JPH0360495A - Method for selective growth of vapor synthesized diamond - Google Patents

Method for selective growth of vapor synthesized diamond

Info

Publication number
JPH0360495A
JPH0360495A JP19139889A JP19139889A JPH0360495A JP H0360495 A JPH0360495 A JP H0360495A JP 19139889 A JP19139889 A JP 19139889A JP 19139889 A JP19139889 A JP 19139889A JP H0360495 A JPH0360495 A JP H0360495A
Authority
JP
Japan
Prior art keywords
vapor deposition
substrate
diamond
temperature
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19139889A
Other languages
Japanese (ja)
Inventor
Hidekazu Kondo
英一 近藤
Tomohiro Oota
与洋 太田
Susumu Mitomo
三友 享
Kenichi Otsuka
大塚 研一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP19139889A priority Critical patent/JPH0360495A/en
Publication of JPH0360495A publication Critical patent/JPH0360495A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To inexpensively obtain a diamond film having an arbitrary shape without requiring any specific means, such as coating with a mask material, at all by setting a temp. difference between the vapor deposition section and non-vapor deposition section of a substrate at the time of growing the diamond in the arbitrary section of the substrate by a vapor synthesis method. CONSTITUTION:The vapor deposition section of the substrate is maintained at the temp. suitable for vapor deposition and the temp. in the non-vapor deposition section of the substrate is maintained at a non-vapor deposition temp., then the diamond is deposited by evaporation only in the vapor deposition section at the time of the vapor synthesis of the diamond in the arbitrary section of the substrate by a physical vapor deposition method or chemical vapor deposition method. The above mentioned vapor deposition section is preferably heated to 500 to 1100 deg.C and the non-vapor deposition reaction is kept at <400 deg.C. For example, the constitution to positively heat the vapor deposition section 8 by electrically heating (electrodes 2, 2, a power source 10) only the vapor deposition section 8 of the substrate 1 and to keep the non-vapor deposition section 9 without being heated is adopted.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、基板の上に任意のパターンにダイヤモンド結
晶を成長させることができる気相合成ダイヤモンドの選
択成長方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for selectively growing diamond by vapor phase synthesis, which allows diamond crystals to grow in an arbitrary pattern on a substrate.

[従来の技術〕 ダイヤモンドは高硬度、広いバンドギャップ、高熱伝導
度、光学的透明性、耐放@線性、耐薬品性等の優れた性
質を有しているため、例えば切削・研磨材、絶縁体、ヒ
ートシンク、宇宙空間用窓材等へ応用されており、また
適当なドーピング材を添加することにより発光素子、高
温・高電力用半導体等への応用も可能な有用な工業材料
である。
[Prior art] Diamond has excellent properties such as high hardness, wide band gap, high thermal conductivity, optical transparency, radiation resistance, and chemical resistance, so it is used as a cutting/abrasive material, insulation, etc. It is a useful industrial material that can be applied to bodies, heat sinks, space window materials, etc., and by adding appropriate doping materials, it can also be applied to light emitting devices, high temperature/high power semiconductors, etc.

従来、ダイヤモンドは、天然品を採掘するか、あるいは
黒鉛等の炭素を高温高圧下で処理することにより得てい
たが、これらの方法は大規模で高価な装置を利用するた
めコストがかさむ。そこでこれに代わるものとして、化
学蒸着法や物理蒸着法により気相合成する技術が開発さ
れた。
Conventionally, diamonds have been obtained by mining natural products or by treating carbon such as graphite under high temperature and pressure, but these methods require large-scale and expensive equipment, which increases costs. Therefore, as an alternative to this, a technique for vapor phase synthesis using chemical vapor deposition or physical vapor deposition has been developed.

これら気相合成法を用いると、粒状のダイヤモンドのみ
ならず、高温高圧法では合成不可能の膜状ダイヤモンド
を、基板上の広い範囲にわたり。
By using these vapor phase synthesis methods, not only granular diamonds but also film-like diamonds, which cannot be synthesized using high-temperature and high-pressure methods, can be produced over a wide range of substrates.

短時間で合成することができる。この利点を活かすこと
により、ダイヤモンドを半導体素子、半導体基板ヒート
シンク、半導体素子絶縁物、長寿命超硬工具のコーティ
ング、耐薬品性コーティング等へ工業的に応用すること
がはじめて可能となった。
It can be synthesized in a short time. By taking advantage of this advantage, it has become possible for the first time to industrially apply diamond to semiconductor devices, semiconductor substrate heat sinks, semiconductor device insulators, coatings for long-life carbide tools, chemical-resistant coatings, etc.

ところで、これら応用に当っては利用可能な任意の形状
に成型する必要がある。その解決のため特開昭62−2
97298号には、基板表面上のダイヤモンド形成部を
マスク部材で覆い、残余の部分をアモルファス材料で覆
い、マスク部を除去し基板を露出してから気相合成を行
う方法が開示されている。
By the way, in these applications, it is necessary to mold into any available shape. To solve this problem, JP-A-62-2
No. 97298 discloses a method in which a diamond forming portion on the surface of a substrate is covered with a mask member, the remaining portion is covered with an amorphous material, the mask portion is removed to expose the substrate, and then vapor phase synthesis is performed.

また、特開昭63−315598号には、凹凸加工を施
した基板のダイヤモンド形成部をマスク部材で覆った後
、エネルギー線照射を施して凹凸を消滅せしめ1次にマ
スクを除去し露出した凹凸部領域のみに選択的に気相合
成を行う方法が開示されている。
In addition, Japanese Patent Application Laid-Open No. 63-315598 discloses that after covering the diamond-forming portion of a substrate with an uneven surface with a mask member, energy ray irradiation is applied to eliminate the unevenness, and then the mask is first removed to expose the exposed unevenness. A method is disclosed in which vapor phase synthesis is selectively performed only in certain regions.

しかしながらこれらの方法では、マスク部材、アモルフ
ァス材料、エネルギー線源の準備やマスク材の被覆・除
去を必要とするため、工数・費用がかさみ生産性の点で
もコストの点でも問題があった。
However, these methods require the preparation of a mask member, an amorphous material, an energy ray source, and the covering and removal of the mask material, which increases the number of steps and costs, resulting in problems in terms of productivity and cost.

[発明が解決しようとする課題] 本発明は、ダイヤモンド気相合成法により工業的応用が
可能な任意の形状のダイヤモンド膜を得るに際して、マ
スク材による被覆など特別な手段を何ら必要としない合
成法であって、前記従来技術の持つ、生産性低下、コス
ト上昇等の問題点の解決を図るものである。
[Problems to be Solved by the Invention] The present invention provides a synthesis method that does not require any special means such as coating with a mask material when obtaining a diamond film of any shape that is industrially applicable by diamond vapor phase synthesis. This is intended to solve the problems of the prior art, such as decreased productivity and increased costs.

〔課題を解決するための手段1 ダイヤモンドの気相合成法においては、析出の有無や析
出速度は基板温度に対する依存性が極めて大であること
が知られている。第1図に定性的に基板温度と気相成長
速度との関係を示した。第1図において、基板温度の低
い領域1においては析出が認められず、領域2〜3でも
析出速度が極めて小さく、領域4のようにある温度以上
に基板の温度を保つと析出が認められる。このため基板
温度分布が不均一の場合には、析出量も不均一となる。
[Means for Solving the Problem 1] In the vapor phase synthesis method of diamond, it is known that the presence or absence of precipitation and the precipitation rate are extremely dependent on the substrate temperature. FIG. 1 qualitatively shows the relationship between substrate temperature and vapor growth rate. In FIG. 1, no precipitation is observed in region 1 where the substrate temperature is low, the precipitation rate is extremely low in regions 2 and 3, and precipitation is observed in region 4 when the substrate temperature is maintained above a certain temperature. Therefore, if the substrate temperature distribution is non-uniform, the amount of precipitation will also be non-uniform.

そこで従来の基板温度制御は、温度分布をできるだけ均
一とし、均一な析出を得ることにその主眼がおかれてい
た。
Therefore, the main focus of conventional substrate temperature control has been to make the temperature distribution as uniform as possible and to obtain uniform precipitation.

発明者等は、上述の理由により任意形状のダイヤモンド
膜を簡単かつ低廉に製造する技術の必要性を強く感じて
いたのであるが、種々の検討の結果、析出の基板温度依
存性を利用することにより、この解決が可能であるとの
知見を得るに至った。
For the reasons mentioned above, the inventors felt strongly that there was a need for a technology to easily and inexpensively manufacture diamond films of arbitrary shapes, and after various studies, they discovered a technology that could utilize the dependence of deposition on substrate temperature. As a result, we have found that this solution is possible.

すなわち、本発明は化学蒸着法又は物理蒸着法(以下そ
れぞれ、CVD法、PVD法と略記する)による任意形
状のダイヤモンド膜の合成を、蒸着させるべき基板部位
(以下蒸着部位と記す)と蒸着させない基板部位(以下
非蒸着部位と記す)に温度分布を設け、蒸着部位を蒸着
に適する温度に保ち、非蒸着部位の温度を非蒸着温度に
保ち、膜合成を行うものであり、均一化を目的とした従
来の基板温度制御技術とは全く着想を異にする画期的手
法である。
That is, the present invention synthesizes a diamond film of arbitrary shape by chemical vapor deposition method or physical vapor deposition method (hereinafter abbreviated as CVD method and PVD method, respectively) without depositing it on the substrate region to be deposited (hereinafter referred to as evaporation region). This method creates a temperature distribution in the substrate area (hereinafter referred to as non-evaporation area), keeps the evaporation area at a temperature suitable for evaporation, and maintains the temperature of the non-evaporation area at the non-evaporation temperature to synthesize the film, and the purpose is to achieve uniformity. This is a revolutionary method with a completely different concept from conventional substrate temperature control technology.

温度としては、蒸着部位の温度を500〜1100℃に
加熱し、非蒸着部位の温度を400℃未満とするのが好
ましい。
As for the temperature, it is preferable that the temperature of the vapor deposition area is heated to 500 to 1100°C, and the temperature of the non-evaporation area is less than 400°C.

〔作用〕[Effect]

前記の如くダイヤモンド析出速度は基板温度に対する依
存性が極めて大であり、本発明の構成は、基板上におい
て蒸着部位をダイヤモンド析出に適した温度に、また非
蒸着部位を非析出温度にそれぞれ保ちながら蒸着を行う
ことにある。
As mentioned above, the diamond precipitation rate is extremely dependent on the substrate temperature, and the structure of the present invention is to maintain the deposition area on the substrate at a temperature suitable for diamond precipitation and the non-evaporation area at a non-deposition temperature. The purpose is to perform vapor deposition.

具体的には、第1図から知ることができるように、蒸着
部にダイヤモンドのみを蒸着せしめ非蒸着部にダイヤモ
ンドを析出させないためには、蒸着部位の温度を第1図
の領域4に、同時に非蒸着部位の温度を第1図の領域l
に保つ必要がある。
Specifically, as can be seen from Fig. 1, in order to deposit only diamond in the evaporated area and not to precipitate diamond in the non-evaporated area, the temperature of the evaporated area must be adjusted to region 4 in Fig. 1 at the same time. The temperature of the non-evaporated area is determined by the area l in Figure 1.
need to be kept.

この異なった2f+1の温度を基板上に同時に得るため
には、 (1)蒸着部位の積極的加熱、 (2)非蒸着部位の積極的冷却、 (3)あるいは前2者の併用を行う。
In order to simultaneously obtain these different temperatures of 2f+1 on the substrate, (1) active heating of the vapor deposition area, (2) active cooling of the non-evaporation area, (3) or a combination of the former two are performed.

また、蒸着部位の温度を第1図の領域4に、同時に非蒸
着部位温度を第1図の領域2又は5に保つことによって
も、蒸着部位にダイヤモンドのみを、非蒸着部位に非ダ
イヤモンドを析出させることができる。
In addition, by keeping the temperature of the evaporation area in region 4 in Figure 1 and the temperature of the non-evaporation area in area 2 or 5 in Figure 1, only diamond can be deposited in the evaporation area and non-diamond can be deposited in the non-evaporation area. can be done.

第2図〜第6図に本発明を実施する場合の具体的構成の
例を示し、以下類にこれを説明する。
Examples of specific configurations for implementing the present invention are shown in FIGS. 2 to 6, and will be explained below.

第2図はダイヤモンド蒸着部位8のみを通電加熱するこ
とにより蒸着部位8の積極的加熱を図り非蒸着部位9を
加熱しない構成である。蒸着基板lの表面上に、電源1
0を接続した電極2.2を蒸着部位8を挟むようにして
設置している。ダイヤモンドの原料種、例えばCVD法
の場合であれば熱励起あるいはプラズマ励起した炭化水
素ガスと水素ガスの混合ガス等、PVD法の場合であれ
ば炭素イオンビーム等のダイヤモンド原料11は、基板
1の上方から供給されている0例えば熱フイラメント法
の場合であれば、原料ガス供給ノズル12から原料ガス
を供給する。13は原料ガス加熱用フィラメントである
。通電時には電極2.2間のみがジュール発熱し、通電
量の調節を行うことによって基板1の温度調節を行うこ
とができる。
FIG. 2 shows a configuration in which only the diamond evaporation area 8 is electrically heated to actively heat the evaporation area 8 and the non-evaporation area 9 is not heated. A power source 1 is placed on the surface of the vapor deposition substrate 1.
Electrodes 2.2 to which 0 is connected are placed so as to sandwich the vapor deposition site 8. The type of diamond raw material 11, such as a mixed gas of thermally or plasma-excited hydrocarbon gas and hydrogen gas in the case of the CVD method, or a carbon ion beam in the case of the PVD method, is For example, in the case of a hot filament method, the raw material gas is supplied from above through the raw material gas supply nozzle 12. 13 is a filament for heating raw material gas. When energized, Joule heat is generated only between the electrodes 2 and 2, and the temperature of the substrate 1 can be adjusted by adjusting the amount of energization.

第3図は第2図と同様の通電加熱法であるが、ダイヤモ
ンド蒸着部位8のみ電流密度を増加させることにより積
極的加熱を図る構成である。蒸着基板lには図示しない
電極で電源IOから通電されているが、蒸着部位8のみ
基板■に切欠14をつけジュール発熱量を増大させてい
る。この場合には、予め設けた切欠14の大きさ1通電
量の調節により基板温度を自在に設定することができる
FIG. 3 shows an electric heating method similar to that shown in FIG. 2, but has a configuration in which active heating is achieved by increasing the current density only at the diamond deposition region 8. The vapor deposition substrate 1 is energized from a power source IO through an electrode (not shown), and a notch 14 is provided in the substrate 2 only at the vapor deposition region 8 to increase the Joule heat generation amount. In this case, the substrate temperature can be freely set by adjusting the size of the notch 14 provided in advance and the amount of current applied.

第4図(a)は第2図及び第3図の原理を組合わせた構
成を示す斜視図であり、基板裏面に機械加工、薬品処理
、その他の手段で切欠3を入れバターニング蒸着を可能
としたものである。すなわち第4図(b)に示すように
蒸着基板lの裏面に所望のパターンの切欠3を入れ、第
4図(a)に示すように、この切欠3を設けた部分を挟
むように基板1上に電極2.2を設置して電源10から
通電加熱する。切欠3の部分は蒸着部位8となり、その
電流密度は非切欠部(非蒸着部位9)に比しで高く温度
も高い。そのためパターン通りの蒸着が実現される。基
板l全体に通電を行ってもよいが、第4図(a)に示す
ようにパターンを形成した部分のみ通電した方が電力損
失が少なく経済的である。基板温度は切欠量、通電量の
調節により設定することができる。また、非切欠部(非
蒸着部位9)の発熱量が過剰である場合には、基板裏面
を冷却することによって当該部の温度上昇を防ぐことが
できる。その際切欠部が冷却面に接しないようにすると
効果的である。
FIG. 4(a) is a perspective view showing a configuration that combines the principles of FIGS. 2 and 3, and enables patterning vapor deposition by creating a notch 3 on the back surface of the substrate by machining, chemical treatment, or other means. That is. That is, as shown in FIG. 4(b), cutouts 3 in a desired pattern are made on the back surface of the vapor deposition substrate l, and as shown in FIG. An electrode 2.2 is placed on top and heated by electricity from a power source 10. The part of the notch 3 becomes a vapor deposition part 8, and the current density and temperature thereof are higher than those of the non-notch part (non-deposition part 9). Therefore, vapor deposition according to the pattern is realized. Although the entire substrate 1 may be energized, it is more economical to energize only the portion where the pattern is formed, as shown in FIG. 4(a), with less power loss. The substrate temperature can be set by adjusting the amount of notches and the amount of current applied. Furthermore, if the amount of heat generated in the non-notched portion (non-vapor deposition portion 9) is excessive, temperature rise in the portion can be prevented by cooling the back surface of the substrate. At this time, it is effective to prevent the notch from coming into contact with the cooling surface.

この方法は蒸着部位8の電流密度を高めることがその原
理であり、必ずしも基板1自身に切欠3を必要としない
。例えば第4図(C)に示す如く、基板1と異種又は同
種の導電性補助基板7を基板1の裏面に密着させ、補助
基板7には蒸着パターンを得るための切欠3を裏面ない
し表面に入れるかあるいは第4図(d)に示す如く、補
助基板7にパターンの切抜き6を設け、両接触面に導電
ペースト等を塗布するなどの方策によって導通を良好に
し、これらの両基板に同時に通電加熱する方法によって
も同一の目的が達せられる。
The principle of this method is to increase the current density at the vapor deposition site 8, and the notch 3 in the substrate 1 itself is not necessarily required. For example, as shown in FIG. 4(C), a conductive auxiliary substrate 7 of a different type or the same type as the substrate 1 is closely attached to the back surface of the substrate 1, and the auxiliary substrate 7 has a notch 3 on the back or front surface for obtaining a vapor deposition pattern. Alternatively, as shown in FIG. 4(d), a pattern cutout 6 may be provided on the auxiliary board 7, and conductive paste or the like may be applied to both contact surfaces to ensure good continuity, and current may be applied to both boards at the same time. The same objective can also be achieved by the method of heating.

第5図は第2図に示した構成を基礎とし、さらに基板l
の裏面を水冷装置4で冷却する構成である。水冷装置4
には第5図(b)に示すように凹パターン17が設けら
れ、また基板lと水冷装置4の接触面には高熱伝導性溶
剤18が挟み込まれている。基板lは通電加熱されてい
るが、水冷装置4の凹パターン17の部分では基板lが
冷却されず基板表面温度は高い6したがって、基板表面
には凹パターンと同一形状の蒸着部位8にパターン通り
に蒸着され冷却されている非蒸着部位9には蒸着しない
FIG. 5 is based on the configuration shown in FIG.
The configuration is such that a water cooling device 4 cools the back surface of the holder. Water cooling device 4
As shown in FIG. 5(b), a concave pattern 17 is provided, and a highly thermally conductive solvent 18 is sandwiched between the contact surface between the substrate l and the water cooling device 4. Although the substrate 1 is heated by electricity, the substrate 1 is not cooled in the concave pattern 17 of the water cooling device 4, and the substrate surface temperature is high. The vapor is not deposited on the non-evaporation area 9 which has been vapor-deposited and cooled.

第6図は第5図と基本的原理は同一で基板1を冷却装置
4によって部分的に冷却し蒸着部位8と非蒸着部位9を
形成したものであるが、電気炉5により基板lの加熱を
行っている点が異なる。また熱フイラメントCVD法や
プラズマCVD法の如(必然的に基板全体が加熱される
場合であっても、第6図と同様の方法を用いることがで
きる。
The basic principle of FIG. 6 is the same as that of FIG. 5, in which the substrate 1 is partially cooled by a cooling device 4 to form a vapor deposition area 8 and a non-evaporation area 9, but the substrate 1 is heated by an electric furnace 5. The difference is that they do this. Further, even when the entire substrate is inevitably heated, a method similar to that shown in FIG. 6 can be used, such as a hot filament CVD method or a plasma CVD method.

以上第2図〜第6図を例として本発明の構成について述
べた。本発明の主旨は、基板上においてダイヤモンド蒸
着部位8を析出に適した温度に、非蒸着部位9を非析出
温度にそれぞれ保ちながら蒸着を行うことにあり、加熱
方法は基板通電加熱、電気炉加熱等の方法に限定される
ものではなく、また冷却方法も水冷に限らず適当な冷媒
と冷却手段を用いることができる。また加熱装置、冷却
装置の構造も第2図〜第6図のそれに限定されるもので
はないことはいうまでもない。また本発明は、種々のC
VD法やPVD法等蒸着方法を問わず、適用することが
できる。
The configuration of the present invention has been described above using FIGS. 2 to 6 as examples. The gist of the present invention is to perform vapor deposition while keeping the diamond vapor deposition area 8 on the substrate at a temperature suitable for deposition and the non-evaporation area 9 at a non-deposition temperature, and heating methods include substrate current heating, electric furnace heating. The cooling method is not limited to water cooling, and any suitable refrigerant and cooling means may be used. It goes without saying that the structures of the heating device and the cooling device are not limited to those shown in FIGS. 2 to 6. Further, the present invention provides various C
Any vapor deposition method such as VD method or PVD method can be applied.

ここでダイヤモンド蒸着部位の必要な加熱温度は500
〜1100℃である。1100℃を超えるとダイヤモン
ドが形成されず、非ダイヤモンド炭素のみが析出する。
Here, the required heating temperature of the diamond deposition area is 500°C.
~1100°C. When the temperature exceeds 1100°C, no diamond is formed and only non-diamond carbon is precipitated.

500℃未満だとダイヤモンドが形成されず、非ダイヤ
モンド炭素のみが析出する。
If the temperature is less than 500°C, no diamond will be formed and only non-diamond carbon will precipitate.

一方、非蒸着部位の温度は400℃未満にする必要があ
る。400℃未満であると、ダイヤモンド、非ダイヤモ
ンド炭素共全く析出しない。
On the other hand, the temperature of the non-evaporated area needs to be lower than 400°C. If the temperature is below 400°C, neither diamond nor non-diamond carbon will precipitate at all.

また、基板としてはCを大量に固溶しない金属や半導体
、例えばS i、Mo、W、Taなどや各種セラミック
スを用いることができる。
Further, as the substrate, metals and semiconductors that do not contain a large amount of C as a solid solution, such as Si, Mo, W, Ta, etc., and various ceramics can be used.

CVD法の原料ガスには、含炭素化合物と水素の混合ガ
ス、あるいは必要に応じ酸素ガス、不活性ガス、水蒸気
等の添加ガスを用いる。
As the raw material gas for the CVD method, a mixed gas of a carbon-containing compound and hydrogen, or an additive gas such as oxygen gas, inert gas, or water vapor is used as necessary.

〔実施例〕〔Example〕

実施例1 本発明に係る第2図の方法を用い、熱フィラメントCV
D法により基板l上へのダイヤモンドの選択的成長を行
った。
Example 1 Using the method of FIG. 2 according to the present invention, a hot filament CV
Diamond was selectively grown on the substrate 1 using the D method.

基板lは、ダイヤモンド核の発生密度増大を目的とし5
粒径的ILLmのダイヤモンド砥粒で研磨した1 00
mmX 100m、mX0.5mmのシリコンである。
The substrate 1 is made of 5
100 polished with diamond abrasive grains of grain size ILLm
It is silicon with dimensions of mm×100m and m×0.5mm.

基板1上のほぼ中央部に幅10mmのステンレス製電極
2を、電極間距離20mmとなるように向い合せに設置
した。電極2と2の間の蒸着部位8の面から10mm離
した位置にタングステンフィラメント13を、またさら
に10mm離れた位置がその先端となるように原料ガス
11 (メタンと水素の混合ガス)の供給ノズル12を
設置した。なお、フィラメント13の中心、ノズルi2
の中心、蒸着面8の中心はいずれも基板1に垂直な同一
軸上に設けた。
Stainless steel electrodes 2 each having a width of 10 mm were placed substantially in the center of the substrate 1, facing each other so that the distance between the electrodes was 20 mm. A tungsten filament 13 is placed at a position 10 mm away from the surface of the vapor deposition site 8 between the electrodes 2 and 2, and a supply nozzle for supplying raw material gas 11 (a mixed gas of methane and hydrogen) is placed at a position further 10 mm away from the surface of the tungsten filament 13. 12 were installed. Note that the center of the filament 13, the nozzle i2
The center of the vapor deposition surface 8 and the center of the vapor deposition surface 8 were both arranged on the same axis perpendicular to the substrate 1.

これらは図示しない真空ポンプに接続した同一のCVD
容器内に設置されている。フィラメント13及び電極2
.2はそれぞれ、容器の導入端子を介し、電流電圧計が
備えられた出力電力可変電源に接続されている。
These are the same CVD connected to a vacuum pump (not shown).
installed inside the container. Filament 13 and electrode 2
.. 2 are each connected to a variable output power source equipped with a current-voltage meter via the inlet terminal of the container.

蒸着時のフィラメント温度は光高温計で測定し、一方ま
た熱雷対先端を蒸着部位8に接触させて測定し、電源出
力電力を調節することによりその温度を目標とする一定
温度に維持した。蒸着時の条件は次の通りである。
The filament temperature during deposition was measured with an optical pyrometer, and also by contacting the tip of a thermal lightning pair with the deposition site 8, and the temperature was maintained at a constant target temperature by adjusting the output power of the power source. The conditions during vapor deposition are as follows.

メタン流量:5secm 水素流量+ 500secm 雰囲気圧カニ30Torr フィラメント温度:2100℃ 基板温度(蒸着部位)+900℃ (非蒸着部位):300°C以下 蒸着時間11時間 基板温度を上記条件とした理由は、一般にCVD法では
ダイヤモンド蒸着に適した基板温度は500〜1100
℃であり、また400℃未満では全く析出が認められな
いことによる。蒸着後。
Methane flow rate: 5 sec Hydrogen flow rate + 500 sec Atmospheric pressure 30 Torr Filament temperature: 2100°C Substrate temperature (evaporation area) + 900°C (non-evaporation area): 300°C or less Evaporation time 11 hours The reason why the substrate temperature was set to the above conditions is generally In the CVD method, the substrate temperature suitable for diamond deposition is 500 to 1100.
This is because no precipitation is observed at temperatures below 400°C. After vapor deposition.

通電部である蒸着部位8にのみ膜が成長した。この膜厚
を接触式表面粗度計を用いて測定したところ第7図Aに
示す分布が得られた。第7図(a)は電極方向の膜厚分
布、第7図(b)はこれに直交する方向の膜厚分布であ
る。蒸着部の一部分を切出して走査電子顕微鏡観察した
ところ、この膜は自形面を有した多数の結晶が密に集積
した組織であった。さらにラマン分光分析の結果、この
膜は不定型炭素やグラファイトをほとんど含まない良質
なダイヤモンドであることを確認した。また非蒸着部位
9をやはり走査電子顕微鏡で観察したところ、前述のご
とき結晶体は全く認められず、ラマン分光分析において
もダイヤモンドのみならず、不定型炭素やグラファイト
も全く検出されなかった。
A film grew only on the vapor deposition site 8, which is the current-carrying part. When this film thickness was measured using a contact type surface roughness meter, the distribution shown in FIG. 7A was obtained. FIG. 7(a) shows the film thickness distribution in the electrode direction, and FIG. 7(b) shows the film thickness distribution in the direction perpendicular to this. When a part of the deposited area was cut out and observed under a scanning electron microscope, it was found that the film had a structure in which many crystals with euhedral surfaces were densely accumulated. Furthermore, Raman spectroscopy confirmed that this film was high-quality diamond containing almost no amorphous carbon or graphite. Furthermore, when the non-evaporated area 9 was observed using a scanning electron microscope, no crystals as described above were observed, and not only diamond but also no amorphous carbon or graphite was detected in Raman spectroscopy.

実施例2 本発明に係る第4図(a)の方法を用い、熱フイラメン
トCVD法により基板1上へのダイヤモンドの選択的成
長を行った6基板は実施例1と同様のシリコン基板であ
るが、基板中央の蒸着部位8の裏面に長さ20mm、幅
10mmにわたり深さ0.25 m mの凹みを弗酸に
よる腐食処理で形成した。その他の条件は実施例1と同
様とした。
Example 2 The six substrates on which diamond was selectively grown on the substrate 1 by the hot filament CVD method using the method shown in FIG. 4(a) according to the present invention were the same silicon substrates as in Example 1. A recess with a length of 20 mm and a width of 10 mm and a depth of 0.25 mm was formed on the back surface of the vapor deposition site 8 at the center of the substrate by etching with hydrofluoric acid. Other conditions were the same as in Example 1.

蒸着後、基板の凹み形成部の反対側の蒸着部位8にのみ
膜が成長した。この膜厚を接触式表面粗度計を用いて測
定したところ第7図Bに示す分布が得られた。
After the deposition, the film grew only on the deposition site 8 on the opposite side of the substrate from where the depression was formed. When this film thickness was measured using a contact type surface roughness meter, the distribution shown in FIG. 7B was obtained.

実施例1と同様の方法で膜の同定を行った結果、この膜
が不定型炭素やグラファイトをほとんど含まない良質な
ダイヤモンドであること、それ以外の部分にはダイヤモ
ンド、不定型炭素やグラファイトが全くないことが確認
された。
As a result of identifying the film using the same method as in Example 1, we found that this film was high-quality diamond containing almost no amorphous carbon or graphite, and that there was no diamond, amorphous carbon, or graphite in the other parts. It was confirmed that there was no such thing.

実施例3 本発明に係る第5図(a)の方法を用い、マイクロ波プ
ラズマCVD法により基板l上へのダイヤモンドの選択
的成長を行った。蒸着条件は次に示す通りである。
Example 3 Using the method shown in FIG. 5(a) according to the present invention, diamond was selectively grown on a substrate 1 by microwave plasma CVD. The deposition conditions are as follows.

四塩化炭素流fi:1secm 水素流量: 101005e 雰囲気圧カニ 30Torr 基板温度(蒸着部位):900℃ (非蒸着部位):100℃以下 マイクロ波周波数:2.45GHz マイクロ波出力+400W 蒸着時間=1時間 基板は40mmX40mmX0.5mmのシリコン基板
で前処理方法は実施例1と同様である。冷却装置は銅製
で表面に長さ20mm、幅10mm、深さ0−5 m 
mの凹みがある。凹み側の面は熱伝導性の高い絶縁性ペ
ーストを塗布した後、凹みがほぼ基板1の中央となるよ
う基板1裏面から接触させた。さらにこの部分を挟み込
むようにして基板1表面にステンレス製電極2を設置し
て通電した。通電により凹み部に対応する蒸着部位8だ
けが赤熱した。基板表面温度は通電量および通水量を調
節して一定に保った。
Carbon tetrachloride flow fi: 1 sec Hydrogen flow rate: 101005e Atmospheric pressure 30 Torr Substrate temperature (evaporation area): 900°C (non-evaporation area): 100°C or less Microwave frequency: 2.45 GHz Microwave output + 400 W Evaporation time = 1 hour Substrate is a silicon substrate of 40 mm x 40 mm x 0.5 mm, and the pretreatment method is the same as in Example 1. The cooling device is made of copper and has a surface length of 20 mm, width of 10 mm, and depth of 0-5 m.
There is a dent of m. After applying an insulating paste with high thermal conductivity to the surface on the concave side, contact was made from the back surface of the substrate 1 so that the concave portion was approximately at the center of the substrate 1. Further, a stainless steel electrode 2 was placed on the surface of the substrate 1 so as to sandwich this portion, and electricity was applied. By applying electricity, only the vapor deposition area 8 corresponding to the recessed area became red hot. The substrate surface temperature was kept constant by adjusting the amount of current and water supplied.

蒸着後、基板の凹み部の反対側に相当する蒸着部位8に
のみ膜が成長した。この膜厚を接触式表面粗度計を用い
て測定したところ第7図Aとほとんど同一の分布が得ら
れた。
After vapor deposition, a film grew only on the vapor deposition site 8 corresponding to the opposite side of the recessed portion of the substrate. When this film thickness was measured using a contact type surface roughness meter, almost the same distribution as that shown in FIG. 7A was obtained.

実施例1と同様の方法で膜の同定を行った結果、この膜
が不定型炭素やグラファイトをほとんど含まない良質な
ダイヤモンドであること、非蒸着部位9にはダイヤモン
ド、不定型炭素やグラファイトが全くないことが確認さ
れた。
As a result of identifying the film using the same method as in Example 1, we found that this film was high-quality diamond containing almost no amorphous carbon or graphite, and that there was no diamond, amorphous carbon, or graphite in the non-deposited area 9. It was confirmed that there was no.

実施例4 本発明に係る第6図の方法を用い、熱フイラメントCV
D法により基板lへのダイヤモンド選択成長を行った。
Example 4 Using the method shown in FIG. 6 according to the present invention, thermal filament CV
Selective growth of diamond on substrate 1 was performed using the D method.

基板は実施例1と同様のシリコン基板、冷却装置は実施
例3と同一のものである。
The substrate is the same silicon substrate as in Example 1, and the cooling device is the same as in Example 3.

雰囲気加熱はCVD容器内に設置したFe−Cr−Aβ
系発熱体により行った。その他の条件は実施例1と同様
であるが、非蒸着部位9の基板温度は100℃を越える
ことがなかった。
Atmosphere heating was performed using Fe-Cr-Aβ installed in the CVD container.
This was done using a system heating element. Other conditions were the same as in Example 1, but the substrate temperature in the non-evaporation area 9 did not exceed 100°C.

蒸着後、凹み部の反対側に相当する蒸着部位8にのみ膜
が成長した。この膜厚分布は第7図Aとほとんど同一で
あった。
After vapor deposition, a film grew only on the vapor deposition site 8 corresponding to the opposite side of the recess. This film thickness distribution was almost the same as that shown in FIG. 7A.

実施例1と同様の方法で膜の同定を行った結果、この膜
が不定型炭素やグラファイトをほとんど含まない良質な
ダイヤモンドであること、非蒸着部部位9にはダイヤモ
ンド、不定型炭素やグラファイトが全くないことが確認
された。
The film was identified using the same method as in Example 1, and it was found that this film was high-quality diamond containing almost no amorphous carbon or graphite, and that diamond, amorphous carbon, and graphite were present in the non-evaporated portion 9. It was confirmed that there were none.

以上実施例にみる如く、本発明によりマスク材による被
覆等特別な手段を何ら必要とせずに、必要とする形状の
ダイヤモンド膜を得ることができた。なお、本発明の主
旨は、基板上においてダイヤモンド蒸着部位を析出に適
した温度に、非蒸着部位を非析出温度にそれぞれ保ちな
がらi17を行うことに在り、加熱/冷却方法は上記実
施例に限定されるものではなく、さらに種々のCVD法
やPVD法に適用できる汎用性の大なる方法である。
As seen in the examples above, the present invention made it possible to obtain a diamond film in the desired shape without requiring any special means such as covering with a mask material. The gist of the present invention is to perform i17 on the substrate while keeping the diamond evaporation area at a temperature suitable for deposition and the non-evaporation area at a non-deposition temperature, and the heating/cooling method is limited to the above embodiment. It is a highly versatile method that can be applied to various CVD methods and PVD methods.

〔発明の効果1 本発明を適用することで、気相合成法によ0工業的応用
が可能な任意の形状0ダイヤモンド膜をマスク材による
被覆等特別な手段を何ら必要とせずに蒸着させることが
でき、ダイヤモンドを用いた半導体素子、半導体基板ヒ
ートシンク、半導体素子間絶縁物、長寿命超硬工具のコ
ーティング、耐薬品性コーティング等の製造を簡単かつ
低廉に行うことが可能となった。
[Effect of the invention 1] By applying the present invention, a diamond film of any shape that can be applied industrially can be vapor-deposited by a vapor phase synthesis method without requiring any special means such as covering with a mask material. This has made it possible to easily and inexpensively manufacture diamond-based semiconductor elements, semiconductor substrate heat sinks, insulators between semiconductor elements, coatings for long-life carbide tools, chemical-resistant coatings, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第り図は基板温度と成長速度の関係を示すグラフ、第2
図〜第6図は本発明実施時の具体的装置構成の説明図、
第7図は本発明実施時のダイヤモンド膜厚分布のグラフ
である。 l・・・基板      2−・・電極3・・・切欠 
     4・・・冷却器5・・・発熱体     6
−・・切抜き7・・・補助基板    8・・・蒸着部
位9・・・非蒸着部位
Figure 2 is a graph showing the relationship between substrate temperature and growth rate.
6 to 6 are explanatory diagrams of specific device configurations when implementing the present invention,
FIG. 7 is a graph of the diamond film thickness distribution when the present invention is implemented. l...Substrate 2-...Electrode 3...Notch
4... Cooler 5... Heating element 6
- Cutout 7... Auxiliary substrate 8... Evaporation area 9... Non-evaporation area

Claims (1)

【特許請求の範囲】 1 物理蒸着法または化学蒸着法によりダイヤモンドの
気相合成を基板の任意の部位に行う際に、基板の蒸着部
位を蒸着に適する温度に保ち、基板の非蒸着部位の温度
を非蒸着温度に保ち、蒸着部位のみにダイヤモンドを蒸
着させることを特徴とする気相合成ダイヤモンドの選択
成長方法。 2 前記蒸着部位の温度を500〜1100℃に加熱し
、非蒸着部位の温度を400℃未満とすることを特徴と
する請求項1記載の気相合成ダイヤモンドの選択成長方
法。
[Scope of Claims] 1. When vapor phase synthesis of diamond is performed on any part of a substrate by physical vapor deposition or chemical vapor deposition, the vapor deposition part of the substrate is maintained at a temperature suitable for vapor deposition, and the temperature of the non-evaporation part of the substrate is maintained at a temperature suitable for vapor deposition. A selective growth method for vapor-phase synthetic diamond, which is characterized by keeping diamond at a non-evaporation temperature and depositing diamond only on the deposition site. 2. The method for selectively growing vapor-phase synthetic diamond according to claim 1, characterized in that the temperature of the vapor deposition area is heated to 500 to 1100°C, and the temperature of the non-evaporation area is less than 400°C.
JP19139889A 1989-07-26 1989-07-26 Method for selective growth of vapor synthesized diamond Pending JPH0360495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19139889A JPH0360495A (en) 1989-07-26 1989-07-26 Method for selective growth of vapor synthesized diamond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19139889A JPH0360495A (en) 1989-07-26 1989-07-26 Method for selective growth of vapor synthesized diamond

Publications (1)

Publication Number Publication Date
JPH0360495A true JPH0360495A (en) 1991-03-15

Family

ID=16273940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19139889A Pending JPH0360495A (en) 1989-07-26 1989-07-26 Method for selective growth of vapor synthesized diamond

Country Status (1)

Country Link
JP (1) JPH0360495A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4681084B1 (en) * 2010-02-23 2011-05-11 株式会社テオス CVD processing method and CVD apparatus using the method
JP2020117162A (en) * 2019-01-25 2020-08-06 本田技研工業株式会社 Saddle-riding type vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4681084B1 (en) * 2010-02-23 2011-05-11 株式会社テオス CVD processing method and CVD apparatus using the method
WO2011104740A1 (en) * 2010-02-23 2011-09-01 株式会社テオス Cvd processing method and cvd device using said method
JP2020117162A (en) * 2019-01-25 2020-08-06 本田技研工業株式会社 Saddle-riding type vehicle

Similar Documents

Publication Publication Date Title
US5403399A (en) Method and apparatus for vapor deposition of diamond
US4740263A (en) Process for preparing thin film and p-type diamond semiconductor
US5204145A (en) Apparatus for producing diamonds by chemical vapor deposition and articles produced therefrom
US5900225A (en) Formation of diamond materials by rapid-heating and rapid-quenching of carbon-containing materials
US5209182A (en) Chemical vapor deposition apparatus for forming thin film
WO1996005337A9 (en) Formation of diamond materials by rapid-heating and rapid-quenching of carbon-containing materials
JP2002506786A (en) Apparatus and method for diamond nucleation and deposition using hot filament DC plasma
US5879450A (en) Method of heteroepitaxial growth of beta silicon carbide on silicon
JP2018505304A (en) Apparatus and method for producing free-standing CVD polycrystalline diamond film
US5225245A (en) Chemical vapor deposition method for forming thin film
JP3861346B2 (en) Diamond synthesis method
JPH0360495A (en) Method for selective growth of vapor synthesized diamond
EP0502657B1 (en) Improved apparatus for producing diamonds by chemical vapor deposition and articles produced thereform
JPH01179789A (en) Vapor growth method for diamond and thermal plasma deposition method and plasma injection device
JPS62171993A (en) Production of diamond semiconductor
KR102133963B1 (en) Diamond single crystal growth method using plasma CVD apparatus
JP2646439B2 (en) Method and apparatus for vapor phase synthesis of diamond
KR102207607B1 (en) DC power plasma CVD diamond growth apparatus
JPS6395200A (en) Production of hard boron nitride film
JPH031377B2 (en)
JP2002037669A (en) Silicon carbide material, plasma-resistant member, and device for producing semiconductor
KR100312008B1 (en) How to make diamond at high speed using plasma jet
JP2725069B2 (en) Method for producing diamond crystal
JPH03223197A (en) Vapor-phase synthesizing device of diamond and temperature control of base plate of the same device
JPS61201693A (en) Production of diamond