JPH0360263B2 - - Google Patents

Info

Publication number
JPH0360263B2
JPH0360263B2 JP62036203A JP3620387A JPH0360263B2 JP H0360263 B2 JPH0360263 B2 JP H0360263B2 JP 62036203 A JP62036203 A JP 62036203A JP 3620387 A JP3620387 A JP 3620387A JP H0360263 B2 JPH0360263 B2 JP H0360263B2
Authority
JP
Japan
Prior art keywords
cornea
light
tonometer
pressure
eye
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62036203A
Other languages
Japanese (ja)
Other versions
JPS63203131A (en
Inventor
Kazuhiro Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP62036203A priority Critical patent/JPS63203131A/en
Publication of JPS63203131A publication Critical patent/JPS63203131A/en
Priority to US07/577,076 priority patent/US5076274A/en
Publication of JPH0360263B2 publication Critical patent/JPH0360263B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Eye Examination Apparatus (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は眼科医院等で使用される角膜変形を利
用した眼圧計に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a tonometer that utilizes corneal deformation and is used in eye clinics and the like.

〔従来の技術〕[Conventional technology]

従来この種の装置は特公昭54−38437号公報等
に知られるように角膜からの反射光量を検出する
ことにより所定角膜変形を検知(これより眼圧を
求めていた。特に特公昭54−38437号公報に示さ
れる装置は、光軸外から角膜に向けて光束を投影
し光軸外に配置された光電素子で角膜からの反射
光量を検知し角膜を圧平される状態を知るように
している。
Conventionally, this type of device detects a predetermined corneal deformation by detecting the amount of light reflected from the cornea, as known from Japanese Patent Publication No. 54-38437. The device disclosed in the publication projects a beam of light toward the cornea from off the optical axis and detects the amount of light reflected from the cornea using a photoelectric element placed off the optical axis to determine the state of applanation of the cornea. There is.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし従来例にあつては角膜からの反射光量を
検出することにより角膜変形を求めていたため測
定中に光源量が変化する場合に測定誤差を生じ、
これを防止するためには光源の安定性が要求され
ていた。
However, in the conventional method, corneal deformation was determined by detecting the amount of light reflected from the cornea, which caused measurement errors if the amount of light source changed during measurement.
In order to prevent this, stability of the light source was required.

又、被検眼と装置との間の光軸方向距離、いわ
ゆる作動距離を厳密に調整して測定することを余
儀なくされていた。
Furthermore, it has been necessary to strictly adjust and measure the distance in the optical axis direction between the eye to be examined and the device, the so-called working distance.

本発明の目的は上述した従来例の問題点を解消
した新規な眼圧計を提供することになる。
An object of the present invention is to provide a new tonometer that eliminates the problems of the conventional example described above.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決する一手段として例えば本実
施例ではパルス発光して角膜を照射する光源9と
角膜反射光を受光する光電変換素子12と周波数
変位より眼圧値を求めるコントロールボツクス1
6を備え、更には固視用光源14を備える。
As a means for solving the above problems, for example, in this embodiment, a light source 9 emits pulsed light to irradiate the cornea, a photoelectric conversion element 12 that receives corneal reflected light, and a control box 1 that determines the intraocular pressure value from frequency displacement.
6, and further includes a fixation light source 14.

〔作用〕 斯かる構成において光源9はパルス発光して角
膜を照射し、光電変換素子には角膜反射光を受光
してコントロールボツクス16が角膜反射光の周
波数変位より眼圧値を求める。又、眼圧測定前に
は光源9と光電変換素子12を用いて被検眼との
位置合わせ状態を検出し位置合わせが良好であれ
ば固視用光源14の発光状態を変更して被検検者
に眼圧測定が可能な状態である旨表示する。
[Operation] In such a configuration, the light source 9 emits pulse light to illuminate the cornea, the photoelectric conversion element receives the corneal reflected light, and the control box 16 determines the intraocular pressure value from the frequency shift of the corneal reflected light. Furthermore, before measuring intraocular pressure, the light source 9 and the photoelectric conversion element 12 are used to detect the state of alignment with the subject's eye, and if the alignment is good, the light emitting state of the fixation light source 14 is changed and the subject's eye is examined. Indicates to the person that intraocular pressure measurement is possible.

〔実施例〕〔Example〕

第1図は、本発明の実施例を示す図であり、圧
縮空気室1内の空気をソレノイド2で駆動しピス
トン3によつて圧縮し、ノズル4から被検眼Eの
角膜Ecへ吹き付けるようになつている。圧縮空
気室1の被検眼Eに面する部分は、平板状部材5
が配置されノズル4はこの平板状部材5に取り付
けられている。また圧縮空気室1の平板状部材5
に向い合う面には対物レンズ6が取りつけてあ
る。対物レンズ6の後方にはハーフミラー7が、
又その反射方向にはレンズ8、光源9が配置され
ている。また、ハーフミラー7の透過方向には赤
外光を反射し可視光を透過するダイクロイツクミ
ラー10が配置され、その反射方向の光軸上に
は、レンズ11、光電変換素子12が配置されて
いる。またダイクロイツクミラー10の透過方向
には、レンズ13、固視用光源14が配置されて
おり、固視用光源14は被検者の視度に応じてレ
バー15により可動である。16は演算機能を備
えるコントロールボツクス、17は測定スイツチ
である。
FIG. 1 is a diagram showing an embodiment of the present invention, in which air in a compressed air chamber 1 is driven by a solenoid 2, compressed by a piston 3, and blown from a nozzle 4 onto the cornea Ec of the eye E. It's summery. A portion of the compressed air chamber 1 facing the eye E is a flat plate member 5.
is arranged, and the nozzle 4 is attached to this flat member 5. Also, the flat plate member 5 of the compressed air chamber 1
An objective lens 6 is attached to the surface facing the. Behind the objective lens 6 is a half mirror 7.
Further, a lens 8 and a light source 9 are arranged in the direction of reflection. Further, a dichroic mirror 10 that reflects infrared light and transmits visible light is arranged in the transmission direction of the half mirror 7, and a lens 11 and a photoelectric conversion element 12 are arranged on the optical axis in the reflection direction. There is. A lens 13 and a fixation light source 14 are arranged in the transmission direction of the dichroic mirror 10, and the fixation light source 14 is movable by a lever 15 depending on the diopter of the subject. 16 is a control box equipped with a calculation function, and 17 is a measurement switch.

被検者は対物レンズ6から一定距離を保つてノ
ズル4をのぞくと、固視用光源14の点滅が見え
る。鮮明に見にくい場合は、レバー15により自
分の見やすい位置に調整することもできる。光源
9は対物レンズ6の実質的光軸上に設けられる赤
外LED、又は半導体レーザーのような赤外光源
で高周波パルス点灯し、細い光ビームがレンズ8
を通過してハーフミラー7で反射し、対物レンズ
6、ノズル4を通して角膜Ecに投影される。角
膜Ecでの反射光は再びノズル4、対物レンズ6
を通り、ハーフミラー7を透過し、ダイクロイツ
クミラー10により反射され、ノズル11を介し
て対物レンズ6の実質的光軸上に設けられる光電
変換素子12に導かれる。光電変換素子12が角
膜Ecからの光源9の反射光を検知すると、光軸
と垂直方向の位置合わせ状態が良好と判断として
コントロールボツクス16により固視用光源14
は点滅をやめ点灯したままになり、被検者は光軸
と垂直方向の位置合わせが終了した事を知る。な
お、光源9と光電変換素子12を角膜と略共役と
すれば、予め光電変換素子12で受光される受光
量を想定しておき、受光量が想定値に達するか否
かの判断により光軸方向の位置合わせも可能であ
る。位置合わせ終了の後、被検者が測定スイツチ
17を押すとソレノイド2が駆動し、ピストン3
によつて圧縮された空気がノズル4を通し、被検
眼角膜Ecに吹きつけられる。角膜Ecは空気圧に
より変形をうける。本装置の特徴は、角膜の変形
変度を、例えば高周波パルスのドツプラー効果に
より求め該変位速度を基に眼圧値を求めるところ
にある。第2図にその基本原理を示す。Aは、光
源9を発光させる基本パルスの出力信号である。
Bは、光電変換素子12の出力信号である。角膜
は空気圧により眼底側へ変位する為、ドツプラー
効果により周波数はAよりも低い。すなわち角膜
に入射するパルスの光の周波数をF、角膜から反
射するパルス光の周波数をF′、角膜変形速度を
V、光速度をCとするとF−F′/F=V/Cとな
る。
When the subject looks into the nozzle 4 while keeping a certain distance from the objective lens 6, he or she can see the fixation light source 14 blinking. If it is difficult to see clearly, you can use the lever 15 to adjust the position to a position that is easier for you to see. The light source 9 is an infrared light source such as an infrared LED or a semiconductor laser provided substantially on the optical axis of the objective lens 6, and is lit with high frequency pulses, and a narrow light beam is emitted to the lens 8.
, is reflected by a half mirror 7, passes through an objective lens 6 and a nozzle 4, and is projected onto the cornea Ec. The reflected light from the cornea Ec is returned to the nozzle 4 and the objective lens 6.
The light passes through the half mirror 7, is reflected by the dichroic mirror 10, and is guided via the nozzle 11 to the photoelectric conversion element 12 provided substantially on the optical axis of the objective lens 6. When the photoelectric conversion element 12 detects the reflected light of the light source 9 from the cornea Ec, it is determined that the alignment state in the direction perpendicular to the optical axis is good, and the control box 16 switches the fixation light source 14 on.
stops blinking and remains lit, and the subject knows that the alignment in the direction perpendicular to the optical axis has been completed. Note that if the light source 9 and the photoelectric conversion element 12 are substantially conjugate with the cornea, the amount of light received by the photoelectric conversion element 12 is assumed in advance, and the optical axis is adjusted by determining whether the amount of received light reaches the expected value. Directional alignment is also possible. After positioning, when the subject presses the measurement switch 17, the solenoid 2 is activated and the piston 3 is activated.
The compressed air passes through the nozzle 4 and is blown onto the cornea Ec of the eye to be examined. The cornea Ec is deformed by air pressure. The feature of this device is that the deformation of the cornea is determined by, for example, the Doppler effect of high-frequency pulses, and the intraocular pressure value is determined based on the displacement speed. Figure 2 shows its basic principle. A is an output signal of a basic pulse that causes the light source 9 to emit light.
B is an output signal of the photoelectric conversion element 12. Since the cornea is displaced toward the fundus of the eye due to air pressure, the frequency is lower than A due to the Doppler effect. That is, if the frequency of the pulsed light incident on the cornea is F, the frequency of the pulsed light reflected from the cornea is F', the corneal deformation speed is V, and the speed of light is C, then F-F'/F=V/C.

ここで出力信号A,Bを加算するとその出力信
号はCのような波形になり、これの高周波成分を
除いて波形整形すると、Dに示す如くA,Bの差
分の周波数信号が表われる。この周波数変位F−
F′より角膜変形速度Vを求め得る事は、上述の式
より明らかである。
When the output signals A and B are added, the output signal has a waveform as shown in C, and when the high frequency component is removed and the waveform is shaped, a frequency signal of the difference between A and B appears as shown in D. This frequency displacement F-
It is clear from the above equation that the corneal deformation speed V can be determined from F'.

ここで時間と共に所定圧力分布となるように圧
力値を変化させて角膜に空気圧を作用させ一定の
角膜変形に至る時間より被検眼眼圧が求まること
が公知である。
Here, it is known that the intraocular pressure of the subject's eye can be determined by changing the pressure value over time so that a predetermined pressure distribution is achieved, applying air pressure to the cornea, and determining the time required to reach a certain degree of corneal deformation.

従つて上記角膜変形速度Vを時間で積分し変形
量を求め一定の変形量Xoとなる時間Tより被検
眼眼圧が算出できる。具体的には一定変形量Xo
=∫T pVdtとなり、一定の変形量Xoだけ変形した
ことを確認する手段としては、例えば特開昭58−
50937号公報に知られるような角膜形状測定装置
が用いられる。又パルス的に一定の空気圧を角膜
に加えた時、その変形量より被検眼眼圧が求まる
ことが提案されている。
Therefore, the intraocular pressure of the subject's eye can be calculated by integrating the corneal deformation speed V over time to determine the amount of deformation, and from the time T at which a constant amount of deformation Xo is achieved. Specifically, the constant deformation amount Xo
=∫ T p Vdt, and as a means of confirming that the deformation has occurred by a certain amount of deformation Xo, for example, JP-A-58-
A corneal topography measuring device as known from Japanese Patent No. 50937 is used. It has also been proposed that when constant air pressure is applied to the cornea in a pulsed manner, the intraocular pressure of the eye to be examined can be determined from the amount of deformation.

従つて、上記角膜変形速度Vを時間で積分し、
変形量を求め所定時間、時間積分した時の変形量
Xより被検眼眼圧が算出できる。具体的には変形
量X=∫To pVdt(但し、Toは角膜変形が安定すると
考えられる時刻である)となる。更に上述した他
の角膜変形速度Vが極値となる時間より被検眼眼
圧を算出しても良い。
Therefore, integrating the corneal deformation speed V over time,
The intraocular pressure of the subject's eye can be calculated from the amount of deformation X when the amount of deformation is determined and integrated over time for a predetermined period of time. Specifically, the amount of deformation X=∫ To p Vdt (where To is the time at which the corneal deformation is considered to be stable). Furthermore, the intraocular pressure in the eye to be examined may be calculated from the time when the corneal deformation speed V reaches its extreme value.

すなわち、空気パルスを角膜へ与えると一般に
角膜は変形し、その眼圧のため時間Sで復元す
る。それにともない、第2図Dで示した波形は第
3図D′で示すような、変形速度の変化に応じ周
波数の変化する波形を描く。この波形D′を復調
した波形の2つのピークの時間間隔が眼圧に対応
する。すなわち眼圧が高ければ時間間隔は短くな
るし低ければ時間間隔は長くなる。
That is, when an air pulse is applied to the cornea, the cornea generally deforms and restores itself in time S due to the intraocular pressure. Accordingly, the waveform shown in FIG. 2D draws a waveform whose frequency changes in accordance with changes in the deformation speed, as shown in FIG. 3D'. The time interval between two peaks of the demodulated waveform D' corresponds to the intraocular pressure. That is, if the intraocular pressure is high, the time interval becomes short, and if the intraocular pressure is low, the time interval becomes long.

さて本発明では角膜変形検出系として角膜変形
の速度変化を求めているため角膜変形検出系と被
検眼との作動距離調整は高い精度が要求されな
い。ここで角膜変形用加圧系が角膜変形検出系と
共に装置本体内に組込まれ両者と一体的に光軸方
向に移動すると角膜変形検出系は角膜変形を依然
として正しく検出するものの、角膜変形用加圧系
は被検眼までの光軸方向距離が変化して角膜に作
用する圧力が変化するため角膜に所定圧力を作用
させないこととなり正確な眼圧測定ができない。
そこでノズル4より被検眼までの光軸方向距離に
応じた変化分を任意の補正手段で補正する。なお
一般に大気圧の変化によつても眼圧測定値が変わ
るためのこの大気圧に応じた変化分も補正するこ
とが望ましい。
Now, in the present invention, since the corneal deformation detection system determines the speed change of corneal deformation, high accuracy is not required for adjusting the working distance between the corneal deformation detection system and the eye to be examined. Here, if the corneal deformation pressure system is incorporated into the device main body together with the corneal deformation detection system and moves together with both in the optical axis direction, the corneal deformation detection system still correctly detects corneal deformation, but the corneal deformation pressure system Since the system changes the distance in the optical axis direction to the eye to be examined and the pressure acting on the cornea changes, a predetermined pressure is not applied to the cornea, making it impossible to accurately measure intraocular pressure.
Therefore, a change in the distance from the nozzle 4 to the eye to be examined in the optical axis direction is corrected using an arbitrary correction means. Note that since the measured value of intraocular pressure generally changes due to changes in atmospheric pressure, it is desirable to also correct the amount of change corresponding to this atmospheric pressure.

〔変形例〕[Modified example]

前記実施例では光源をパルス発光させたが光路
中にシヤツタ(機械的シヤツタ、液晶シヤツタ
等)を設け、シヤツタによりパルス光を抽出して
も良い。又前記実施例では空気流で角膜変形させ
たが、この替わりに超音波を用いても良い。この
場合、好ましくは超音波を角膜に収れんさせる。
又前記実施例では角膜変形速度を求めるのにドツ
プラー効果を利用して周波数変化を検出したが、
この替わりに波長変化を検出しても良いことは明
らかである。
In the above embodiment, the light source emits pulsed light, but a shutter (mechanical shutter, liquid crystal shutter, etc.) may be provided in the optical path and the pulsed light may be extracted by the shutter. Further, although the cornea was deformed by air flow in the above embodiment, ultrasonic waves may be used instead. In this case, the ultrasound waves are preferably focused on the cornea.
Furthermore, in the above embodiment, the Doppler effect was used to detect the frequency change to determine the corneal deformation speed.
It is clear that wavelength changes may be detected instead.

すなわち角膜に入射する光の波長をλ、角膜か
ら反射する光の波長をλ′、角膜変形速度をV、光
速度をC、とするとλ(1/λ−1/λ′)=V/
C′となる。この場合、角度に入射する光はパルス
光でなく連続光で良い。そして赤外光が好ましい
ことを明らかである。
That is, if the wavelength of light incident on the cornea is λ, the wavelength of light reflected from the cornea is λ', the corneal deformation speed is V, and the speed of light is C, then λ (1/λ-1/λ') = V/
becomes C′. In this case, the light incident at an angle may be continuous light rather than pulsed light. And it is clear that infrared light is preferred.

又、前記実施例では、被検者が自分自身で測定
する装置を示したが、観察手段を設けて検者を必
要とする非接触眼圧計を構成することもできる。
Further, in the above embodiment, an apparatus is shown in which the subject measures the tonometer by himself/herself, but a non-contact tonometer can also be constructed which requires an examiner by providing an observation means.

なお、前記実施例では、固視目標を光源とした
がいわゆるスターバースト、及び風景のようなチ
ヤートでもよい。
In the above embodiment, the fixation target is used as a light source, but a so-called starburst or a chart such as a landscape may also be used.

又、固視目標を可動としたが、レンズ系を可動
として視度調節してもよい。
Furthermore, although the fixation target is movable, the diopter may be adjusted by making the lens system movable.

又、固視目標の位置合わせ調整前の発光状態を
点灯状態、位置合わせ調整後の発光状態を点滅状
態としても良い。
Further, the light emitting state before the alignment adjustment of the fixation target may be a lighting state, and the light emitting state after the alignment adjustment may be a blinking state.

〔効果〕〔effect〕

以上、本発明によれば測定用光源の光量が時間
的に変動しても測定精度に影響を与えないです
む。又作動距離の許容範囲を広くとれる。
As described above, according to the present invention, even if the light intensity of the measurement light source changes over time, the measurement accuracy is not affected. Also, the allowable range of working distance can be widened.

更に位置合わせがなされたとき固視用光源の発
光状態を変更して被検者に眼圧測定が可能な状態
である旨表示すれば検者を必要とせず被検者のみ
による測定が可能となる。
Furthermore, when positioning is achieved, if the light emitting state of the fixation light source is changed to indicate to the subject that intraocular pressure measurement is possible, measurement can be performed by the subject alone without the need for an examiner. Become.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例を示す図、第2図
は、測定の基本信号を示す波形図、第3図は、パ
ルス空気圧を加え角膜が復元するときの周波数変
化を示す図、 図中、1は圧縮空気室、2はソレノイド、3は
ピストン、4はノズル、5は平板状部材、6は対
物レンズ、7はハーフミラー、8はレンズ、9は
赤外光源、10はダイクロイツクミラー、11は
レンズ、12は光電変換素子、13はレンズ、1
4は固視用光源、15は固視移動手段、16はコ
ントロールボツクス、17は測定スイツチ、Eは
被検眼、Ecは被検眼角膜、Aは光源9の点滅用
クロツク波形、Bは光電変換素子12からの波
形、Cは波形Aと波形Bの加算波形、DはCの整
形波形、D′はパルス空気圧を与えた時の波形で
ある。
Fig. 1 is a diagram showing an embodiment of the present invention, Fig. 2 is a waveform diagram showing the basic signal of measurement, and Fig. 3 is a diagram showing frequency changes when the cornea is restored by applying pulsed air pressure. Inside, 1 is a compressed air chamber, 2 is a solenoid, 3 is a piston, 4 is a nozzle, 5 is a flat member, 6 is an objective lens, 7 is a half mirror, 8 is a lens, 9 is an infrared light source, 10 is a dichroic Mirror, 11 is a lens, 12 is a photoelectric conversion element, 13 is a lens, 1
4 is a light source for fixation, 15 is a fixation movement means, 16 is a control box, 17 is a measurement switch, E is the eye to be examined, Ec is the cornea of the eye to be examined, A is the blinking clock waveform of the light source 9, and B is a photoelectric conversion element. 12, C is the summed waveform of waveform A and waveform B, D is the shaped waveform of C, and D' is the waveform when pulsed air pressure is applied.

Claims (1)

【特許請求の範囲】 1 被検眼の角膜に圧力を作用させて角膜を変形
させることにより眼圧を求める眼圧計において、
角膜変形の速度変化を検出する検出系と、該検出
系で検出される速度変化から眼圧値を演算する演
算系を有することを特徴とする眼圧計。 2 前記検出系はパルス光を角膜に投影する投影
系と、角膜で反射される反射光を受光する受光系
と、該受光系で受光される反射光の周波数変位を
検出する手段を備える特許請求の範囲第1項記載
の眼圧計。 3 前記検出系は所定波長光を角膜に投影する投
影系と、角膜で反射される反射光を受光する受光
系と、該受光系で受光される反射光の波長変化を
検出する手段を備える特許請求の範囲第1項記載
の眼圧計。 4 前記投影系及び前記受光系の光軸は前記圧力
の作用方向と同軸である特許請求の範囲第2項若
しくは第3項記載の眼圧計。 5 前記演算系は前記検出系で検出される変形速
度を時間積分する手段と、時間積分値が所定量と
なる時間を測定する手段を備える特許請求の範囲
第1項記載の眼圧計。 6 前記演算系は前記検出系で検出される変形速
度を時間積分する手段と、所定時間経過したとき
の時間積分値(変形量)を測定する手段を備える
特許請求の範囲第1項記載の眼圧計。 7 前記演算系は前記検出系で検出される変形速
度が極値となる時間を測定する手段を備える特許
請求の範囲第1項記載の眼圧計。 8 前記圧力は空気流による圧力である特許請求
の範囲第1項記載の眼圧計。 9 前記圧力は超音波による圧力である特許請求
の範囲第1項記載の眼圧計。 10 前記圧力は時間と共に圧力値が変化する所
定圧力分布で角膜に作用する特許請求の範囲第1
項記載の眼圧計。 11 前記圧力は所定圧力値のパルスで角膜に作
用する特許請求の範囲第1項記載の眼圧計。 12 前記角膜投影光は赤外光である特許請求の
範囲第2項若しくは第3項記載の眼圧計。 13 前記投影系の光源と前記受光系の受光素子
は眼圧測定前に作動し眼圧測定前の被検眼との位
置合わせ状態を検出する特許請求の範囲第1項記
載の眼圧計。 14 前記光源と前記受光素子は被検眼の角膜と
略共役に設けられる特許請求の範囲第1項記載の
眼圧計。 15 前記受光素子の出力が所定値に達したと
き、被検眼との位置合わせ状態が良好であるとし
て被検者に表示する特許請求の範囲第13項若し
くは第14項記載の眼圧計。 16 被検眼の角膜に圧力を作用させて角膜を変
形させることにより眼圧を求める眼圧計におい
て、角膜変形の速度変化を検出する検出系と、該
検出系で検出される速度変化から眼圧値を演算す
る演算系と、被検眼を固視させる固視系と、被検
眼との位置合わせを行う位置合わせ系と、該位置
合わせ系で位置合わせがなされると前記固視系の
固視光源の発光状態を変更する手段を有すること
を特徴とする眼圧計。 17 前記固視光源は点滅状態と点灯状態との間
で変更される特許請求の範囲第16項記載の眼圧
計。 18 前記固視系は、被検眼の視度に応じて少な
くとも一部が光軸方向に移動可能である特許請求
の範囲第16項記載の眼圧計。
[Scope of Claims] 1. A tonometer that measures intraocular pressure by applying pressure to the cornea of the eye to be examined and deforming the cornea,
A tonometer characterized by having a detection system that detects changes in the speed of corneal deformation, and a calculation system that calculates an intraocular pressure value from the changes in speed detected by the detection system. 2. A patent claim in which the detection system includes a projection system that projects pulsed light onto the cornea, a light receiving system that receives reflected light reflected by the cornea, and means for detecting frequency displacement of the reflected light received by the light receiving system. The tonometer according to item 1. 3. The detection system includes a projection system that projects light of a predetermined wavelength onto the cornea, a light receiving system that receives reflected light reflected by the cornea, and means for detecting a change in wavelength of the reflected light received by the light receiving system. The tonometer according to claim 1. 4. The tonometer according to claim 2 or 3, wherein the optical axes of the projection system and the light receiving system are coaxial with the direction in which the pressure is applied. 5. The tonometer according to claim 1, wherein the calculation system includes means for time-integrating the deformation speed detected by the detection system, and means for measuring the time at which the time-integrated value reaches a predetermined amount. 6. The eye according to claim 1, wherein the calculation system includes means for time-integrating the deformation speed detected by the detection system, and means for measuring the time-integrated value (deformation amount) after a predetermined period of time has elapsed. Pressure gauge. 7. The tonometer according to claim 1, wherein the calculation system includes means for measuring the time when the deformation speed detected by the detection system reaches an extreme value. 8. The tonometer according to claim 1, wherein the pressure is a pressure due to air flow. 9. The tonometer according to claim 1, wherein the pressure is a pressure generated by ultrasonic waves. 10 Claim 1, wherein the pressure acts on the cornea with a predetermined pressure distribution whose pressure value changes with time.
Tonometer described in section. 11. The tonometer according to claim 1, wherein the pressure acts on the cornea in pulses of a predetermined pressure value. 12. The tonometer according to claim 2 or 3, wherein the corneal projection light is infrared light. 13. The tonometer according to claim 1, wherein the light source of the projection system and the light-receiving element of the light-receiving system operate before measuring intraocular pressure to detect the state of alignment with the eye to be examined before measuring intraocular pressure. 14. The tonometer according to claim 1, wherein the light source and the light receiving element are provided substantially conjugate to the cornea of the eye to be examined. 15. The tonometer according to claim 13 or 14, which displays to the subject that when the output of the light receiving element reaches a predetermined value, the alignment state with the subject's eye is good. 16 A tonometer that measures intraocular pressure by applying pressure to the cornea of the eye to be examined to deform the cornea, includes a detection system that detects changes in the speed of corneal deformation, and an intraocular pressure value based on the changes in speed detected by the detection system. a fixation system that fixates the eye to be examined; a positioning system that aligns the eye with the eye to be examined; and a fixation light source of the fixation system when the positioning system is aligned. A tonometer characterized by having means for changing the light emitting state of the tonometer. 17. The tonometer according to claim 16, wherein the fixation light source is changed between a blinking state and a lit state. 18. The tonometer according to claim 16, wherein at least a portion of the fixation system is movable in the optical axis direction depending on the diopter of the eye to be examined.
JP62036203A 1987-02-18 1987-02-18 Tonometer Granted JPS63203131A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62036203A JPS63203131A (en) 1987-02-18 1987-02-18 Tonometer
US07/577,076 US5076274A (en) 1987-02-18 1990-09-04 Non-contact tonometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62036203A JPS63203131A (en) 1987-02-18 1987-02-18 Tonometer

Publications (2)

Publication Number Publication Date
JPS63203131A JPS63203131A (en) 1988-08-23
JPH0360263B2 true JPH0360263B2 (en) 1991-09-13

Family

ID=12463181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62036203A Granted JPS63203131A (en) 1987-02-18 1987-02-18 Tonometer

Country Status (1)

Country Link
JP (1) JPS63203131A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6236928B2 (en) * 2013-06-28 2017-11-29 株式会社ニデック Non-contact ultrasonic tonometer
JP6862086B2 (en) * 2015-12-02 2021-04-21 興和株式会社 Eye device

Also Published As

Publication number Publication date
JPS63203131A (en) 1988-08-23

Similar Documents

Publication Publication Date Title
US5076274A (en) Non-contact tonometer
CA2149051C (en) Non-contact tonometer
EP0536574B1 (en) Non-contact tonometer
JP6236928B2 (en) Non-contact ultrasonic tonometer
US6537215B2 (en) Non-contact type tonometer
US6413214B1 (en) Applanating tonometers
JP5397670B2 (en) Non-contact ultrasonic tonometer
JP2723967B2 (en) Living eye size measurement device
JP3108261B2 (en) Ophthalmic instruments
JPH0360263B2 (en)
US5400091A (en) Ophthalmic instrument
JP3317806B2 (en) Ophthalmic instruments
JPH07231875A (en) Optometrical device
US20020103427A1 (en) Non-contact type tonometer
JP3521980B2 (en) Ophthalmic instruments
JP3496994B2 (en) Non-contact tonometer
JP3986408B2 (en) Non-contact tonometer
JP3571102B2 (en) Ophthalmic equipment
JP2786692B2 (en) Non-contact tonometer
JP2005500889A (en) Non-contact tonometer
JP3379719B2 (en) Non-contact tonometer
KR20230095463A (en) Non-contact tonometer
JP3577071B2 (en) Non-contact tonometer
JPH0753155B2 (en) Ophthalmic equipment
JP2002017683A (en) Non-contact type tomometer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees