JPH0360037B2 - - Google Patents

Info

Publication number
JPH0360037B2
JPH0360037B2 JP60176555A JP17655585A JPH0360037B2 JP H0360037 B2 JPH0360037 B2 JP H0360037B2 JP 60176555 A JP60176555 A JP 60176555A JP 17655585 A JP17655585 A JP 17655585A JP H0360037 B2 JPH0360037 B2 JP H0360037B2
Authority
JP
Japan
Prior art keywords
absorption
absorption refrigerator
refrigerant
water
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60176555A
Other languages
Japanese (ja)
Other versions
JPS6237650A (en
Inventor
Masumasa Hashimoto
Toshio Nakayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP60176555A priority Critical patent/JPS6237650A/en
Publication of JPS6237650A publication Critical patent/JPS6237650A/en
Publication of JPH0360037B2 publication Critical patent/JPH0360037B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は独立した二つの吸収冷凍機を熱的に接
続して低温の熱を取出す〔あるいは汲み上げる〕
多段吸収冷凍機に関する。
[Detailed description of the invention] (a) Industrial application field The present invention thermally connects two independent absorption refrigerators to extract (or pump) low-temperature heat.
It relates to a multistage absorption refrigerator.

(ロ) 従来の技術 多段吸収冷凍機の従来の技術として、前段の吸
収冷凍機の蒸発器と後段の吸収冷凍機の吸収器お
よび/または凝縮器とを水の循環路で結ぶことに
より、水−臭化リチウム系の冷媒、吸収液の用い
られている二つの独立した吸収冷凍機を熱的に接
続して後段の吸収冷凍機の蒸発器から冷水を取出
すようにしたもの〔例えば、雑誌「冷凍空調技
術」、昭和50年9月号、第1頁〜第4頁、日本冷
凍協会発行〕が知られている。
(b) Conventional technology The conventional technology for multi-stage absorption chillers is to connect the evaporator of the previous absorption chiller to the absorber and/or condenser of the subsequent absorption chiller with a water circulation path. - A system in which two independent absorption refrigerators using lithium bromide-based refrigerant and absorption liquid are thermally connected to extract cold water from the evaporator of the latter absorption refrigerator [for example, in the magazine "Refrigerating and Air Conditioning Technology", September 1975 issue, pages 1 to 4, published by the Japan Refrigeration Association].

(ハ) 発明が解決しようとする問題点 上記のような従来の多段吸収冷凍機において
は、後段の吸収冷凍機から0℃以下の熱〔ブライ
ン〕を得ようとすると、蒸発器内の冷媒〔水〕が
凍結してしまう問題点がある。このため、他の従
来の技術として、後段の吸収冷凍機にメチルアル
コール−臭化リチウム系の冷媒、吸収液を用いる
多段吸収冷凍機〔例えば特開昭56−127156号公
報〕が提案されているものの、この吸収冷凍機に
おいても得られる熱の温度は実用上−5℃〜−10
℃程度であり、それ以下の温度の熱を得ようとす
ると吸収器での吸収液を20℃以下に降温(20℃以
下の吸収液は高い粘性を示してその循環不良を起
こしやすい上に吸収器内の伝熱管表面に対する漏
れ性が悪化しその伝熱性能も著しく低下する欠点
をもつ。)する必要があるため、冷凍機の運転を
良好にかつ安全に続け得ない問題点がある。
(c) Problems to be Solved by the Invention In the conventional multi-stage absorption refrigerator as described above, when trying to obtain heat (brine) below 0°C from the subsequent absorption refrigerator, the refrigerant in the evaporator [ There is a problem that the water freezes. For this reason, as another conventional technique, a multi-stage absorption refrigerator using a methyl alcohol-lithium bromide based refrigerant and absorption liquid in the downstream absorption refrigerator [for example, Japanese Patent Application Laid-Open No. 127156/1983] has been proposed. However, even in this absorption refrigerator, the temperature of the heat obtained is practically -5℃ to -10℃.
℃, and if you try to obtain heat at a temperature lower than that, the temperature of the absorption liquid in the absorber is lowered to 20℃ or less (absorbent liquid below 20℃ exhibits high viscosity and tends to cause poor circulation, and the absorption This has the disadvantage that the leakage to the surface of the heat transfer tube inside the vessel worsens and its heat transfer performance also deteriorates significantly.

本発明は、このような問題点に鑑み、低温の熱
〔少なくとも−20℃以下の熱〕を取り出したり、
あるいは、汲み上げたりすることのできる多段吸
収冷凍機の提供を目的としたものである。
In view of these problems, the present invention extracts low-temperature heat (at least heat below -20°C),
Alternatively, the purpose is to provide a multi-stage absorption refrigerator that can pump water.

(ニ) 問題点を解決するための手段 本発明は、上記の問題点を解決する手段とし
て、水−ハロゲン化リチウム系の前段の吸収冷凍
機の蒸発器とクロロトリフルオロエタン−Nメチ
ル2ピロリドン(以下、NMPという)系の後段
の吸収冷凍機の吸収器および/または凝縮器とを
熱的に接続する構成としたものである。
(d) Means for Solving the Problems The present invention provides, as a means for solving the above problems, an evaporator of a water-lithium halide system upstream absorption refrigerator and a chlorotrifluoroethane-N-methyl-2-pyrrolidone system. (hereinafter referred to as NMP) The structure is such that it is thermally connected to the absorber and/or condenser of an absorption refrigerator in the latter stage of the system.

(ホ) 作用 本発明の多段吸収冷凍機は、前段の吸収冷凍機
の水−ハロゲン化リチウム系の吸収冷凍作用によ
り従来の多段吸収冷凍機と同様に蒸発器から降温
された流体〔例えば15℃程度の冷水〕を取出し、
この流体で後段の吸収冷凍機の吸収器および/ま
たは凝縮器を冷却しつつクロロトリフルオロエタ
ン−NMP系の吸収冷凍作用を生じさせ、後段の
吸収冷凍機の蒸発器および吸収器において低温レ
ベル〔例えば、−25℃〕での冷媒の蒸発作用およ
び吸収液の冷媒吸収作用を生じさせることができ
る。また、クロロトリフルオロエタン−NMP系
組成物は結晶することがなく、また、低温域での
粘度も低くて吸収液の循環不良を起こすこともな
いから、本発明の多段吸収冷凍機においては低温
〔少なくとも−20℃以下〕の熱を安全に取出した
り、汲み上げたりすることができる。
(E) Function The multistage absorption refrigerator of the present invention is similar to the conventional multistage absorption refrigerator in that the fluid whose temperature is lowered from the evaporator [e.g. Take out some cold water and
This fluid cools the absorber and/or condenser of the absorption chiller in the subsequent stage while producing the absorption refrigeration effect of the chlorotrifluoroethane-NMP system. For example, the refrigerant evaporation action at −25° C. and the refrigerant absorption action of the absorption liquid can be caused. In addition, since the chlorotrifluoroethane-NMP composition does not crystallize and has a low viscosity at low temperatures, it does not cause poor circulation of the absorption liquid. It is possible to safely extract or pump heat [at least -20℃ or below].

(ヘ) 実施例 第1図は本発明による多段吸収冷凍機の一実施
例を示す概略構成説明図である。
(F) Embodiment FIG. 1 is a schematic structural diagram showing an embodiment of a multistage absorption refrigerator according to the present invention.

1は冷媒に水を用いていると共に吸収液に臭化
リチウム水溶液を用いている前段の吸収冷凍機で
あり、G1,C1,E1,A1,Hex1,PR1,PA1はそれ
ぞれ前段の吸収冷凍機1の発生器、凝縮器、蒸発
器、吸収器、溶液熱交換器、冷媒液用ポンプ、吸
収液用ポンプである。そして、これら機器は冷媒
液の流下する管2、冷媒液の還流する管3,4、
吸収液の送られる管5,6,7、吸収液の流れる
管8,9により接続されて前段の吸収冷凍機の冷
媒および吸収液の循環路が形成されている。
1 is a front-stage absorption refrigerator that uses water as a refrigerant and a lithium bromide aqueous solution as an absorption liquid, and G 1 , C 1 , E 1 , A 1 , H ex1 , P R1 , P A1 are They are respectively a generator, a condenser, an evaporator, an absorber, a solution heat exchanger, a refrigerant liquid pump, and an absorption liquid pump of the absorption refrigerator 1 in the previous stage. These devices include a pipe 2 through which the refrigerant liquid flows, pipes 3 and 4 through which the refrigerant liquid flows back,
They are connected by pipes 5, 6, and 7 through which the absorption liquid is sent, and through pipes 8 and 9 through which the absorption liquid flows, thereby forming a circulation path for the refrigerant and absorption liquid of the upstream absorption refrigerator.

また、10は冷媒に1−クロロ−2.2.2−トリ
フルオロエタン〔以下、R133aという〕を用いて
いると共に吸収液にNMPを用いている後段の吸
収冷凍機であり、G10,C10,E10,A10,Hex10
V10,R10,PC10,PA10はそれぞれ後段の吸収冷
凍機の発生器、凝縮器、蒸発器、吸収器、溶液熱
交換器、膨張弁、精留器、分縮器、吸収液用ポン
プである。そして、これら機器は冷媒の流れる管
11,12,13,14、冷媒の還流する管1
5、吸収液の流れる管16,17、吸収液の送ら
れる管18,19,20により接続されて後段の
吸収冷凍機の冷媒および吸収液の循環器が前段の
吸収冷凍機のそれとは別個に独立して形成されて
いる。なお、VRは管15に備えた流量調節弁で
ある。
In addition, 10 is a latter-stage absorption refrigerator that uses 1-chloro-2.2.2-trifluoroethane (hereinafter referred to as R133a) as a refrigerant and NMP as an absorption liquid. E 10 , A 10 , H ex10 ,
V 10 , R 10 , PC 10 , and P A10 are for the generator, condenser, evaporator, absorber, solution heat exchanger, expansion valve, rectifier, demultiplexer, and absorption liquid of the downstream absorption refrigerator, respectively. It's a pump. These devices include pipes 11, 12, 13, 14 through which the refrigerant flows, and a pipe 1 through which the refrigerant flows back.
5. Connected by the absorption liquid flowing pipes 16, 17 and the absorption liquid sending pipes 18, 19, 20, the refrigerant and absorption liquid circulator of the latter stage absorption refrigerator is separate from that of the previous stage absorption refrigerator. independently formed. Note that VR is a flow rate control valve provided in the pipe 15.

21,22,23,24は前段の吸収冷凍機1
の発生器G1、凝縮器C1、蒸発器E1、吸収器A1
それぞれ内蔵した加熱器、冷却器、冷水器、冷却
器であり、25,26,27,28,29は後段
の吸収冷凍機10の発生器G10、分離器PC10、凝
縮器C10、蒸発器E10、吸収器A10にそれぞれ内蔵
した加熱器、冷却器、冷却器、熱交換器、冷却器
である。なお、Xh、Xlは精留器R10での気液の接
触を十分に行なうための充填材である。
21, 22, 23, 24 are absorption refrigerators 1 in the previous stage
The generator G 1 , the condenser C 1 , the evaporator E 1 , and the absorber A 1 each have a built-in heater, a cooler, a water cooler, and a cooler, respectively, and 25, 26, 27, 28, and 29 are the downstream ones. These are a heater, a cooler, a cooler, a heat exchanger, and a cooler built in the generator G 10 , separator PC 10 , condenser C 10 , evaporator E 10 , and absorber A 10 of the absorption refrigerator 10, respectively. . Note that X h and X l are fillers for sufficient gas-liquid contact in the rectifier R10 .

30,31は加熱器21と接続した管で、この
管には太陽熱利用温水や廃熱気などの低温レベル
の熱源流体が流れるようになつている。なお、こ
の管30,31にボイラー〔図示せず〕からの過
熱蒸気を流すようにしても良い。また、32は三
方弁Vtを介して管30,31に接続されたバイ
パス管である。33,34は加熱器25と接続し
た管で、この管にはボイラーからの熱源用蒸気が
流れるようになつている。
Reference numerals 30 and 31 denote tubes connected to the heater 21, through which a low-temperature heat source fluid such as hot water using solar heat or waste hot air flows. Note that superheated steam from a boiler (not shown) may be allowed to flow through the pipes 30 and 31. Moreover, 32 is a bypass pipe connected to the pipes 30 and 31 via a three-way valve Vt . Numerals 33 and 34 are tubes connected to the heater 25, through which heat source steam from the boiler flows.

また、35,36は冷却器22と接続した冷却
水用の管であり、37,38は冷却器24と接続
した冷却水用の管である。
Further, 35 and 36 are cooling water pipes connected to the cooler 22, and 37 and 38 are cooling water pipes connected to the cooler 24.

そして、前段の吸収冷凍機1の蒸発器E1に内
蔵した冷水器23と後段の吸収冷凍機10の吸収
器A10に内蔵した冷却器29とが水の循環用管路
ta,tb,tc,te,tfにより結ばれていると共に冷水
器23と冷却器27,26とが管路ta,tb,th
ti,tj,tfにより直列に結ばれている。また、Pは
水の循環用のポンプであり、39,40は後段の
吸収冷凍機10の蒸発器E10の熱交換器28と負
荷側熱交換用ユニツト〔図示せず〕とを結ぶ低温
のブライン用管路である。なお、41は前段の吸
収冷凍機1に備えた不凝縮ガスの抽気装置であ
り、このような抽気装置は後段の吸収冷凍機10
にも備えてある〔図示せず〕。
The water cooler 23 built in the evaporator E 1 of the absorption chiller 1 at the front stage and the cooler 29 built into the absorber A 10 of the absorption chiller 10 at the rear stage are connected to a water circulation pipe.
The water cooler 23 and the coolers 27, 26 are connected by t a , t b , t c , t e , t f , and the water cooler 23 and the coolers 27 , 26 are connected by pipes t a , t b , t h ,
They are connected in series by t i , t j , and t f . Further, P is a pump for water circulation, and 39 and 40 are low-temperature pumps that connect the heat exchanger 28 of the evaporator E 10 of the absorption refrigerator 10 in the latter stage and the load-side heat exchange unit (not shown). This is a brine conduit. Note that 41 is a non-condensable gas bleed device provided in the absorption refrigerator 1 at the front stage, and such a bleed device is used for the absorption refrigerator 10 at the rear stage.
It is also provided (not shown).

次に、このように構成された多段吸収冷凍機
(以下、本機という)の動作例について第2図お
よび第3図を参照しつつ説明する。ここにおい
て、第2図および第3図は本機の動作の一例を表
わしたデユーリング線図である。
Next, an example of the operation of the multi-stage absorption refrigerator (hereinafter referred to as the present machine) configured as described above will be explained with reference to FIGS. 2 and 3. Here, FIGS. 2 and 3 are Dueling diagrams showing an example of the operation of this machine.

前段の吸収冷凍機1において、その加熱器21
に86℃前後の熱源流体を供給しつつ冷却器22,
24にそれぞれ32℃前後の冷却水を流通させると
共に冷水器23に水を流通させることにより、第
2図に示すような水〔H2O〕−臭化リチウム
〔LiBr〕系の吸収冷凍サイクルが構成され、冷水
器23から15℃前後の冷水が得られる。一方、後
段の吸収冷凍機10において、その加熱器25に
180℃前後の熱源流体を供給しつつ冷却器29,
27〔さらに分縮器PC10の冷却器26〕に前段
の吸収冷凍機1の冷水器23で得られた冷水を流
通させると共に熱交換器28にブラインを流通さ
せることにより、第3図に示すようなR133a−
NMP系の吸収冷凍サイクルが構成され、熱交換
器28から−25℃前後の低温ブラインが得られ
る。
In the upstream absorption refrigerator 1, the heater 21
The cooler 22, while supplying heat source fluid at around 86℃ to
By passing cooling water at around 32°C through the water coolers 24 and water cooler 23, a water [H 2 O] - lithium bromide [LiBr] system absorption refrigeration cycle as shown in Fig. 2 is created. Cold water of around 15°C can be obtained from the water cooler 23. On the other hand, in the latter absorption refrigerator 10, the heater 25
Cooler 29 while supplying heat source fluid of around 180℃,
27 [Furthermore, by circulating the cold water obtained in the water cooler 23 of the absorption chiller 1 in the previous stage through the cooler 26 of the dephlegmator PC 10 , and flowing brine through the heat exchanger 28, as shown in FIG. Like R133a−
An NMP-based absorption refrigeration cycle is configured, and a low temperature brine of around -25°C is obtained from the heat exchanger 28.

このように、本機においては、比較的容易に得
られる一般的な温度レベルの熱源〔例えば、ボイ
ラーからのスチーム、太陽熱利用温水、排温水、
廃蒸気あるいは灯油や都市ガスその他の燃焼ガス
などの熱〕と比較的容易に得られる一般的な温度
レベルの冷却流体〔例えば、外気あるいは冷却塔
により外気と熱交換させた冷却水など〕を用いて
冷媒の凍結や吸収液の結晶を引起こすことなく−
20℃以下のブラインが得られる。なお、第2図お
よび第3図に示したサイクルは一例であり、冷媒
であるクロロトルフルオロエタンの種類〔例え
ば、1−クロロ−1.2.2−トリフルオロエタン
(R133)や1−クロロ−1.1.2−トリフルオロエタ
ン(R133b)など〕あるいは熱源や冷却流体の温
度などの運転条件を適当に選定することにより、
サイクルを変えて種々の温度レベルのブラインを
取出し得ることは勿論である。
In this way, this machine uses heat sources at general temperature levels that are relatively easy to obtain [e.g., steam from a boiler, solar hot water, waste water,
Using waste steam or heat from kerosene, city gas, and other combustion gases] and a relatively easily obtained cooling fluid at a general temperature level [e.g., outside air or cooling water heat-exchanged with outside air using a cooling tower]. without causing freezing of the refrigerant or crystallization of the absorption liquid.
A brine with a temperature below 20°C is obtained. The cycles shown in Figures 2 and 3 are just examples, and the type of refrigerant chlorotrifluoroethane [for example, 1-chloro-1.2.2-trifluoroethane (R133) and 1-chloro-1.1 .2-trifluoroethane (R133b)] or by appropriately selecting operating conditions such as heat source and cooling fluid temperature.
Of course, the cycles can be varied to remove brine at different temperature levels.

また、本機においては、前段の吸収冷凍機1か
ら得られる冷水で後段の吸収冷凍機10の凝縮器
C10および分縮器PC10を冷却することにより、後
段の吸収冷凍機10の発生器G10で冷媒濃度の高
い吸収液から多量の冷媒を分離することが可能に
なると共に冷媒純化のために精留器R10へ冷媒を
分縮器PC10から還流する比率を小さくすること
も可能になるため、熱源供給量に対する冷媒分離
量を多くして冷凍機の成績係数を高くし得る。
In addition, in this machine, the cold water obtained from the absorption refrigerator 1 in the previous stage is used to feed the condenser of the absorption refrigerator 10 in the latter stage.
By cooling C 10 and the dephlegmator PC 10 , it becomes possible to separate a large amount of refrigerant from the absorption liquid with a high refrigerant concentration in the generator G 10 of the absorption refrigerator 10 in the latter stage, and also to purify the refrigerant. Since it is also possible to reduce the ratio of refrigerant flowing back from the dephlegmator PC 10 to the rectifier R 10 , it is possible to increase the amount of refrigerant separated relative to the amount of heat source supply, thereby increasing the coefficient of performance of the refrigerator.

なお、上記の動作例においては本機を冷凍機と
して用いた場合について説明したが、本機を−25
℃前後の熱の汲み上げ装置すなわち多段吸収ヒー
トポンプとして用い得ることは勿論であり、ま
た、図示していないが、本機を二重効用の多段吸
収冷凍機として構成し得ることも勿論である。
In addition, in the above operation example, we explained the case where this machine is used as a refrigerator, but when this machine is used as a -25
It goes without saying that it can be used as a device for pumping up heat around 0.degree.

(ト) 発明の効果 以上のとおり、本発明による多段吸収冷凍機
は、石油やガスなどの燃焼熱あるいは排温水の熱
など比較的容易に得られる一般的な温度レベルの
熱源と海水や外気など比較的容易に得られる一般
的な温度レベルの冷却流体を用いて低温レベル
〔少なくとも−20℃以下〕の熱を安全に〔すなわ
ち、冷媒の凍結や吸収液の結晶などを引起こすこ
となく〕取出したり、汲み上げたりできる実用的
効果を有する。
(G) Effects of the Invention As described above, the multistage absorption chiller according to the present invention uses a relatively easily obtained general temperature level heat source such as combustion heat of oil or gas or heat of waste hot water, and seawater or outside air. Heat at a low temperature level (at least -20°C or lower) can be safely extracted (i.e., without freezing of the refrigerant or crystallization of the absorbing liquid) using a relatively easily obtained cooling fluid at a common temperature level. It has the practical effect of being able to be used for water or pumping.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による多段吸収冷凍機の一実施
例を示した概略構成説明図、第2図は本発明によ
る多段吸収冷凍機の前段側におけるH2o−LiBr
系の吸収冷凍機の動作例を表わしたデユーリング
線図、第3図は本発明による多段吸収冷凍機の後
段側におけるR133a−NMP系の吸収冷凍機の動
作例を表わしたデユーリング線図である。 1……水−臭化リチウム系吸収冷凍機、G1
…発生器、C1……凝縮器、E1……蒸発器、A1
…吸収器、Hex1……溶液熱交換器、PA1……吸収
液用ポンプ、2,3,4,5,6,7,8,9…
…管、10……R133a−NMP系吸収冷凍機、G10
……発生器、C10……凝縮器、E10……蒸発器、
A10……吸収器、Hex10……溶液熱交換器、V10
…膨張弁、R10……精留器、PC10……分縮器、
PA10……吸収液用ポンプ、11,12,13,1
4,15,16,17,18,19,20……
管、21……加熱器、22……冷却器、23……
冷水器、24……冷却器、25……加熱器、2
6,27……冷却器、28……熱交換器、29…
…冷却器、ta,tb,tc,te,tf,tg,th,ti,tj……
管路、P……ポンプ。
FIG. 1 is a schematic structural explanatory diagram showing an embodiment of a multi-stage absorption refrigerator according to the present invention, and FIG .
FIG. 3 is a Duering diagram showing an example of the operation of an absorption refrigerator of the R133a-NMP system on the downstream side of the multi-stage absorption refrigerator according to the present invention. 1... Water-lithium bromide absorption refrigerator, G 1 ...
... Generator, C 1 ... Condenser, E 1 ... Evaporator, A 1 ...
...Absorber, H ex1 ...Solution heat exchanger, P A1 ...Absorbing liquid pump, 2, 3, 4, 5, 6, 7, 8, 9...
...Tube, 10...R133a-NMP absorption refrigerator, G 10
... Generator, C 10 ... Condenser, E 10 ... Evaporator,
A 10 ...absorber, H ex10 ...solution heat exchanger, V 10 ...
…expansion valve, R 10 … rectifier, PC 10 … decentralizer,
P A10 ... Absorption liquid pump, 11, 12, 13, 1
4, 15, 16, 17, 18, 19, 20...
Tube, 21... Heater, 22... Cooler, 23...
Water cooler, 24... Cooler, 25... Heater, 2
6, 27...Cooler, 28...Heat exchanger, 29...
…Cooler, t a , t b , t c , t e , t f , t g , t h , t i , t j ……
Pipeline, P...pump.

Claims (1)

【特許請求の範囲】[Claims] 1 独立した二つの冷媒、吸収液循環路を有し、
前段の吸収冷凍機には水−ハロゲン化リチウム系
の冷媒、吸収液を用いると共に後段の吸収冷凍機
にはクロロトリフルオロエタン−Nメチル2ピロ
リドン系の冷媒、吸収液を用い、かつ、前段の吸
収冷凍機の蒸発器と後段の吸収冷凍機の吸収器お
よび/または凝縮器とを熱的に接続したことを特
徴とする多段吸収冷凍機。
1 Has two independent refrigerant and absorption liquid circulation paths,
The first-stage absorption refrigerator uses a water-lithium halide refrigerant and absorption liquid, and the second-stage absorption refrigerator uses a chlorotrifluoroethane-N-methyl-2-pyrrolidone refrigerant and absorption liquid. A multi-stage absorption refrigerator characterized in that an evaporator of the absorption refrigerator is thermally connected to an absorber and/or a condenser of a downstream absorption refrigerator.
JP60176555A 1985-08-10 1985-08-10 Multistage absorption refrigerator Granted JPS6237650A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60176555A JPS6237650A (en) 1985-08-10 1985-08-10 Multistage absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60176555A JPS6237650A (en) 1985-08-10 1985-08-10 Multistage absorption refrigerator

Publications (2)

Publication Number Publication Date
JPS6237650A JPS6237650A (en) 1987-02-18
JPH0360037B2 true JPH0360037B2 (en) 1991-09-12

Family

ID=16015627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60176555A Granted JPS6237650A (en) 1985-08-10 1985-08-10 Multistage absorption refrigerator

Country Status (1)

Country Link
JP (1) JPS6237650A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4906596B2 (en) * 2007-05-29 2012-03-28 本田技研工業株式会社 Axle-motion device mounting structure
JP2013160399A (en) * 2012-02-01 2013-08-19 Kawasaki Thermal Engineering Co Ltd Control operation method of absorption refrigerating machine

Also Published As

Publication number Publication date
JPS6237650A (en) 1987-02-18

Similar Documents

Publication Publication Date Title
JP2592625B2 (en) Heat absorbing device and method
JP2003130487A (en) Absorption refrigerating machine
JP4101373B2 (en) Heat absorption system
JPS5913670B2 (en) Dual effect absorption refrigeration equipment
JP4885467B2 (en) Absorption heat pump
JPH11304274A (en) Waste heat utilized absorption type water cooling/ heating machine refrigerating machine
CN1075883C (en) Direct-burning type lithium bromide absorption type heat pump set system
JPH0360037B2 (en)
JP2000121196A (en) Cooling/heating system utilizing waste heat
JP2554782B2 (en) Absorption heat pump device
JP2005300047A (en) Heat exchanger system and absorption refrigerating machine using the same
RU2784256C1 (en) Air-conditioning system based on an absorption refrigerator with connecting a heat pump unit and solar collectors
CN2311733Y (en) Direct-fired lithium bromide absorption heat pump unit system
KR100827569B1 (en) Absorption refrigerating apparatus with heat pump
JPS6122225B2 (en)
JPS6122224B2 (en)
JP2000088391A (en) Absorption refrigerating machine
JPH06185830A (en) Absorption type refrigerator, cold/warm water machine and heat pump provided with steam turbine and compressor at absorber
JPS6022253B2 (en) absorption refrigerator
JP3283178B2 (en) Absorption refrigerator
JP2567662B2 (en) Air-cooled double-effect absorption refrigerator
JP2543258B2 (en) Absorption heat source device
SU844949A1 (en) Absorption-diffusion refrigerating unit
JPH0345090Y2 (en)
SU659847A1 (en) Absorption refrigerator