ultrasonic vibrating mold for continuous casting of metal
CA000575784A CA1316325C (en) 1987-08-29 1988-08-26 Method of oscillating continuous casting mold at high frequencies and mold oscillated by such method
ES198888113989T ES2034073T3 (en) 1987-08-29 1988-08-26 METHOD TO ROCK A MOLD FOR CONTINUOUS CASTING AT HIGH FREQUENCIES AND MOLD MADE TO ROCK BY SUCH A METHOD.
EP88113989A EP0305930B1 (en) 1987-08-29 1988-08-26 Method of oscillating continuous casting mold at high frequencies and mold oscillated by such method
DE8888113989T DE3873451T2 (en) 1987-08-29 1988-08-26 CONTINUOUS CHOCOLATE AND METHOD FOR THEIR HIGH FREQUENCY OSCILLATION.
US07/237,740 US4867226A (en) 1987-08-29 1988-08-29 Method of oscillating continuous casting mold at high frequencies and mold oscillated by such method
AU21623/88A AU603251B2 (en) 1987-08-29 1988-08-29 Method of oscillating continuous casting mold at high frequencies and mold oscillated by such method
KR1019880010986A KR920004972B1 (en) 1987-08-29 1988-08-29 Method of oscilating continuous casting mold at high frequencies and mold oscillated by such method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62278194A JPH01122645A (en) 1987-11-05 1987-11-05 Method for controlling vibration of ultrasonic vibrating mold for continuous casting of metal

Publications (2)

Publication Number Publication Date
JPH01122645A JPH01122645A (en) 1989-05-15
JPH0360577B2 true JPH0360577B2 (en) 1991-09-17

Family

ID=17593903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62278194A Granted JPH01122645A (en) 1987-08-29 1987-11-05 Method for controlling vibration of ultrasonic vibrating mold for continuous casting of metal

Country Status (1)

Country Link
JP (1) JPH01122645A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104057040B (en) * 2014-06-23 2016-03-16 安徽工业大学 A kind of pinion steel horizontal casting applies the devices and methods therefor of ultrasonic wave vibration
CN104439144B (en) * 2014-12-19 2017-02-22 山东钢铁股份有限公司 Steel billet solidification detection system and method based on ultrasonic waves

Also Published As

Publication number Publication date
JPH01122645A (en) 1989-05-15

Similar Documents

Publication Publication Date Title
CA1316325C (en) Method of oscillating continuous casting mold at high frequencies and mold oscillated by such method
JPH021591B2 (en)
JPH0360577B2 (en)
JP3034957B2 (en) Plate mold for producing continuous cast material from steel
DE69227186T2 (en) METHOD FOR CONTINUOUSLY CASTING METAL STRIPS
US4395771A (en) Method and apparatus for controlling process of casting thin walled ingots using electroslag melting process
DK155654B (en) PROCEDURE AND APPARATUS FOR CURRENT TRANSPORT OF PARTICULATE MATERIAL
JPH01241355A (en) Method for controlling heat release in continuous casting mold
JPS5987960A (en) Method and device for oscillating continuous casting mold
JPS6257742A (en) Excitation method for high-frequency oscillation casting mold
JPH0360849A (en) Apparatus for continuously casting strip
JPH0367578B2 (en)
JPH01273655A (en) Method for continuously casting strip and continuous casting machine
JPH0523266Y2 (en)
JPH0868682A (en) Molten metal level measuring method for twin belt continuous casting machine
JPS59199149A (en) Assembling method of mold for continuous casting
JPH0325261B2 (en)
KR100419636B1 (en) Electromagnetic casting machine without mold oscillation
JPS5611173A (en) Continuous casting method of metal controlling drawing resistance
JPH0216842Y2 (en)
SU1158921A1 (en) Method of monitoring acoustic contact in ultrasonic inspection of articles
JPS61147954A (en) Mold oscillating method in continuous casting
JPH0160340B2 (en)
JPH05115952A (en) Production of continuously cast slab having excellent surface characteristic
JPH01205852A (en) Apparatus for controlling molten steel level