JPH0360421A - Production of spherical silica glass - Google Patents

Production of spherical silica glass

Info

Publication number
JPH0360421A
JPH0360421A JP19155689A JP19155689A JPH0360421A JP H0360421 A JPH0360421 A JP H0360421A JP 19155689 A JP19155689 A JP 19155689A JP 19155689 A JP19155689 A JP 19155689A JP H0360421 A JPH0360421 A JP H0360421A
Authority
JP
Japan
Prior art keywords
gel
particle size
sol
silica glass
dispersion medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19155689A
Other languages
Japanese (ja)
Other versions
JPH057331B2 (en
Inventor
Ryuji Masuda
竜司 増田
Wataru Takahashi
渉 高橋
Mitsuru Ishii
満 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Muki Co Ltd
Original Assignee
Nippon Muki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Muki Co Ltd filed Critical Nippon Muki Co Ltd
Priority to JP19155689A priority Critical patent/JPH0360421A/en
Publication of JPH0360421A publication Critical patent/JPH0360421A/en
Publication of JPH057331B2 publication Critical patent/JPH057331B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/1005Forming solid beads
    • C03B19/106Forming solid beads by chemical vapour deposition; by liquid phase reaction
    • C03B19/1065Forming solid beads by chemical vapour deposition; by liquid phase reaction by liquid phase reactions, e.g. by means of a gel phase

Abstract

PURPOSE:To easily obtain spherical silica glass having uniform particle diameter by passing and dispersing sol obtained by hydrolysis of the silicic acid ester soln. of a raw material through a nozzle hole and dispersing it in a dispersion medium, separating and burning the produced gel. CONSTITUTION:Silicic acid ester such as methyl silicate and ethyl silicate is hydrolyzed by mixing and agitating this silicic acid ester, water and a catalyst e.g. such as aqueous ammonia. In the mixing ratio in this case, water is regulated to about 4-10 moles for 1 mole silicic acid ester. Further when aqueous ammonia is utilized for the catalyst, it is regulated to about 1X10<-4>-1X10<-3> mole for 1 mole silicic acid ester. In the case of dispersing sol obtained by hydrolysis into a dispersion medium such as butanol, this sol is passed and dispensed through a nozzle hole. After the obtained gel is sufficiently washed by the dispersion medium and dried, it is burned in the air e.g. at 1700 deg.C. Thereby spherical silica glass having uniform particle diameter is easily obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、例えば半導体素子用封止材の充填材(フィラ
)等として使用される球状シリカガラスの製造方法に関
する。更に詳しくはゾル−ゲル法による球状シリカガラ
スの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for manufacturing spherical silica glass used as a filler for, for example, a sealing material for semiconductor elements. More specifically, the present invention relates to a method for producing spherical silica glass using a sol-gel method.

(従来の技術) 現在、半導体素子用封止材のフィラには、電気絶縁性、
低熱膨脹率、高熱伝導度、高強度および低誘電率等の材
料特性を有するシリカガラス粉末が用いられている。
(Prior art) Currently, fillers for semiconductor device encapsulants have electrical insulating properties,
Silica glass powder is used which has material properties such as low coefficient of thermal expansion, high thermal conductivity, high strength and low dielectric constant.

また、最近半導体素子のメモリ容量の増加に伴い、フィ
ラには前記特性の他に、Mリードフレームを腐食させる
可溶性不純物やメモリのソフトエラーを引き起こすα線
放射不純物が少なく高純度であること、またリードフレ
ームの損傷防止およびフィラの充填率を高めることε、
封止材の流動性即ち成形性を向上させるために、形状が
球状であってかつ粒度分布の広いシリカガラスが要求さ
れている。
Additionally, with the recent increase in the memory capacity of semiconductor devices, in addition to the above properties, the filler also needs to be highly pure and free of soluble impurities that corrode the M lead frame and α-ray emitting impurities that cause memory soft errors. Preventing damage to the lead frame and increasing filler filling rateε,
In order to improve the fluidity, that is, the moldability, of the sealant, silica glass is required to have a spherical shape and a wide particle size distribution.

従来、この種の球状シリカガラスの製造方法としては、
天然の珪石および水晶を粉砕し、これを再溶融して球状
化させて球状シリカガラスを製造する方法が知られてい
るが、シリカガラスの高純度化の要求に伴って、これに
代え5IG14を0□−H2炎中で加水分解してガラス
粉体を作成し、これを温度1800〜2000℃で焼結
、粉砕し、再び02− H2炎中で加熱球状化させて球
状シリカガラスを製造する所謂気相法が採用されてきた
Conventionally, the manufacturing method for this type of spherical silica glass is as follows:
There is a known method of producing spherical silica glass by crushing natural silica stone and crystal, and remelting and spheroidizing it. Hydrolyze in a 0□-H2 flame to create glass powder, sinter and crush it at a temperature of 1800 to 2000°C, and heat it again in a 02-H2 flame to make it spherical to produce spherical silica glass. The so-called gas phase method has been adopted.

しかしながら、この気相法は、5ICJ!、の加水分解
、焼結、粉末の再溶融を温度1800〜2000℃の0
.− H2炎中で行うため、多量の熱エネルギーを必要
とするため、エネルギー費の製造コスト中に占める割合
が著しく高くなって製品価格は高価であるという問題が
ある。
However, this vapor phase method is 5ICJ! , hydrolysis, sintering, and remelting of the powder at a temperature of 1800-2000℃.
.. - Since the process is carried out in an H2 flame, a large amount of thermal energy is required, so there is a problem in that the proportion of energy costs in the manufacturing cost is extremely high, making the product expensive.

そこで前記問題点がないものとして特開昭58−178
1H号公報に開示されているように珪酸エステノン、水
、アルコールの混合溶液を、これらと実質的に相溶性が
ない液体に分散、懸濁させて粉粒状のゲルを生成させ、
得られた粉粒状ゲルを分離し焼成させて球状シリカガラ
スを形成させる所謂ゾル−ゲル法が注目されている。
Therefore, assuming that the above-mentioned problems do not exist, JP-A-58-178
As disclosed in Publication No. 1H, a mixed solution of esterone silicate, water, and alcohol is dispersed and suspended in a liquid that is substantially incompatible with these to form a powdery gel,
The so-called sol-gel method, in which the resulting powdery gel is separated and fired to form spherical silica glass, is attracting attention.

しかしながら、前記ゾル−ゲル法は、珪酸エステル、水
、アルコールの混合溶液を該溶液とは実質的に相溶性が
ない液体を分散させて粉粒状のゲルを得る方法であるが
、得られるゲル粒子の形状は粉砕されて角状になったり
、或いはゲル粒子が互いに凝集したりして球状ゲルが得
られないという問題がある。
However, the sol-gel method is a method of obtaining a powder-like gel by dispersing a mixed solution of silicate ester, water, and alcohol in a liquid that is substantially incompatible with the solution; There is a problem in that the shape of the gel is crushed into angular shapes, or the gel particles aggregate with each other, making it impossible to obtain a spherical gel.

そこで本出願人は、先に特願平1−43940号で、珪
酸エステル原料溶液を加水分解して得られたゾルを分散
媒中で分散させてゲルを生成させ、得られたゲルを分離
、焼成するゾル−ゲル法により球状シリカガラスを製造
する方法において、前記分散媒としてブタノールを用い
て球状シリカガラスを製造する方法を提案した。
Therefore, the present applicant previously proposed in Japanese Patent Application No. 1-43940 that a sol obtained by hydrolyzing a silicate ester raw material solution was dispersed in a dispersion medium to produce a gel, and the resulting gel was separated. In a method of manufacturing spherical silica glass by a sol-gel method involving firing, a method of manufacturing spherical silica glass using butanol as the dispersion medium was proposed.

(発明が解法しようとする課題) しかしながら、前記方法はゾルを分散媒中に投入し該分
散媒を撹拌しながら分散させて球状のゲルを得る方法で
あるため、得られるゲルは球状ゲルの他に不定形のゲル
も生成され、かつ球状ゲルと不定形ゲルの分離が困難で
あり、また生成される粉粒状ゲルの粒径制御が困難なた
め、目的の平均粒径を有する球状シリカガラスが得られ
ないという問題がある。
(Problem to be solved by the invention) However, since the method described above is a method in which a sol is poured into a dispersion medium and dispersed while stirring the dispersion medium to obtain a spherical gel, the resulting gel is not a spherical gel. However, it is difficult to separate the spherical gel from the amorphous gel, and it is also difficult to control the particle size of the powdery gel that is produced. The problem is that you can't get it.

本発明は、前記問題点を解消し、ゲルを破壊や凝集させ
ることなく良好に分散し得、かつ均一な粒径の球状ゲル
の生成が良好なゾル−ゲル法による球状シリカガラスの
製造方法を提供することを目的とする。
The present invention solves the above-mentioned problems and provides a method for manufacturing spherical silica glass using a sol-gel method, which can disperse the gel well without breaking or aggregating it, and can produce a spherical gel with a uniform particle size. The purpose is to provide.

(課題を解決するための手段) 本発明者らは、前記目的を達成すべく鋭意検討の結果、
ゾル−ゲル法において、ゾルを分散媒中に分散させる際
にゲルをノズルを用いて分注させることによって、ゲル
の粒径を均一に制御することが出来ることを知見した。
(Means for Solving the Problems) As a result of intensive studies to achieve the above object, the present inventors found that
In the sol-gel method, it has been found that the particle size of the gel can be uniformly controlled by dispensing the gel using a nozzle when dispersing the sol in a dispersion medium.

本発明は前記知見に基づいてなされたものであって、そ
の球状シリカガラスの製造方法は、珪酸エステル原料溶
液を加水分解して得られたゾルを分散媒中で分散させて
ゲルを生成させ、得られたゲルを分離、焼成するゾル−
ゲル法により球状シリカガラスを製造する方法において
、前記ゾルを分散媒中に分散させる際に該ゾルをノズル
孔を通過分注させることを特徴とする。
The present invention has been made based on the above findings, and the method for producing spherical silica glass comprises: dispersing a sol obtained by hydrolyzing a silicate ester raw material solution in a dispersion medium to generate a gel; A sol that separates and bakes the resulting gel.
The method for producing spherical silica glass by a gel method is characterized in that when the sol is dispersed in a dispersion medium, the sol is dispensed through a nozzle hole.

本発明で用いる珪酸エステルとしては、珪酸メチル、珪
酸エチル、珪酸プロピル等が挙げられる。
Examples of the silicic acid ester used in the present invention include methyl silicate, ethyl silicate, and propyl silicate.

また、珪酸エステルの加水分解は、珪酸エステルと、水
と、例えばアンモニア水等の触媒を混合撹拌して懸濁さ
せればよく、その混合比は珪酸エステル1モルに対して
水4〜10モル程度とし、また触媒にアンモニア水を用
いる場合は珪酸エステル1モルに対してlX10−’〜
1×10−3モル程度とする。
In addition, for hydrolysis of silicate ester, silicate ester, water, and a catalyst such as aqueous ammonia may be mixed and suspended by stirring, and the mixing ratio is 4 to 10 mol of water to 1 mol of silicate ester. If aqueous ammonia is used as a catalyst, lX10-' to 1 mole of silicate ester.
The amount is approximately 1×10 −3 mol.

また、分散媒としては、ブタノール、ヘキサノール等が
挙げられる。そして分散媒量は一般には珪酸エステル原
料溶液の1〜3倍容量程度とする。
Further, examples of the dispersion medium include butanol, hexanol, and the like. The amount of dispersion medium is generally about 1 to 3 times the volume of the silicate ester raw material solution.

(実施例) 次に本発明方法の実施例について説明する。(Example) Next, examples of the method of the present invention will be described.

第1図および第2図は本発明方法を実施するために用い
るノズルの1実施例を示すものであり、図中、1はノズ
ルを示す。該ノズル1は内径80關程度の円筒状の本体
2と、該本体2の下方に着脱自在に内挿された径0.5
〜4 inφ程度のノズル孔3が孔間隔Aが孔径の1〜
20倍程度で複数穿設されたノズル板4と、本体2の上
方に着脱自在に被嵌されたM5と、本体2の側壁に本体
2内に調節弁6を介して圧縮空気を供給する供給管7と
から成り、本体2内にゾルSを充填し、空気圧0,5〜
2 kg / c−程度の圧縮空気を供給管7より本体
2内に供給してノズル孔3よりゲルSを分散媒中に分注
するようにした。
FIGS. 1 and 2 show one embodiment of a nozzle used to carry out the method of the present invention, and in the figures, 1 indicates a nozzle. The nozzle 1 has a cylindrical main body 2 with an inner diameter of about 80 mm, and a diameter of 0.5 mm inserted removably below the main body 2.
The nozzle hole 3 is about 4 inφ, and the hole interval A is 1 to 4 in.
A nozzle plate 4 with a plurality of holes drilled at a size of about 20 times, an M5 removably fitted above the main body 2, and a supply device that supplies compressed air into the main body 2 via a control valve 6 on the side wall of the main body 2. The main body 2 is filled with sol S, and the air pressure is 0.5~
Compressed air of about 2 kg/c was supplied into the main body 2 through the supply pipe 7, and the gel S was dispensed into the dispersion medium through the nozzle hole 3.

前記ノズルを用いて球状シリカガラスの製造方法の具体
的な実施例を比較例ε共に説明する。
A specific example of a method for manufacturing spherical silica glass using the above nozzle will be described together with a comparative example ε.

実施例1 まず、500ccビーカー中に蒸留精製した珪酸メチル
1モルに対して蒸留水5モル、純度99゜5%のアンモ
ニア水5×IQ−’モルとなるように夫夫加え、マグネ
チックスターラにより温度25℃で、3分間激しく撹拌
し、約250ccの粘度が0.5ポイズ(東京計器製置
型粘度計)のゾルを調整した。
Example 1 First, 5 moles of distilled water and 5×IQ-' moles of ammonia water with a purity of 99.5% were added to 1 mole of distilled methyl silicate in a 500 cc beaker, and the mixture was stirred using a magnetic stirrer. The mixture was vigorously stirred for 3 minutes at a temperature of 25° C. to prepare about 250 cc of sol with a viscosity of 0.5 poise (Tokyo Keiki stationary viscometer).

次に径3關φのノズル孔3を32個(孔間隔Aが2.5
倍)穿設したノズル板4を備えるノズル1の本体2内に
前記ゾル250ccを充填した後、該ゾルを空気圧1 
kg / cdでノズル孔3より別個に用意した100
0ccビーカー中に前記ゾル量に対して容積比で2倍容
量のブタノール分散媒中に分注し、マグネチックスター
ラによって温度25℃で、回転数3000rpmで、6
0分間激しく撹拌して、ゲルを生成させた。
Next, 32 nozzle holes 3 with a diameter of 3 mm (hole spacing A of 2.5
After filling 250 cc of the sol into the main body 2 of the nozzle 1 equipped with the nozzle plate 4, the sol is
100 kg/cd prepared separately from nozzle hole 3
Dispense into a butanol dispersion medium with a volume ratio twice that of the above sol amount into a 0cc beaker, and stir with a magnetic stirrer at a temperature of 25°C and a rotation speed of 3000 rpm.
Stir vigorously for 0 minutes to form a gel.

撹拌終了後直ちに静置させて生成されたゲルの平均粒度
および粒度(0゜1〜200 jIll)分布をill
定したところ、平均粒径は35,0μmであり、また粒
度分布nは1.97であった。また、生成されたゲルを
光学顕微鏡で観察(倍率50倍)し、その観察結果を第
4図に示す。
Immediately after stirring, the gel was allowed to stand still, and the average particle size and particle size (0°1 to 200 jIll) distribution were measured.
As a result, the average particle diameter was 35.0 μm, and the particle size distribution n was 1.97. Further, the produced gel was observed with an optical microscope (magnification: 50 times), and the observation results are shown in FIG.

また、ゲルの平均粒度および粒度分布の測定はレーザ回
折式粒度分布測定器1.、A−500(堀場製作所製)
を用いて行った。
In addition, the average particle size and particle size distribution of the gel can be measured using a laser diffraction particle size distribution analyzer. , A-500 (manufactured by Horiba)
This was done using

尚、粒度分布n(分布の広さを示す定数)は篩上累積%
をRとするRosln−Ramler式rR=exp 
 (Uり/D36.8) ” Jより次式によって求め
た。
In addition, the particle size distribution n (a constant indicating the width of the distribution) is the cumulative % on the sieve.
Rosln-Ramler formula where R is rR=exp
(Uri/D36.8) "J was determined by the following formula.

n =IHJn R/71 (’D’l) /D36.
8)式中、Rは篩上累積%、expは自然対数の底、T
f r) ハR% (7) (!:8 (り粒径、D 
36. gハRカ3[1,8%のときの粒径を表す。従
ってnの値が小さい程粒度分布が広く、nの値が大きい
程粒度分布が狭いことを示す。
n =IHJn R/71 ('D'l) /D36.
8) In the formula, R is the cumulative % on the sieve, exp is the base of the natural logarithm, and T
f r) HaR% (7) (!:8 (ri particle size, D
36. g represents the particle size when R power is 1.8%. Therefore, the smaller the value of n, the wider the particle size distribution, and the larger the value of n, the narrower the particle size distribution.

次いで生成されたゲル分散液をデカンテーションによっ
てゲルと濾液に分離した後、ゲルを純度95%のブタノ
ール500ccで2回、次いで蒸留水300ccで1回
洗浄後、温度40℃、湿度95%雰囲気の恒温恒湿器内
で24時間乾燥した。
Next, the generated gel dispersion was separated into gel and filtrate by decantation, and the gel was washed twice with 500 cc of 95% pure butanol and once with 300 cc of distilled water, and then washed in an atmosphere at a temperature of 40°C and a humidity of 95%. It was dried in a constant temperature and humidity chamber for 24 hours.

乾燥後の粒状ゲルを電気炉内で昇温速度lOO℃/1時
間で温度800℃まで昇温し、該温度で2時間焼成した
後、温度1700℃の空気中で浮遊状態で更に焼成して
球状シリカガラスを得た。
The dried granular gel was heated in an electric furnace to a temperature of 800°C at a heating rate of 100°C/1 hour, fired at this temperature for 2 hours, and then further fired in a suspended state in air at a temperature of 1700°C. Spherical silica glass was obtained.

比較例1 ノズルを用いることなく直接にゾルを分散媒中に分散さ
せた以外は前記実施例1と同様の方法で球状シリカガラ
スを作成した。
Comparative Example 1 Spherical silica glass was produced in the same manner as in Example 1 except that the sol was directly dispersed in the dispersion medium without using a nozzle.

また、前記実施例1と同様にして、撹拌後直ちに静置さ
せて生成されたゲルの平均粒度および粒度分布を測定し
たところ、平均粒径は37.9pmであり、また粒度分
布nは1.74であった。また、生成されたゲルを光学
顕微鏡で観察(倍率50倍)し、その観察結果を第5図
に示す。
Further, in the same manner as in Example 1, the average particle size and particle size distribution of the gel produced by allowing it to stand immediately after stirring were measured, and the average particle size was 37.9 pm, and the particle size distribution n was 1. It was 74. Further, the produced gel was observed with an optical microscope (magnification: 50 times), and the observation results are shown in FIG.

第4図および第5図から明らかなように本発明の実施例
1の方法は、ゲルが粒径2〜200μm程度の球状粒子
として単分散していた。これに対してゾルをノズルを用
いるこさなく直接分散媒中に分散させる比較例1の方法
は、ゲルの分散は良好であるが、球状ゲルの中に不定形
の繊維状ゲルが生成していた。この繊維状ゲルはゾルが
撹拌によって細分化される途中で分散媒の流れによ−)
て引き伸ばされた繊維状態にゲル化されたためであると
考えられる。
As is clear from FIGS. 4 and 5, in the method of Example 1 of the present invention, the gel was monodispersed as spherical particles with a particle size of about 2 to 200 μm. On the other hand, in the method of Comparative Example 1, in which the sol was directly dispersed into the dispersion medium without using a nozzle, the gel was well dispersed, but irregularly shaped fibrous gel was formed within the spherical gel. . This fibrous gel is formed by the flow of the dispersion medium while the sol is being fragmented by stirring.)
This is thought to be because the fibers were stretched and gelled.

実施例2 実施例1のノズルに代えて第3図示のような噴霧ノズル
を用い、またノズルに供給する空気圧を3 kg / 
dとした以外は前記実施例1と同様の方性で球状シリカ
ガラスを作成した。
Example 2 A spray nozzle as shown in the third figure was used instead of the nozzle of Example 1, and the air pressure supplied to the nozzle was 3 kg/
A spherical silica glass was prepared in the same manner as in Example 1, except for the difference in direction d.

また、前記実施例1と同様にして、撹拌後直ちに静置さ
せて生成されたゲルの平均粒度および粒度分布を測定し
たところ、平均粒径は15.3μmであり、また粒度分
布nは1.87であった。また、生成されたゲルを光学
顕微鏡で観察したところ粒径1〜50IIm程度の球状
粒子として単分散していた。
Further, in the same manner as in Example 1, the average particle size and particle size distribution of the gel produced by allowing it to stand immediately after stirring were measured, and the average particle size was 15.3 μm, and the particle size distribution n was 1. It was 87. Further, when the produced gel was observed with an optical microscope, it was found to be monodispersed as spherical particles with a particle size of about 1 to 50 II m.

このようにゾルを分散媒中に分散させる際、用いるノズ
ルを噴霧ノズルとすれば得られるゲルの平均粒径を小さ
くすることが出来る。
When dispersing the sol in a dispersion medium in this way, if the nozzle used is a spray nozzle, the average particle size of the resulting gel can be reduced.

本実施例で用いた第3図示の噴霧ノズルについて説明す
る。
The spray nozzle shown in the third figure used in this example will be explained.

噴霧ノズル11は先端に径1〜3關φ程度の孔12が穿
設されたゾルノズル13と、該ゾルノズルt3の外方を
囲繞する空気ノズル14と、空気ノズル14に圧縮空気
を供給する供給管15とから成り、空気圧1〜5 kg
 / cd程度の圧縮空気を空気ノズル14に供給管1
5より供給し、空気ノズル14からの圧縮空気の噴射エ
ネルギーでゾルSを霧化し、噴霧ノズル11の先端から
噴霧するようにした。
The spray nozzle 11 includes a sol nozzle 13 having a hole 12 with a diameter of about 1 to 3 φ bored at its tip, an air nozzle 14 surrounding the outside of the sol nozzle t3, and a supply pipe that supplies compressed air to the air nozzle 14. 15, air pressure 1-5 kg
/ CD compressed air is supplied to the air nozzle 14 through the pipe 1
5, the sol S was atomized by the jet energy of compressed air from the air nozzle 14, and was sprayed from the tip of the spray nozzle 11.

実施例3.4.5.6 珪酸メチル1モルに対する水の添加量を4モル、6モル
、7.5モル、10モルとした以外は前記実施例1と同
様の方法で球状シリカガラスを作成した。
Example 3.4.5.6 Spherical silica glass was produced in the same manner as in Example 1 except that the amount of water added to 1 mole of methyl silicate was 4 mol, 6 mol, 7.5 mol, and 10 mol. did.

また、前記実施例1と同様にして、撹拌後直ちに静置さ
せて生成されたゲルの平均粒度および粒度分布を測定し
た。その結果を実施例1の結果と共に表1に示す。
In addition, in the same manner as in Example 1, the average particle size and particle size distribution of the gel produced by allowing it to stand immediately after stirring were measured. The results are shown in Table 1 together with the results of Example 1.

比較例2.3 珪酸メチル1モルに対する水の添加量を3モル、15モ
ルとした以外は前記実施例1と同様の方法で球状シリカ
ガラスを作成した。
Comparative Example 2.3 Spherical silica glass was prepared in the same manner as in Example 1 except that the amount of water added was 3 mol and 15 mol per mol of methyl silicate.

また、前記実施例1と同様にして、撹拌後直ちに静置さ
せ−C生成されたゲルの平均粒度および粒度分布を測定
した。その結果を表1に示す。
In addition, in the same manner as in Example 1, the average particle size and particle size distribution of the -C-generated gel was measured by allowing it to stand immediately after stirring. The results are shown in Table 1.

表1から明らかなように、珪酸メチル1モルに対する水
の添加量を4〜10モルとした実施例3〜6の方法は分
散媒中に球状のゲルを分散させることが出来た。また、
珪酸メチル1モルに対する水の添加量を4モルから10
モルに増加させても得られるゲルの平均粒径はほぼ一定
である傾向を示し、また、水の添加量を増加させるした
がって粒度の分布定数は小さくなる即ち粒度分布は広く
なる傾向を示すことが分かった。
As is clear from Table 1, the methods of Examples 3 to 6, in which the amount of water added to 1 mole of methyl silicate was 4 to 10 moles, were able to disperse spherical gels in the dispersion medium. Also,
The amount of water added to 1 mole of methyl silicate is from 4 moles to 10 moles.
The average particle size of the gel obtained tends to remain almost constant even when the amount of water is increased by molar, and as the amount of water added increases, the particle size distribution constant decreases, that is, the particle size distribution tends to widen. Do you get it.

これに対して水の添加量を3モルとした比較例2の方法
は反応速度が速くゾルの粘度の増加が急激となってゲル
化が生じて分散媒中に分散させることが出来なかった。
On the other hand, in the method of Comparative Example 2 in which the amount of water added was 3 moles, the reaction rate was fast, and the viscosity of the sol rapidly increased, gelation occurred, and the sol could not be dispersed in the dispersion medium.

また水の添加量を15モルとした比較例3の方法は反応
速度が遅くなってゾルの粘度の増加が緩慢で粒子が破壊
されたゲルしか生成されなかった。
In addition, in the method of Comparative Example 3 in which the amount of water added was 15 mol, the reaction rate was slow, the viscosity of the sol increased slowly, and only a gel with broken particles was produced.

従って、均一な球状ゲルを生成させるのには珪酸メチル
に添加する水の添加量は珪酸メチル1モルに対して水4
〜10モル程度とすればよい。
Therefore, in order to produce a uniform spherical gel, the amount of water added to methyl silicate is 4 mols of water per 1 mole of methyl silicate.
The amount may be about 10 moles.

実施例7.8.9 珪酸メチル1モルに対するアンモニア水の添加量を2 
X 10−’モル、3 X 1(1−’モ/Iz、3X
1(1−’モルとした以外は前記実施例1と同様の方法
で球状シリカガラスを作成した。
Example 7.8.9 The amount of ammonia water added per 1 mole of methyl silicate was 2
X 10-'mol, 3X 1(1-'mol/Iz, 3X
A spherical silica glass was prepared in the same manner as in Example 1 except that the amount was 1 (1-' mol).

また、前記実施例1と同様にして、撹拌後直ちに静置さ
せて生成されたゲルの平均粒度および粒度分布を測定し
た。その結果を実施例1の結果と共に表2に示す。
In addition, in the same manner as in Example 1, the average particle size and particle size distribution of the gel produced by allowing it to stand immediately after stirring were measured. The results are shown in Table 2 together with the results of Example 1.

比較例4.5 珪酸メチル1モルに対するアンモニア水の添加量を5 
X 10−’モル、3 X 10−3モルとした以外は
前記実施例1と同様の方法で球状シリヵガラスを作成し
た。
Comparative Example 4.5 The amount of ammonia water added to 1 mole of methyl silicate was 5
Spherical silica glass was prepared in the same manner as in Example 1 except that the amounts were X 10-' mol and 3 X 10-3 mol.

また、前記実施例1と同様にして、撹拌後直ちに静置さ
せて生成されたゲルの平均粒度および粒度分布を測定し
た。その結果を表2に示す。
In addition, in the same manner as in Example 1, the average particle size and particle size distribution of the gel produced by allowing it to stand immediately after stirring were measured. The results are shown in Table 2.

表2から明らかなように、珪酸メチル1モルに対するア
ンモニア水の添加量をIX]、0−’〜lX1O−’モ
ルとした実施例7〜9の方法は分散媒中に球状のゲルを
分散させることが出来た。
As is clear from Table 2, the methods of Examples 7 to 9, in which the amount of ammonia water added per mole of methyl silicate was IX], 0-' to lX1O-' mole, dispersed spherical gel in the dispersion medium I was able to do it.

また、珪酸メチル1モルに対するアンモニア水の添加量
をlXl0−’モルからlXl0−3モルに増加させる
にしたがって得られるゲルの平均粒径は大きくなる傾向
を示し、また、粒度の分布定数は小さくなる即ち粒度分
布は広くなる傾向を示すことが分かった。
Furthermore, as the amount of ammonia water added per mole of methyl silicate increases from lXl0-' mole to lXl0-3 mole, the average particle size of the gel obtained tends to increase, and the particle size distribution constant decreases. That is, it was found that the particle size distribution tended to become broader.

これに対してアンモニア水の添加量を 5X1.0−’モルとした比較例4の方法は反応速度が
速くゲルは分散せずに凝集状態であった。またアンモニ
ア水の添加量をIXIQ−3モルとした比較例5の方法
は反応速度は遅く粒子が破壊されたゲルしか生成されな
かった。
On the other hand, in the method of Comparative Example 4 in which the amount of ammonia water added was 5×1.0-' moles, the reaction rate was fast and the gel was not dispersed but in an aggregated state. Further, in the method of Comparative Example 5 in which the amount of ammonia water added was IXIQ-3 moles, the reaction rate was slow and only a gel with broken particles was produced.

従って、均一な球状ゲルを生成させるのには珪酸メチル
に添加するアンモニア水の添加量は珪酸メチル1モルに
対してアンモニア水1×10−4〜I X 10−3モ
ル程度とすればよい。
Therefore, in order to produce a uniform spherical gel, the amount of ammonia water added to methyl silicate may be about 1 x 10-4 to I x 10-3 mol per 1 mol of methyl silicate.

実施例l0511S12、i3.14 珪酸メチルに水と、アンモニア水を添加して得られるゾ
ルの粘度を1.0ボイズ、3.2ボイズ、5.7ポ・r
ズ、9,0ボイズ、10.0ボイズとした以外は前記実
施例1と同様の方法で球状シリカガラスを作成した。
Example 10511S12, i3.14 The viscosity of the sol obtained by adding water and aqueous ammonia to methyl silicate was 1.0 voids, 3.2 voids, and 5.7 po.r.
A spherical silica glass was prepared in the same manner as in Example 1 except that the pores were sized, 9.0 voids, and 10.0 voids.

また、前記実施例1と同様にして、撹拌後直ちに静置さ
せて生成されたゲルの平均粒度および粒度分布を測定し
た。その結果を実施例1の結果と共に表3に示す。
In addition, in the same manner as in Example 1, the average particle size and particle size distribution of the gel produced by allowing it to stand immediately after stirring were measured. The results are shown in Table 3 together with the results of Example 1.

比較例6 珪酸メチルに水と、アンモニア水を添加し7て得られる
ゾルの粘度を20ボイズとした以外は前記実施例1と同
様の方法で球状シリカガラスを作成した。
Comparative Example 6 A spherical silica glass was prepared in the same manner as in Example 1 except that the viscosity of the sol obtained by adding water and aqueous ammonia to methyl silicate was set to 20 voids.

また、前記実施eAi iと同様にして、撹拌後直ちに
静置させて生成されたゲルの平均粒度および粒度分布を
測定した。その結果を表3に示す。
In addition, in the same manner as in Example eAi i, the average particle size and particle size distribution of the gel produced by allowing it to stand immediately after stirring were measured. The results are shown in Table 3.

表3から明らかなように、珪酸メチルに水と、アンモニ
ア水を添加して得られたゾルの粘度をC1,5〜10.
0ボイズとした実施例10〜14の方法は分散媒中に球
状のゲルを分散させることが出来た。また、珪酸メチル
に水と、アンモニア水を添加して得られたゾルの粘度が
0,5ボイズから10.0ボイズに増加するにしたがっ
て得られるゲルの平均粒径は大きくなる傾向を示し、ま
た、該ゾルの粘度が増加しても粒度の分布定数はほとん
ど変わらない傾向を示すことが会かった。
As is clear from Table 3, the viscosity of the sol obtained by adding water and aqueous ammonia to methyl silicate was C1.5 to C10.
The methods of Examples 10 to 14 with zero voids were able to disperse spherical gels in the dispersion medium. Furthermore, as the viscosity of the sol obtained by adding water and aqueous ammonia to methyl silicate increases from 0.5 to 10.0, the average particle size of the gel obtained tends to increase. It was found that even if the viscosity of the sol increases, the particle size distribution constant tends to remain almost unchanged.

これに対して珪酸メチルに水と、アンモニア水を添加し
て得られたゾルの粘度を20ボイズとした比較例6の方
法はゾルを分散媒中に分散させる前にゲル化し、ゲルは
数百n〜数關の塊状であった。
On the other hand, in the method of Comparative Example 6 in which the viscosity of the sol obtained by adding water and aqueous ammonia to methyl silicate was 20 voids, the sol was gelled before being dispersed in the dispersion medium, and the gel was several hundred It was in the form of n~several chunks.

従って、均一な球状ゲルを生成させるのには珪酸メチル
に水と、アンモニア水を添加して得られるゾルの粘度は
0.5〜10.0ボイズ程度とすればよい。
Therefore, in order to produce a uniform spherical gel, the viscosity of the sol obtained by adding water and aqueous ammonia to methyl silicate should be about 0.5 to 10.0 voids.

実施例15.16.17、上8 ノズル板4のノズル孔3径を0.5111劉φ(孔間隔
Aが20倍)、孔径を1市道φ(孔間隔Aが10倍)、
孔径を2關φ(孔間隔Aが4倍)、孔径を4 mmφ(
孔間隔Aが1.5倍)としたノズル1を用いた以外は前
記実施例1と同様の方法で球状シリカガラスを作成した
Example 15.16.17, Top 8 The diameter of the nozzle hole 3 of the nozzle plate 4 is 0.5111 Liuφ (hole spacing A is 20 times), the hole diameter is 1 Shidoφ (hole spacing A is 10 times),
The hole diameter is 2 mmφ (hole spacing A is 4 times), and the hole diameter is 4 mmφ (
A spherical silica glass was produced in the same manner as in Example 1, except that nozzle 1 was used with the hole spacing A being 1.5 times larger.

また、前記実施例1と同様にして、撹拌後直ちに静置さ
せて生成されたゲルの平均粒度および粒度分布を測定し
た。その結果を実施例1の結果と共に表4に示す。
In addition, in the same manner as in Example 1, the average particle size and particle size distribution of the gel produced by allowing it to stand immediately after stirring were measured. The results are shown in Table 4 together with the results of Example 1.

比較例7 ノズル板4の孔3径を511!lφ(孔間隔Aが1倍)
としたノズル1を用いた以外は前記実施例1と同様の方
法でで球状シリカガラスを作成した。
Comparative Example 7 The diameter of the hole 3 of the nozzle plate 4 is 511! lφ (hole spacing A is 1x)
A spherical silica glass was produced in the same manner as in Example 1 except that the nozzle 1 was used.

また、前記実施例1と同様にして、撹拌後直ちに静置さ
せて生成されたゲルの平均粒度および粒度分布を測定し
た。その結果を表4に示す。
In addition, in the same manner as in Example 1, the average particle size and particle size distribution of the gel produced by allowing it to stand immediately after stirring were measured. The results are shown in Table 4.

表4から明らかなように、ノズル板4のノズル孔3径を
0.5m+mφ〜4 mmφとしたノズル1を用いた実
施例15〜18の方法は分散媒中に球状のゲルを分散さ
せることが出来た。
As is clear from Table 4, the methods of Examples 15 to 18 using the nozzle 1 in which the diameter of the nozzle hole 3 of the nozzle plate 4 is 0.5 m + mφ to 4 mmφ are capable of dispersing spherical gel in the dispersion medium. done.

これに対してノズル板4のノズル孔3径を4關φとした
ノズル1を用いた比較例7の方法はゲルの分散は良好で
あるが、球状ゲルの中に不定形の繊維状のゲルが生成し
ていた。
On the other hand, in the method of Comparative Example 7 using the nozzle 1 in which the nozzle hole 3 diameter of the nozzle plate 4 was 4 mm, gel dispersion was good, but irregularly shaped fibrous gel was found in the spherical gel. was being generated.

従って、均一な球状ゲルを生成させるのにはノズル板4
のノズル孔3径は0.5〜4關φ程度とし、また、孔間
隔Aは孔径の1.5〜20倍程度とすればよい。
Therefore, in order to generate uniform spherical gel, it is necessary to use the nozzle plate 4.
The diameter of the nozzle holes 3 may be approximately 0.5 to 4 mm, and the hole interval A may be approximately 1.5 to 20 times the hole diameter.

実施例19.29.21.22 ゾルを分散媒中に分散させマグネチックスターラで撹拌
する際の回転数を290Orpm 、 3300rpm
  (いずれも撹拌時間は80分間)、或いは撹拌時間
を10分間、180分間(いずれも撹拌回転数は300
0rpm )とした以外は前記実施例1と同様の方法で
球状シリカガラスを作成した。
Example 19.29.21.22 The rotation speed when dispersing the sol in a dispersion medium and stirring it with a magnetic stirrer was 290 Orpm and 3300 rpm.
(In both cases, the stirring time is 80 minutes), or the stirring time is 10 minutes or 180 minutes (in both cases, the stirring speed is 300 minutes).
Spherical silica glass was produced in the same manner as in Example 1 except that the rotation speed was 0 rpm).

また、前記実施例1と同様にして、撹拌後直ちに静置さ
せて生成されたゲルの平均粒度および粒度分布を測定し
た。その結果を実施例1の結果と共に表5に示す。
In addition, in the same manner as in Example 1, the average particle size and particle size distribution of the gel produced by allowing it to stand immediately after stirring were measured. The results are shown in Table 5 together with the results of Example 1.

表5から明らかなように、マグネチックスターラで撹拌
する際の回転数を2900rp−〜3300rpHlと
した実施例18〜2tの方法は分散媒中に球状のゲルを
分散させることが出来た。
As is clear from Table 5, the methods of Examples 18 to 2t, in which the rotational speed during stirring with a magnetic stirrer was 2900 rpm to 3300 rpm, were able to disperse spherical gels in the dispersion medium.

ただし、撹拌時間は長くなるにしたがって撹拌は過度状
態となってゲルは破壊され易くなるので該撹拌時間は6
0分までが好ましい。
However, as the stirring time becomes longer, the stirring becomes excessive and the gel is more likely to be destroyed.
Preferably up to 0 minutes.

実施例23 ゾルを分散媒中に分散させマグネチックスターラで撹拌
する際、まず超音波洗浄器(商品名Bl?ANSONI
200 、ヤマト科学株式会社製)を用い周波数45K
Hzで10分間撹拌した後、マグネチックスターラを用
い回転数3000rpmで50分間撹拌した以外は前記
実施例1と同様の方法で球状シリカガラスを作成した。
Example 23 When dispersing the sol in a dispersion medium and stirring it with a magnetic stirrer, first
200, manufactured by Yamato Scientific Co., Ltd.) at a frequency of 45K.
After stirring at Hz for 10 minutes, spherical silica glass was produced in the same manner as in Example 1 except that the mixture was stirred for 50 minutes at a rotational speed of 3000 rpm using a magnetic stirrer.

また、前記実施例1と同様にして、撹拌後任−ちに静置
させて生成されたゲルの平均粒度および粒度分布を測定
したところ平均粒度は24.3gInであり、また粒度
分布nは2.06であった。
Further, in the same manner as in Example 1, the average particle size and particle size distribution of the gel produced by stirring and then standing were measured, and the average particle size was 24.3 gIn, and the particle size distribution n was 2. It was 06.

実施例24 ゾルを分散媒中に分散させマグネチックスターラで撹拌
する際、まずミキサー(商品名MX−915C、松下電
器産業株式会社製)を用い回転数5000rpa+で1
0分間撹拌した後、マグネチックスターラを用い回転数
300Orpmで50分間撹拌した以外は前記実施例1
と同様の方法で球状シリカガラスを作成した。
Example 24 When dispersing the sol in a dispersion medium and stirring it with a magnetic stirrer, first use a mixer (trade name MX-915C, manufactured by Matsushita Electric Industrial Co., Ltd.) at a rotation speed of 5000 rpm + 1.
Example 1 except that after stirring for 0 minutes, stirring was performed for 50 minutes at a rotation speed of 300 rpm using a magnetic stirrer.
Spherical silica glass was prepared in the same manner as above.

また、前記実施例1と同様にして、撹拌後直ちに静置さ
せて生成されたゲルの平均粒度および粒度分布を測定し
たところ平均粒度は18.511mであり、また粒度分
布nは2.19であった。
Further, in the same manner as in Example 1, the average particle size and particle size distribution of the gel produced by allowing it to stand immediately after stirring were measured, and the average particle size was 18.511 m, and the particle size distribution n was 2.19. there were.

前記実施例23および24の方法のようにゾルを分散媒
中に分散させ撹拌する際、異なった撹拌方法を併用する
場合は、得られるゲルの平均粒度を小さくすることが出
来る。
When different stirring methods are used in combination when dispersing the sol in a dispersion medium and stirring it as in the methods of Examples 23 and 24, the average particle size of the resulting gel can be reduced.

(発明の効果) このように本発明の球状シリカガラスの製造方法によれ
ば、ゾルを分散媒中に分注させる際に該ゾルをノズル孔
を通過させて分注させるようにしたので、生成されたゲ
ルが凝集したり或いは破壊されることなく分散媒中に分
散し、かつ不定形のゲルが混在することなく所望の粒度
のゲルを均一に製造することが出来、均一な粒径の球状
シリカガラスを容易に製造出来る等の効果を有する。
(Effects of the Invention) As described above, according to the method for producing spherical silica glass of the present invention, when dispensing the sol into the dispersion medium, the sol is passed through the nozzle hole. The resulting gel is dispersed in the dispersion medium without agglomerating or being destroyed, and gels with the desired particle size can be produced uniformly without the presence of irregularly shaped gels. It has effects such as being able to easily manufacture silica glass.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明方法に用いるノズルの1実
施例であり、第1図はその裁断面図、第2図はノズル板
の平面図、第3図は本発明方法に用いるノズルの他の実
施例の裁断面図、第特 許 出 願 人 日 本 無 機 株 式
1 and 2 show one embodiment of a nozzle used in the method of the present invention, FIG. 1 is a cutaway view thereof, FIG. 2 is a plan view of a nozzle plate, and FIG. 3 is a nozzle used in the method of the present invention. Cutting section view of another embodiment of , No. 1 patent applicant Nippon Inuki Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims]  珪酸エステル原料溶液を加水分解して得られたゾルを
分散媒中で分散させてゲルを生成させ、得られたゲルを
分離、焼成するゾル−ゲル法により球状シリカガラスを
製造する方法において、前記ゾルを分散媒中に分散させ
る際に該ゾルをノズル孔を通過分注させることを特徴と
する球状シリカガラスの製造方法。
In the method for producing spherical silica glass by the sol-gel method, the sol obtained by hydrolyzing a silicate ester raw material solution is dispersed in a dispersion medium to form a gel, and the resulting gel is separated and fired. A method for producing spherical silica glass, which comprises dispensing the sol through a nozzle hole when dispersing the sol in a dispersion medium.
JP19155689A 1989-07-26 1989-07-26 Production of spherical silica glass Granted JPH0360421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19155689A JPH0360421A (en) 1989-07-26 1989-07-26 Production of spherical silica glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19155689A JPH0360421A (en) 1989-07-26 1989-07-26 Production of spherical silica glass

Publications (2)

Publication Number Publication Date
JPH0360421A true JPH0360421A (en) 1991-03-15
JPH057331B2 JPH057331B2 (en) 1993-01-28

Family

ID=16276640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19155689A Granted JPH0360421A (en) 1989-07-26 1989-07-26 Production of spherical silica glass

Country Status (1)

Country Link
JP (1) JPH0360421A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6021565B2 (en) 2012-09-28 2016-11-09 ユニ・チャーム株式会社 Absorbent articles

Also Published As

Publication number Publication date
JPH057331B2 (en) 1993-01-28

Similar Documents

Publication Publication Date Title
JPH054326B2 (en)
CN105980333B (en) The manufacturing method of forsterite particle
JPH0360421A (en) Production of spherical silica glass
KR960003236B1 (en) Method for preparing silica gel particles
JPH08157210A (en) Production of lithium oxide particles
CN108911520A (en) A kind of production method of silicon nitride coating
JP2001097712A (en) Method for producing minute and globular silica
CN115784243A (en) Preparation method for constructing monodisperse hollow-structure silicon oxide microsphere material by using salt as template
CN100365170C (en) SnO2 monodisperse nano monocrystal with square structure and synthesis method thereof
JP2721390B2 (en) Method for producing silica
JP4380011B2 (en) Method for producing spherical silica
CN113666380A (en) Preparation method of spherical silicon dioxide
JPH0519494B2 (en)
JP2903242B2 (en) Method for producing powdery spherical silica glass
KR20080063007A (en) A silica nano paticle and method for manufacturing thereof
KR100497520B1 (en) Method to product silica powder having huge particle, high purity and globular shape
CN109369219A (en) A kind of nano-powder doping low-temperature glaze formula and preparation method thereof
JPS62226821A (en) Production of glass
JP4286549B2 (en) Method for manufacturing mullite whiskers
JPH02145442A (en) Production of glass
JPS6086035A (en) Production of quartz glass
JPH0351644B2 (en)
CN1587149A (en) Method for synthesizing high pure superfine biological glass powder
JPH02120241A (en) Production of silicophosphate glass
CN117654471A (en) Spherical zinc oxide powder and preparation method thereof

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees