JPH0360216A - Logic circuit - Google Patents

Logic circuit

Info

Publication number
JPH0360216A
JPH0360216A JP1196078A JP19607889A JPH0360216A JP H0360216 A JPH0360216 A JP H0360216A JP 1196078 A JP1196078 A JP 1196078A JP 19607889 A JP19607889 A JP 19607889A JP H0360216 A JPH0360216 A JP H0360216A
Authority
JP
Japan
Prior art keywords
circuit
power supply
voltage power
constant voltage
logic circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1196078A
Other languages
Japanese (ja)
Inventor
Toru Takahashi
亨 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1196078A priority Critical patent/JPH0360216A/en
Publication of JPH0360216A publication Critical patent/JPH0360216A/en
Pending legal-status Critical Current

Links

Landscapes

  • Logic Circuits (AREA)

Abstract

PURPOSE:To prevent an accident that a circuit malfunctions due to supply sequence of a power supply by making a constant voltage circuit work only when both negative and positive voltage power supplies operate and the voltages of both power supplies are impressed on it. CONSTITUTION:The constant voltage circuit 3a is constituted of resistors R1 to R3 and bipolar transistors Q1, Q2, and other part excepting the resistor R1 whose one end is connected to the positive voltage power supply VCC is connected to the middle point between the negative voltage power supply VEE and a ground terminal GND. A circuit current flows in this constant voltage circuit 3a and its starts normal operation when both the negative and positive voltage power supply VEE, VCC are impressed on this circuit. Thus, a current mode logic circuit which is independent of the power supply sequence and executes stable operation can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は論理回路に関し、特に、定電圧回路により論理
振幅が制御される電流切り換え型論理回路を含む論理回
路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a logic circuit, and particularly to a logic circuit including a current switching type logic circuit whose logic amplitude is controlled by a constant voltage circuit.

[従来の技術] 電流切り換え型論理回路はバイポーラ基本論理回路の代
表的な回路として広く使用され、特に高速論理LSIの
基本回路として普及している。ところが、電流切り換え
型論理回路のみで全体のシステムを構成する例はまれで
あって、電流切り換え型論理回路を使用する場合、通常
は、正電圧電源で動作するTTL論理レベルの回路と、
負電圧電源で動作するECL論理レベルで動作する回路
とが同一システム内に混在して使用されることになる。
[Prior Art] Current switching type logic circuits are widely used as typical bipolar basic logic circuits, and are particularly popular as basic circuits of high-speed logic LSIs. However, it is rare to construct an entire system using only current-switching logic circuits, and when current-switching logic circuits are used, they usually include a TTL logic level circuit that operates on a positive voltage power supply,
Circuits that operate at the ECL logic level that operate on a negative voltage power supply are mixedly used in the same system.

したがって、このようなシステム内で使用されるLSI
にあっては、電流切り換え型論理回路を主体とするLS
Iであっても、その入出力部分にTTL論理レベルをE
CL論理レベルへあるいは逆にECL論理レベルをTT
L論理レベルへ変換するTTL−ECLレベル変換回路
を内蔵せしめる必要が生じる。その場合、−殻間に回路
形式としては第3図に示すように構成される。すなわち
、同図に示すように、TTL−ECLレベル変換回路2
は、正電圧電源VCCおよび負電圧電源VERの両方か
ら給電され、また、電流切り換え型論理回路1は、負電
圧電源VEEから給電されるように構成される。また、
バイポーラトランジスタQ1.Q2及びR□〜R5によ
って構成される定電圧回路3Cは負電圧電源■EEと接
地端子GND間に接続され、そしてトランジスタQ2の
エミッタと電源VER間に得られる定電圧は、電流切り
換え型論理回路l、およびTTL−ECLレベル変換回
路2のECL回路部分に印加される。定電圧回路3の基
準となる電圧源は、Qlのベース−エミッタ間の順方向
電圧VBEであり、電流切り換え型論理回路2へ印加さ
れる定電圧は■BE(1+R2/R1)で与えられる。
Therefore, the LSI used in such a system
In this case, LS mainly based on current switching type logic circuit
Even if the input/output part is
TT to ECL logic level to CL logic level or vice versa
It becomes necessary to incorporate a TTL-ECL level conversion circuit for converting to the L logic level. In that case, the circuit type between the two shells is constructed as shown in FIG. That is, as shown in the figure, the TTL-ECL level conversion circuit 2
is supplied with power from both the positive voltage power supply VCC and the negative voltage power supply VER, and the current switching type logic circuit 1 is configured to be supplied with power from the negative voltage power supply VEE. Also,
Bipolar transistor Q1. A constant voltage circuit 3C composed of Q2 and R□ to R5 is connected between the negative voltage power supply EE and the ground terminal GND, and the constant voltage obtained between the emitter of the transistor Q2 and the power supply VER is a current switching type logic circuit. 1, and the ECL circuit portion of the TTL-ECL level conversion circuit 2. The reference voltage source of the constant voltage circuit 3 is the base-emitter forward voltage VBE of Ql, and the constant voltage applied to the current switching type logic circuit 2 is given by .beta.BE(1+R2/R1).

なお、定電圧回路3の発生電圧は、通常、複数個の電流
切り換え型論理回路、TTL−ECLレベル変m回路の
ECL回路部分に共通して用いられる。
Note that the voltage generated by the constant voltage circuit 3 is normally used in common for a plurality of current switching type logic circuits and the ECL circuit portion of the TTL-ECL level changing circuit.

[発明が解決しようとする課M] バイポーラ型集積回路では一般的にpn接合分離を基本
としており、集積回路の基板を回路上の最低電位に、抵
抗の分離領域を回路上の最高電位に接続しであるため、
電源の投入順序によっては一時的に過大な回路電流が流
れ、これによって異常な現象が発生する恐れがある0例
えば、第3図の回路において、最高電位が後から与えら
れた場合、または何らかの原因により、−時的に最高電
位が遮断された場合、抵抗の分離領域が逆方向にバイア
スされなくなるため抵抗に対する分離効果がなくなる。
[Problem M to be solved by the invention] Bipolar integrated circuits are generally based on pn junction isolation, in which the substrate of the integrated circuit is connected to the lowest potential on the circuit, and the isolation region of the resistor is connected to the highest potential on the circuit. Because it is
Depending on the order in which the power is turned on, excessive circuit current may temporarily flow, which may cause abnormal phenomena. For example, in the circuit shown in Figure 3, if the highest potential is applied later, or for some other reason. Therefore, if the highest potential is temporarily cut off, the isolation region of the resistor will no longer be biased in the opposite direction, so there will be no isolation effect on the resistor.

ところが、定電圧回路3および電流切り換え型論理回路
1自体は正常にバイアスされて正常に動作を開始してい
る。したがって、これらの回路内に含まれる抵抗にも正
常の電流が流れるが、この抵抗による電圧降下が大きい
場合には分離領域との間の接合が順方向にバイアスされ
るようになり、異常電流が流れることになる。これによ
って、基板内にも電圧降下が生じ、基板を含めてサイリ
スタ動作が引き起こされ、その場合には、再度最高電位
を投入しても正常状態に復帰しない現象が発生する。
However, the constant voltage circuit 3 and the current switching type logic circuit 1 themselves are normally biased and start operating normally. Therefore, normal current flows through the resistors included in these circuits, but if the voltage drop across these resistors is large, the junction between the isolation region becomes forward biased and abnormal current flows. It will flow. As a result, a voltage drop also occurs within the substrate, causing thyristor operation including the substrate, and in this case, a phenomenon occurs in which the normal state is not restored even if the highest potential is applied again.

[課題を解決するための手段] 本発明の論理回路は、負電圧電源VEEによって給電さ
れる電流切り換え型論理回路、負電圧電源VEEおよび
正電圧電源VCCによって給電されるTTL−ECLレ
ベル変換回路およびこれらの回路の定電流源回路に所定
の電圧を印加するための定電圧回路とを含んでおり、そ
して、前記定電圧回路は負電圧電源および正電圧電源に
より給電されるようになされ両室源の電圧が印加された
場合のみに動作するように構成されている。
[Means for Solving the Problems] A logic circuit of the present invention includes a current switching type logic circuit powered by a negative voltage power supply VEE, a TTL-ECL level conversion circuit powered by a negative voltage power supply VEE and a positive voltage power supply VCC, and The constant voltage circuit includes a constant voltage circuit for applying a predetermined voltage to the constant current source circuit of these circuits, and the constant voltage circuit is configured to be powered by a negative voltage power source and a positive voltage power source, and is a dual chamber source. It is configured to operate only when a voltage of .

[実施例] 次に、本発明の実施例について図面を参照して説明する
[Example] Next, an example of the present invention will be described with reference to the drawings.

第1図は、本発明の一実施例を示す回路図である。同図
に示すように、電流切り換え型論理回路lは負電圧電源
VERのみで動作し、一方、TTL−ECLレベル変換
回路2は、正電圧電源VCC1負電圧電源VEEの両方
から給電を受ける。
FIG. 1 is a circuit diagram showing one embodiment of the present invention. As shown in the figure, the current switching type logic circuit 1 operates only with the negative voltage power supply VER, while the TTL-ECL level conversion circuit 2 receives power from both the positive voltage power supply VCC1 and the negative voltage power supply VEE.

TTL−ECLレベル変換回路は、電流切り換え型論理
回路1のECL論理レベルの出力を受けこれをTTL論
理レベルへ変換して外部へ出力し、あるいは、外部より
TTL論理レベルの信号を受けこれをECL論理レベル
に変換して電流切り換え型論理回路1へ出力する。
The TTL-ECL level conversion circuit receives the output of the ECL logic level from the current switching type logic circuit 1, converts it to the TTL logic level and outputs it to the outside, or receives a signal of the TTL logic level from the outside and converts it to the ECL logic level. It is converted to a logic level and output to the current switching type logic circuit 1.

定電圧回路3aは、抵抗R1〜R5、バイポーラトラン
ジスタQl、Q2によって構成され、端が正電圧電源V
CCに接続される抵抗R1を除いて他の部分は、負電圧
電源VERと接地端子GNDとの間に接続されている。
The constant voltage circuit 3a is composed of resistors R1 to R5 and bipolar transistors Ql and Q2, and the end thereof is connected to a positive voltage power supply V.
The other parts except for the resistor R1 connected to CC are connected between the negative voltage power supply VER and the ground terminal GND.

この定電圧回路3aの出力電圧は電流切り換え型論理回
路1の論理レベルを一定に保つのに用いられる。TTL
−ECLレベル変換回路のECL回路部分もこの定電圧
回路からまたは同種の定電圧回路から定電圧の供給を受
けている。
The output voltage of the constant voltage circuit 3a is used to keep the logic level of the current switching type logic circuit 1 constant. TTL
-ECL The ECL circuit portion of the level conversion circuit also receives constant voltage from this constant voltage circuit or from a constant voltage circuit of the same type.

次に、この実施例の回路の動作について説明する。まず
、負電圧電源VERのみが印加された場合を考えると、
抵抗R1によるバイアス電流が流れないため、定電圧回
路3aは動作せずトランジスタQ2のエミッタ電位は、
はぼ、VERと同電位となり、電流切り換え型論理回路
1には電流が流れない。したがって、これら各回路内の
抵抗に電圧降下が生じることがないので、正電圧が印加
されていないことによって抵抗に対する分離が正常に行
われていなくとも異常電流が流れることがない。そして
、正電圧電源VCCが印加されると直ちに正常の動作が
開始される。
Next, the operation of the circuit of this embodiment will be explained. First, considering the case where only the negative voltage power supply VER is applied,
Since the bias current due to the resistor R1 does not flow, the constant voltage circuit 3a does not operate, and the emitter potential of the transistor Q2 becomes
The voltage becomes the same potential as VER, and no current flows through the current switching type logic circuit 1. Therefore, since a voltage drop does not occur across the resistors in each of these circuits, no abnormal current will flow even if isolation to the resistors is not performed normally due to no positive voltage being applied. Then, normal operation starts immediately when the positive voltage power supply VCC is applied.

次に、正電圧電源VCCのみが印加された場合は、定電
圧回路3aのトランジスタQ2のベース−コレクタ間に
は抵抗R1を介して微小電流が流れるが、定電圧回路3
の他の部分には電流が流れずかつ集積回路の大部分を占
める電流切り換え型論理回路1部分には、メイン電源の
負電圧電源VEEが印加されていないので電流は流れな
い。また、抵抗を分離するために必要な正電圧電源VC
Cはすでに与えられているため異常な動作には至らず、
次に印加される負電圧電源VEEによって正常な動作が
開始される。
Next, when only the positive voltage power supply VCC is applied, a small current flows between the base and collector of the transistor Q2 of the constant voltage circuit 3a via the resistor R1;
No current flows through the other portions of the integrated circuit, and no current flows through the current switching type logic circuit 1 portion, which occupies most of the integrated circuit, because the negative voltage power source VEE of the main power source is not applied thereto. In addition, the positive voltage power supply VC required to separate the resistors
Since C has already been given, no abnormal behavior will occur.
Normal operation is started by the next applied negative voltage power supply VEE.

すなわち、本発明の論理回路では負電圧電源VEE、正
電圧電源VCCの両方が印加された時に始めて回路電流
が流れ全回路が正常な動作を開始するようにするために
、定電圧回路の必要電源をVER,VCCの両方からと
っている。そのために一方の電源電圧が印加されても回
路の抵抗に電圧降下が生じることがなく、抵抗の分離が
行われないことに起因する中途段階での異常電流の発生
が防止され、回路が電源の投入順序によって誤動作する
事故が防止される。
That is, in the logic circuit of the present invention, the necessary power supply of the constant voltage circuit is reduced so that the circuit current flows and all circuits start normal operation only when both the negative voltage power supply VEE and the positive voltage power supply VCC are applied. is taken from both VER and VCC. Therefore, even when one power supply voltage is applied, there is no voltage drop across the circuit resistance, and abnormal currents are prevented from occurring in the middle of the process due to the resistance not being separated. Accidents such as malfunctions can be prevented by adjusting the input order.

第2図は、本発明の他の実施例を示す回路図である。こ
の実施例ではより簡略化された定電圧回路3bが用いら
れているが、この回路でもトランジスタQ1のベース−
エミッタ間順方向電圧を抵抗R3、R2の比で昇圧した
電圧により電流切り換え型論理回路1の論理振幅を制御
しており、動作は、基本的には第1図のものと変わらな
い。
FIG. 2 is a circuit diagram showing another embodiment of the present invention. In this embodiment, a more simplified constant voltage circuit 3b is used, and even in this circuit, the base of the transistor Q1
The logic amplitude of the current switching type logic circuit 1 is controlled by a voltage obtained by boosting the inter-emitter forward voltage by the ratio of the resistors R3 and R2, and the operation is basically the same as that of FIG. 1.

[発明の効果] 以上説明したように、本発明は、電流切り換え型論理回
路とTTL−ECLレベル変換回路から構成された論理
回路において、電流切り換え型論理回路やTTL−EC
Lレベル変換回路のECL回路部分の論理回路の論理振
幅、すなわち回路電流を制御する定電圧回路の必要とす
る電源を負電圧電源VEEおよび正電圧電源VCCの両
方から供給し、両電源の電圧が印加されたときに始めて
定電圧回路の電流が流れるようにしたものであるので、
本発明によれば、一方の電源電圧が印加されても定電圧
回路およびこの回路の動作を待って動作を開始する回路
部分に電流が流れることがない。したがって、本発明に
よれば、抵抗が正常に分離されていないことに起因する
中途段階での異常電流の発生が防止でき、電源投入順序
に依存しない安定な動作を行う電流切り換え型論理回路
が得られる。
[Effects of the Invention] As explained above, the present invention provides a logic circuit composed of a current switching type logic circuit and a TTL-ECL level conversion circuit.
The power required by the constant voltage circuit that controls the logic amplitude of the logic circuit of the ECL circuit part of the L level conversion circuit, that is, the circuit current, is supplied from both the negative voltage power supply VEE and the positive voltage power supply VCC, and the voltage of both power supplies is Since the current in the constant voltage circuit starts flowing only when the voltage is applied,
According to the present invention, even if one of the power supply voltages is applied, no current flows through the constant voltage circuit and the circuit portion that waits for the operation of this circuit to start its operation. Therefore, according to the present invention, it is possible to prevent the occurrence of abnormal current in the middle of the process due to resistances not being properly separated, and to obtain a current switching type logic circuit that operates stably regardless of the power supply order. It will be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は、それぞれ本発明の実施例を示す回路
図、第3図は、従来例を示す回路図である。 1・・・電流切り換え型論理回路、  2・・・TTL
−ECLレベル変換回路、  3a〜3c・・・定電圧
回路、  VCC・・・正電圧電源、  VEE・・・
負電圧電源、 GND・・・接地端子、 1 2 ・・・バイポーラトランジスタ、 R。 〜R8 ・・・抵抗。
1 and 2 are circuit diagrams showing embodiments of the present invention, and FIG. 3 is a circuit diagram showing a conventional example. 1... Current switching type logic circuit, 2... TTL
-ECL level conversion circuit, 3a to 3c...constant voltage circuit, VCC...positive voltage power supply, VEE...
Negative voltage power supply, GND...ground terminal, 1 2...bipolar transistor, R. ~R8...Resistance.

Claims (1)

【特許請求の範囲】[Claims] (1)負電圧電源により給電される電流切り換え型論理
回路と、負電圧電源および正電圧電源によって給電され
るTTL−ECLレベル変換回路と、前記電流切り換え
型論理回路および前記TTL−ECLレベル変換回路の
それぞれに所定の電圧を印加するための定電圧回路とを
具備する論理回路において、前記定電圧回路は負電圧電
源および正電圧電源によって給電され両電源の電圧が印
加された場合にのみ動作することを特徴とする論理回路
(1) A current switching type logic circuit powered by a negative voltage power supply, a TTL-ECL level conversion circuit powered by a negative voltage power supply and a positive voltage power supply, and the current switching type logic circuit and the TTL-ECL level conversion circuit. In a logic circuit comprising a constant voltage circuit for applying a predetermined voltage to each of the constant voltage circuits, the constant voltage circuit is powered by a negative voltage power supply and a positive voltage power supply and operates only when the voltages of both power supplies are applied. A logic circuit characterized by:
JP1196078A 1989-07-28 1989-07-28 Logic circuit Pending JPH0360216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1196078A JPH0360216A (en) 1989-07-28 1989-07-28 Logic circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1196078A JPH0360216A (en) 1989-07-28 1989-07-28 Logic circuit

Publications (1)

Publication Number Publication Date
JPH0360216A true JPH0360216A (en) 1991-03-15

Family

ID=16351836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1196078A Pending JPH0360216A (en) 1989-07-28 1989-07-28 Logic circuit

Country Status (1)

Country Link
JP (1) JPH0360216A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2441465R1 (en) * 2012-08-01 2014-04-25 Mespack, Sl BAND FOLDING DEVICE FOR FORMING AND PACKING FILLING MACHINE

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2441465R1 (en) * 2012-08-01 2014-04-25 Mespack, Sl BAND FOLDING DEVICE FOR FORMING AND PACKING FILLING MACHINE

Similar Documents

Publication Publication Date Title
EP0121287B1 (en) Current stabilising arrangement
JPH0879050A (en) Bicmos logic circuit
JPH0752835B2 (en) Multiple phase divider TTL output circuit
JPH0629824A (en) Changeover circuit of logic signal
US5760626A (en) BICMOS latch circuit for latching differential signals
US5684427A (en) Bipolar driver circuit including primary and pre-driver transistors
JPS6010815A (en) Logic circuit
JP2546004B2 (en) Level conversion circuit
JPH0360216A (en) Logic circuit
US7659775B2 (en) Output differential stage
JPH0432571B2 (en)
JPH1039940A (en) Controlled power source
JP2001507150A (en) High efficiency base current helper
JP2002517936A (en) Minimum headroom, minimum area, multi-terminal current steering circuit
JP2585098B2 (en) Interface for bipolar logic elements
JPH0536898A (en) Semiconductor integrated circuit
JPH1174775A (en) Level shifter circuit
JPH0786895A (en) Output circuit
JPH05152869A (en) Bias circuit
JPH06120808A (en) Ecl circuit
JPH08237044A (en) Push-pull circuit
JPH0223719A (en) Logic system
JPH04297124A (en) Ecl logic circuit
JPH10107604A (en) Integrated circuit device with open collector transistor configured to be npn transistor
JPH0522051A (en) Pulse voltage/current conversion circuit