JPH03598A - Three axis attitude control type artificial satellite - Google Patents

Three axis attitude control type artificial satellite

Info

Publication number
JPH03598A
JPH03598A JP1136340A JP13634089A JPH03598A JP H03598 A JPH03598 A JP H03598A JP 1136340 A JP1136340 A JP 1136340A JP 13634089 A JP13634089 A JP 13634089A JP H03598 A JPH03598 A JP H03598A
Authority
JP
Japan
Prior art keywords
panel
earth
receiver
cooling
oriented surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1136340A
Other languages
Japanese (ja)
Inventor
Masahito Higuchi
雅人 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1136340A priority Critical patent/JPH03598A/en
Publication of JPH03598A publication Critical patent/JPH03598A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radio Relay Systems (AREA)

Abstract

PURPOSE:To improve the receiving performance characteristic by loading a receiver on a cooling panel as well as mounting optical solar reflectors on the space side of the panel so as to keep the receiver in the low temperature state, thus minimizing the noise factor of the receiver. CONSTITUTION:The title artificial satellite is formed of an earth directing panel 1 with mission machinery and tools on board, a U-shaped cooling panel provided thereon, an insulation for insulating the heat conduction of both panels 1, 16, connecting bolts 17 for connecting the cooling panel 16 to the earth directing panel 1 through the insulation, and optical solar reflectors mounted on the space side of the cooling panel 16. A receiver is disposed on the cooling panel 16 for maintaining the low temperature state by performing heat radiation to the space from the optical solar reflectors 7, thus minimizing the noise factor of the receiver and eventually improving the receiving performance characteristic.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、地球指向面パネル部に設けられた冷却用パネ
ルに受信機を配置し低温状態に保つことだよシ、受信性
能指数改善を計る三軸姿勢制御型人工衛星に関するもの
である。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention is to maintain a receiver at a low temperature by placing it on a cooling panel provided in the earth-oriented surface panel, thereby improving the receiving performance index. This is related to a three-axis attitude controlled artificial satellite.

〔従来の技術〕[Conventional technology]

第8図は従来の三軸姿勢制御型人工衛星の外観図であシ
、第9図はそのミッションパネルのレイアウト図である
FIG. 8 is an external view of a conventional three-axis attitude control type artificial satellite, and FIG. 9 is a layout diagram of its mission panel.

図に於て、(1)は地球指向面パネル、(2)は北面パ
ネル、(31は東面パネル、(4)は地上局と信号の授
受を行うアンテナ、(5)は太陽電池パドルと衛星本体
を機械的に結合するヨーク部、(6)は衛星所要電力を
供給する太陽電池パドル、(71は太陽光外部入力を遮
断し衛星内部の熱を放射するオプチカルソーラリフレク
タ、(8)はアンテナ(4)と衛星本体を機械的に結合
するヒンジ部、(9)はアンテナ(4)と信号の授受を
行うフィーダ一部、α・は南面パネル、αDは太陽電池
パドル(6)を1日当シ1回転させる太陽電池パドル駆
動部、aっけこの太陽電池パドル駆動部+111を制御
する太陽電池パドル駆動エレクトロニクス、αjは進行
波管増幅器、固体増幅器等の高発熱機器、a4はオプチ
カルソーラリフレクタ(71から宇宙空間へ熱を放射す
る放熱領域、a!3は地上局から送信されるアップリン
ク信号をアンテナ(4)及びフィーダ一部(9)を介し
受信する受信機である。従来の三軸姿勢制御型人工衛星
は上記のように構成され、静止軌道上での北面パネル(
2)及び南面パネル霞を放熱面とし、搭載機器が発生し
た熱をすべてこの面から宇宙空間に放出しており、各放
熱面には太陽光吸収率が小さく、熱放射率が大きいオプ
チカルソーラリフレクタ(7)を装着し、所要の放熱領
域0を確保してbた。低発熱機器である受信機a9及び
信号の切換えを行うスイッチ類はすべて地球指向面パネ
ルfl)上に配置しておシ、アンテナ(4)この間で信
号の授受を行うフィーダ一部史)からなるべく近い位置
に受信機aSを配置することで、給電系損失を小さくシ
、所要の受信性能指数を得ていたO 〔発明が解決しようとする課題〕 従来の三軸姿勢制御型人工衛星は上記のように。
In the figure, (1) is the earth orientation panel, (2) is the north panel, (31 is the east panel, (4) is the antenna that sends and receives signals to the ground station, and (5) is the solar array paddle. The yoke part mechanically connects the satellite body, (6) is a solar battery paddle that supplies the satellite's required power, (71 is an optical solar reflector that blocks external sunlight input and radiates heat inside the satellite, and (8) is Hinge part that mechanically connects the antenna (4) and the satellite body, (9) is part of the feeder that sends and receives signals to the antenna (4), α・ is the south panel, αD is the part that connects the solar battery paddle (6) to 1 The solar battery paddle drive unit that rotates the per diem one rotation, the solar battery paddle drive electronics that controls the solar battery paddle drive unit +111, αj is a high heat generating device such as a traveling wave tube amplifier or a solid state amplifier, and a4 is an optical solar A heat dissipation area that radiates heat from the reflector (71 to space), a!3 is a receiver that receives uplink signals transmitted from the ground station via the antenna (4) and part of the feeder (9). The three-axis attitude control satellite is configured as described above, with the north panel (
2) The south panel haze is used as a heat dissipation surface, and all the heat generated by the onboard equipment is radiated into space from this surface. Each heat dissipation surface is equipped with an optical solar reflector that has a low solar absorption rate and a high thermal emissivity. (7) was attached to ensure the required heat dissipation area 0. The receiver A9, which is a low heat generating device, and the switches for switching signals are all placed on the earth-oriented surface panel (fl), and the antenna (4) is a part of the feeder that sends and receives signals between them. By arranging the receiver aS in a close position, the power supply system loss was reduced and the required reception performance index was obtained. like.

地球指向面パネル上に受信機を配置し、フィーダ一部こ
の間をできるだけ短い給電ケーブル又は導波管で接続す
ることで、給電系損失を小さくし衛星システムとして所
要の受信性能指数を得てbた・受信性能指数は、アンテ
ナ熱雑音、給電系損失及び受信機雑音指数の対数換算の
合計値をアンテナ利得から差し引くことで、G/T(ジ
−オーバティー)として得られておシ給電系損失を小さ
くすることで確かに改善される。しかし、給電系損失を
小さ(することには、レイアウト設計士の限界があシ、
衛星システム設計、fFに、ユーザ宇宙機捕捉追尾系で
高い追尾精度を得る必要があシ、所要受信性能指数が大
きく、かつレイアウト設計上の制約条件が多bデータ中
継追跡衛星のシステム設計に於て、所要受信性能指数が
得られない場合の受信性能指数改善手法を確立すること
が大きな課題となっていた。
By arranging the receiver on the earth-oriented surface panel and connecting part of the feeder with a feeding cable or waveguide as short as possible, we can reduce the feeding system loss and obtain the required receiving performance index for the satellite system.・The reception figure of merit is obtained as G/T (geo-overty) by subtracting the logarithmically converted sum of antenna thermal noise, feed system loss, and receiver noise figure from the antenna gain. It is certainly improved by making it smaller. However, there are limits to layout designers in reducing power supply system losses.
In satellite system design, fF requires high tracking accuracy in the user spacecraft acquisition and tracking system, the required receiving performance index is large, and there are many layout design constraints when designing a data relay tracking satellite system. Therefore, a major challenge has been to establish a method for improving the reception performance index when the required reception performance index cannot be obtained.

この発明はかかる課題を解決する為になされたものであ
シ、地球指向面)くネル部に設けられたコの字形の冷却
用パネルの宇宙空間側に、太陽光吸収率が小さく熱放射
率の大きいオプチカルソーラリフレクタを実装し、放熱
領域を確保し、冷却用パネルとパネルに搭載される受信
機を低温状態に保ち、受信機の雑音指数を小ζくするこ
とで受信性能指数の改善を計る三軸姿勢制御型人工衛星
を得ることを目的とする。
This invention was made to solve this problem. By implementing a large optical solar reflector to secure a heat dissipation area, keeping the cooling panel and the receiver mounted on the panel at a low temperature, and reducing the noise figure of the receiver, the receiving performance index is improved. The purpose is to obtain a three-axis attitude-controlled artificial satellite that can measure

また、この発明の別の発明は上記目的に加えて。Moreover, another invention of this invention is in addition to the above-mentioned object.

地球指向面パネル部に熱電対プレートと一体化した冷却
用パネルを設け、熱電対プレートに電力制御器よシミ流
を流すことでペルチエ効果に基づ(吸熱作用を生じさせ
、冷却用パネルとパネルに搭載される受信機を低温状態
に保ち、受信機の雑音指数を小さくすることで受信性能
指数の改善を計る三軸姿勢制御型人工衛星を得ることを
目的とする。
A cooling panel integrated with a thermocouple plate is installed in the earth-oriented surface panel section, and by passing a stain flow through the thermocouple plate from a power controller, the cooling panel and panel The objective is to obtain a three-axis attitude control artificial satellite that improves the reception performance index by keeping the receiver mounted on the satellite at a low temperature and reducing the noise figure of the receiver.

〔課題を解決する為の手段〕[Means to solve problems]

この発明に係る三軸姿勢制御型人工衛星は、地球指向面
パネル部に、インシユレーシヨンで衛星本体と断熱され
たコの字形の冷却用パネルを設け。
The three-axis attitude control artificial satellite according to the present invention includes a U-shaped cooling panel insulated from the satellite body by insulation in the earth-oriented surface panel section.

この冷却用パネルに受信機を搭載すると共にパネルの宇
宙空間側にオプチカルソーラリフレクタを実装したもの
である。
A receiver is mounted on this cooling panel, and an optical solar reflector is mounted on the outer space side of the panel.

また、この発明の別の発明に係る三軸姿勢制御型人工衛
星は、地球指向面パネル部に、インシユレーシヨンで衛
星本体と断熱された冷却用パネルを設け、この冷却用パ
ネルに受信機を搭載すると共に、パネルと一体化した熱
電対プレートにリード線を介し電力制御器よりitt流
を流し、この電流を制御するものである。
Further, a three-axis attitude control artificial satellite according to another invention of the present invention is provided with a cooling panel insulated from the satellite main body by insulation in the earth-oriented surface panel section, and a receiver is mounted on the cooling panel. It is equipped with a thermocouple plate that is integrated with the panel, and controls this current by passing an ITT current from a power controller through lead wires to the thermocouple plate integrated with the panel.

〔作用〕[Effect]

この発明に於ては、地球指向面パネルこの間をインシユ
レーシヨンにより熱遮断された冷却用パネルの宇宙空間
側から、オプチカルソーラリフレクタを通じ効率良く熱
放射が行われる為、冷却用パAルが低温状態に保たれ、
搭載されている受信機の雑音指数が小さくなシ、結果と
して受信性能指数が改善される。
In this invention, heat is efficiently radiated from the outer space side of the cooling panel, which is thermally insulated between the earth-oriented surface panels by insulation, through the optical solar reflector. kept at a low temperature,
The installed receiver has a small noise figure, and as a result, the receiving figure of merit is improved.

また、この発明の別の発明に於ては、地球指向面パネル
この間をインシユレーシヨンにより熱遮断された冷却用
パネルと一体化してbる熱電対プレートに、電力制御器
からリード線を介し電流が流されることでペルチエ効果
に基づく吸熱作用力;生じ冷却用パネルが低温状態に保
たれ、搭載されている受信機の雑音指数が小さくなシ、
結果として受信性能指数が改善される。
In another invention of the present invention, a lead wire is connected from a power controller to a thermocouple plate which is integrated with a cooling panel which is thermally isolated by insulation between the earth-oriented surface panel and the cooling panel. When a current is passed, an endothermic force based on the Peltier effect is generated, which keeps the cooling panel at a low temperature and reduces the noise figure of the mounted receiver.
As a result, the reception figure of merit is improved.

〔実施例〕〔Example〕

第1図は本発明の一実施例を示す三軸姿勢制御型人工衛
星の外観図であシ、第2図はこの発明の別の発明に於け
る三軸姿勢制御型人工衛星の外観図、第3図は本発明の
一実施例を示す三軸姿勢制御型人工衛星のミッションパ
ネルのレイアウト図。
FIG. 1 is an external view of a three-axis attitude control type artificial satellite showing one embodiment of the present invention, and FIG. 2 is an external view of a three-axis attitude control type artificial satellite according to another invention of the present invention. FIG. 3 is a layout diagram of a mission panel of a three-axis attitude control type artificial satellite showing an embodiment of the present invention.

第4図はこの発明の別の発明に於ける三軸姿勢制御型人
工衛星のミッションパネルのレイアウト図。
FIG. 4 is a layout diagram of a mission panel of a three-axis attitude control artificial satellite according to another invention of the present invention.

第5図は本発明の一実施例を示す三軸姿勢制御型人工衛
星の断面図、第6図はこの発明の別の発明に於ける三軸
姿勢制御型人工衛星の断面図、第7図はこの発明の別の
発明に於ける三軸姿勢制御型人工衛星の接続図である。
FIG. 5 is a cross-sectional view of a three-axis attitude control type artificial satellite showing one embodiment of the present invention, FIG. 6 is a cross-sectional view of a three-axis attitude control type artificial satellite according to another invention of the present invention, and FIG. is a connection diagram of a three-axis attitude control type artificial satellite in another invention of this invention.

図に於て、(1)〜α9は上記従来装置と全く同一のも
のであシ、鰻はコの字形冷却用パネル、卸は冷却パネル
と地球指向面パネルを締結する結合ポル)allは電流
が流れることで吸熱作用を生じる熱電対プレート、(1
9はこの熱電対プレートと一体化した冷却用パネル、翰
は地球指向面パネルと冷却用パネルの間を断熱する断熱
インシユレーシヨン、 canは宇宙空間とパネル面こ
の熟達へいを計る多層インシユレーシヨン、■は熱電対
プレートaIに電流を供給するリード線。
In the figure, (1) to α9 are exactly the same as the conventional device described above, the eel is a U-shaped cooling panel, and the wholesaler is a connecting pole connecting the cooling panel and the earth-oriented surface panel).all is the current. Thermocouple plate (1
9 is the cooling panel that is integrated with this thermocouple plate, the can is the heat insulation insulation that insulates between the earth-oriented surface panel and the cooling panel, and the can is the multilayer insulation that measures the mastery of this between the outer space and the panel surface. ration, ■ is a lead wire that supplies current to the thermocouple plate aI.

(至)はリード線@を介し熱電対プレート08に流れる
電流を制御するバス機器である電力制御器、@は受信機
aSに対し低温時に温度補償を行うヒータである。本発
明の一実施例である三軸姿勢制御型人工衛星は第1図に
示すように地球指向面(1)にコの字形の冷却用パネル
(eを設け、第3図のレイアウト図に示すように、受信
機a9をパネル上に配置している。コの字形冷却用パネ
ルa0はアンテナ(4)からの信号を供給するフィーダ
一部(9)の近くに設けられておシ、小さな給電系損失
でフィーダ一部(91から受信機(1りに信号が供給さ
れる。コの字形冷却用パネル(1eは、第5図の断面図
に示すように、ガラス繊維強化プラスチック等の断熱性
を有する断熱インシユレーシヨン(至)によ少、地球指
向面パネル(11と熟達へいされて込る。これにより高
発熱機器αjが放熱領域αるから放射する発生熱量のう
ちの一部がパネル間の熱伝導により地球指向面パネルi
l+を介しコの字形冷却用パネル(IOに伝導し、パネ
ル温度の上昇をもたらすことを防いでbる。熱的に衛星
本体から遮へいされたコの字形冷却用パネル翰の宇宙空
間側には、太陽光吸収率が小さく熱放射率が大きいオプ
チカルソーラリフレクタ(])が装着されておシ、非装
着面はアルミナイズドカプトン、マイラ等で構成される
多層インシユレーシヨンQ9で覆われ断熱面となってb
る。この時のコの字形冷却用パネルαOの熱環境は、太
陽光照射強度、サンアングル、搭載機器発熱量及び放熱
面積のバランスにより平衡している。従って低発熱機器
である受信機αりを搭載するコの字形冷却用パネル(l
eの放熱面積を熱設計に基づく値よシもやや大きくする
ことにより、受信機αりを雑音指数が極めて小さくなる
理想的な低温環境下におくことができ、受信性能指数を
改善することができる。さて。
(to) is a power controller that is a bus device that controls the current flowing to the thermocouple plate 08 via the lead wire @, and @ is a heater that performs temperature compensation for the receiver aS at low temperatures. A three-axis attitude control artificial satellite, which is an embodiment of the present invention, is provided with a U-shaped cooling panel (e) on the earth-oriented surface (1) as shown in FIG. 1, and as shown in the layout diagram in FIG. The receiver a9 is placed on the panel as shown in FIG. Due to system loss, a signal is supplied from part of the feeder (91 to the receiver).The U-shaped cooling panel (1e is a heat insulating material such as glass fiber reinforced plastic, as shown in the cross-sectional view in Figure 5). A small amount of the earth-oriented surface panel (11) is installed in the heat insulation insulation (total) with Earth-oriented surface panel i due to heat conduction between panels
The U-shaped cooling panel (which conducts to the IO through the l+ and prevents the panel temperature from increasing) is placed on the outer space side of the U-shaped cooling panel that is thermally shielded from the satellite body. , an optical solar reflector (]) with low solar absorption and high thermal emissivity is installed, and the non-installed side is covered with multilayer insulation Q9 made of aluminized Kapton, Mylar, etc., and is a heat insulating surface. becomes b
Ru. At this time, the thermal environment of the U-shaped cooling panel αO is balanced by the balance of sunlight irradiation intensity, sun angle, calorific value of mounted equipment, and heat radiation area. Therefore, the U-shaped cooling panel (l
By making the heat dissipation area of e slightly larger than the value based on thermal design, it is possible to place the receiver α in an ideal low-temperature environment where the noise figure is extremely small, and the receiving performance index can be improved. can. Now.

この発明は上記のように、受信機を搭載するパネルを衛
星本体から断熱インシユレーシヨンによυ熟達へいし、
放熱面積を熱設計に基づく値よシもやや大きくすること
により、受信機を低温環境下におくものであるが、この
発明の別の発明に係る三輪姿勢制御型人工衛星は、第2
図に示すように地球指向面+11に熱電対プレー) a
llと一体化した冷却用パネルα$を設け、第4図のレ
イアウト図に示すように受信機a!9をパネル上に配置
してbる。冷却用パネルα9は、アンテナ(4)からの
信号を供給するフィーダ一部(9)の近くに設けられて
おシ、小さな給電系損失でフィーダ一部(9)から受信
&A (isに信号が供給される。冷却用パネルa9は
第6図の断面図に示すように、ガラス繊維強化プラスチ
ック等の断熱性を有する断熱インシユレーシヨン(至)
によ)、地球指向面パネル(1)と熟達へいされてbる
As mentioned above, this invention enables the panel on which the receiver is mounted to be insulated from the satellite body,
By making the heat dissipation area slightly larger than the value based on thermal design, the receiver is placed in a low-temperature environment.
Thermocouple plate on the earth orientation plane +11 as shown in the figure) a
A cooling panel α$ integrated with the receiver a! is provided as shown in the layout diagram of FIG. Place 9 on the panel and b. The cooling panel α9 is installed near the feeder part (9) that supplies the signal from the antenna (4). As shown in the cross-sectional view of FIG.
(1) and become proficient with the earth-oriented surface panel (1).

これにより、高発熱機器0が放熱領域α心から放射する
発生熱量のうちの一部がパネル間の熱伝導によ)地球指
向面パネル(11を介し冷却用パネル(19に伝導し、
パネル温度の上昇をもたらすことを防すでbる。この熱
的に衛星本体から遮へいされた冷却用パネル(I!Iと
一体化した熱電対プレートαaと。
As a result, a part of the generated heat radiated from the heat radiation area α by the high heat generation device 0 is conducted to the cooling panel (19) via the earth-oriented surface panel (11) due to heat conduction between the panels.
This prevents an increase in panel temperature. This cooling panel (with thermocouple plate αa integrated with I!I) is thermally shielded from the satellite body.

バス機器である電力制御器(ハ)は第1図に示すように
リード線口により接続されておシ、地上局からのコマン
ド信号に従い電力制御器@から熱電対プレートasに電
流が流される。異種金属が接合されている熱電対プレー
トagに電流が流されると、その接合面にペルチエ効果
に基づく吸熱作用が生じる。この吸熱作用により、冷却
用パネルα3の温度が低下することで、受信機19を雑
音指数が極めて小さくなる理想的な低温環境下におくこ
とができ。
The power controller (c), which is a bus device, is connected through a lead wire port as shown in FIG. 1, and current is caused to flow from the power controller to the thermocouple plate AS in accordance with a command signal from the ground station. When a current is passed through the thermocouple plate ag to which dissimilar metals are joined, an endothermic action based on the Peltier effect occurs on the joint surface. Due to this heat absorption effect, the temperature of the cooling panel α3 is lowered, so that the receiver 19 can be placed in an ideal low-temperature environment where the noise figure is extremely small.

受信性能指数を改善することができる。熱電対のペルチ
エ効果を応用した冷蔵庫は既に実用化されておル、この
場合の熱電対プレート0aも既成の技術を応用し、宇宙
用として実績のある銅−コンスタンタンあるいは、鉄−
コンスタンタン等の熱電対を使用し十分実現可能である
。受信機(US単体の低温側の温度補償はヒータ(至)
の0N10FF  制御によ)行う。
The reception figure of merit can be improved. Refrigerators that utilize the Peltier effect of thermocouples have already been put into practical use, and the thermocouple plate 0a in this case also uses existing technology, and is made of copper-constantan or iron-copper, which has a proven track record for space use.
This can be fully realized using a thermocouple such as constantan. Receiver (temperature compensation on the low temperature side of the US unit is by heater (to)
(0N10FF control).

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明した通シ、衛星のミッションパネル
である地球指向面パネルにコの字形冷却用パネルを設け
、受信機を搭載することによ)。
The present invention is based on the above-described method, by providing a U-shaped cooling panel on the earth-oriented surface panel, which is a mission panel of a satellite, and mounting a receiver thereon.

受信機を雑音指数が極めて小さくなる理想的な低温環境
下におくことができる。従って受信性能指数を改善する
効果がある。また、この発明の別の発明は、地球指向面
パネルに熱電対プレートと一体化した冷却用パネルを設
は受信機を搭載することによ)、受信機を雑音指数が極
めて小さくなる理想的な低温環境下におくことかできる
。従って受信性能指数を改善する効果がある。
The receiver can be placed in an ideal low-temperature environment where the noise figure is extremely small. Therefore, it has the effect of improving the reception performance index. Another invention of the present invention is to install a cooling panel integrated with a thermocouple plate on the earth-oriented surface panel and mount the receiver on the earth-oriented surface panel. Can be placed in a low temperature environment. Therefore, it has the effect of improving the reception performance index.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す三軸姿勢制御型人工衛
星の外観図、第2図はこの発明の別の発明に於ける三軸
姿勢制御型人工衛星の外観図、第3図は本発明の一実施
例を示す三軸姿勢制御型人工衛星のミッションパネルの
レイアウト図、第4図はこの発明の別の発明に於ける三
軸姿勢制御型人工衛星のミッションパネルのレイアラ)
図、235図は本発明の一実施例を示す三軸姿勢制御型
人工衛星の断面図、第6図はこの発明の別の発明に於け
る三軸姿勢制御型人工衛星の断面図、第1図はこの発明
の別の発明に於ける三軸姿勢制御型人工衛星の接続図#
第8図は従来の三軸姿勢制御型人工衛星の外観図、第9
図は従来の三軸姿勢制御盤人工衛星のミッションパネル
のレイアウト図である。図に於て、(1)は地球指向面
パネル、(2)は北面パネル、(3)は東西パネル#(
4)はアンテナ、(5)はヨーク部、 (61は太陽電
池パドル、(7)はオブチヵルンーラリフレクタ、(8
)はヒンジ部、(9)はフィーダ一部、αGは南面パネ
ル、αBは太陽電池パドル駆動部、α2は太陽電池パド
ル駆動エレクトロニクス。 αjは高発熱機器、αをは放熱領域、αりは受信機、 
aeはコの字形冷却用パネル、αDは結合ボルト、as
は熱電対プレート、a9は冷却用パネル、(2Qは断熱
インシユレーシヨン、011は多層インシユレーシヨン
。 (至)はリード線、@は電力制御器、04はヒータを示
してbる。尚、各図中同一符号は、同−又は相当部分を
示す。
Fig. 1 is an external view of a three-axis attitude control type artificial satellite showing one embodiment of the present invention, Fig. 2 is an external view of a three-axis attitude control type artificial satellite according to another invention of the present invention, and Fig. 3 4 is a layout diagram of a mission panel of a three-axis attitude control type artificial satellite showing an embodiment of the present invention, and FIG. 4 is a layout diagram of a mission panel of a three-axis attitude control type artificial satellite according to another invention of the present invention)
235 is a sectional view of a three-axis attitude control type artificial satellite showing one embodiment of the present invention, FIG. 6 is a cross-sectional view of a three-axis attitude control type artificial satellite in another invention of this invention, and FIG. The figure is a connection diagram of a three-axis attitude control type artificial satellite in another invention of this invention#
Figure 8 is an external view of a conventional three-axis attitude control satellite;
The figure is a layout diagram of the mission panel of a conventional three-axis attitude control satellite. In the figure, (1) is the earth-oriented panel, (2) is the north panel, and (3) is the east-west panel # (
4) is the antenna, (5) is the yoke part, (61 is the solar array paddle, (7) is the obtical polar reflector, (8) is the solar array paddle, and (8) is the solar array paddle.
) is the hinge part, (9) is part of the feeder, αG is the south panel, αB is the solar array paddle drive unit, and α2 is the solar array paddle drive electronics. αj is high heat generation equipment, α is heat dissipation area, αri is receiver,
ae is a U-shaped cooling panel, αD is a connecting bolt, as
is the thermocouple plate, a9 is the cooling panel, (2Q is the heat insulation insulation, 011 is the multilayer insulation. (to) is the lead wire, @ is the power controller, and 04 is the heater b). Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] (1)ミッション機器を搭載する地球指向面パネルと、
この地球指向面パネル部に設けられたコの字形の冷却用
パネルと、この冷却用パネルと地球指向面パネルの熱伝
導をしや断するインシユレーシヨンと、このインシユレ
ーシヨンを介し冷却用パネルを地球指向面パネルに結合
する結合ボルトと、冷却用パネルの宇宙空間側に実装し
たオプチカルソーラリフレクタにより構成され、オプチ
カルソーラリフレクタから宇宙空間に放熱を行うことで
低温状態に保たれる冷却用パネル上に受信機を配置し、
受信機の雑音指数を小さくすることで受信性能指数を改
善することを特徴とする三軸姿勢制御型人工衛星。
(1) Earth-oriented surface panel carrying mission equipment;
A U-shaped cooling panel provided on this earth-oriented surface panel, an insulator that prevents heat conduction between this cooling panel and the earth-oriented surface panel, and a cooling panel that is cooled through this insulation. The cooling system consists of a connecting bolt that connects the solar panel to the earth-oriented surface panel, and an optical solar reflector mounted on the outer space side of the cooling panel.The cooling system maintains a low temperature by radiating heat from the optical solar reflector to outer space. Place the receiver on the panel for
A three-axis attitude control artificial satellite that improves the reception performance index by reducing the noise figure of the receiver.
(2)ミッション機器を搭載する地球指向面パネルと、
この地球指向面パネル部に設けられた冷却用パネルと、
この冷却用パネルに一体化した熱電対プレートと、この
熱電対プレートに電流を流すリード線と、このリード線
を介し熱電対プレートに流れる電流を地上からのコマン
ド信号に従い制御する電力制御器と、冷却用パネルと地
球指向面パネルの熱伝導をしや断するインシユレーシヨ
ンと、このインシユレーシヨンを介し冷却用パネルを地
球指向面パネルに結合する結合ボルトにより構成され、
熱電対プレートのペルチエ効果に基づく吸熱作用により
低温状態に保たれる冷却用パネル上に受信機を配置し、
受信機の雑音指数を小さくすることで受信性能指数を改
善することを特徴とする三軸姿勢制御型人工衛星。
(2) Earth-oriented surface panel carrying mission equipment;
A cooling panel provided on this earth-oriented surface panel,
A thermocouple plate integrated into the cooling panel, a lead wire for passing current through the thermocouple plate, and a power controller that controls the current flowing through the thermocouple plate via the lead wire according to a command signal from the ground. It consists of an insulation that prevents heat conduction between the cooling panel and the earth-oriented surface panel, and a connecting bolt that connects the cooling panel to the earth-oriented surface panel through this insulation.
The receiver is placed on a cooling panel that is kept at a low temperature by the endothermic action of the thermocouple plate based on the Peltier effect.
A three-axis attitude control artificial satellite that improves the reception performance index by reducing the noise figure of the receiver.
JP1136340A 1989-05-30 1989-05-30 Three axis attitude control type artificial satellite Pending JPH03598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1136340A JPH03598A (en) 1989-05-30 1989-05-30 Three axis attitude control type artificial satellite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1136340A JPH03598A (en) 1989-05-30 1989-05-30 Three axis attitude control type artificial satellite

Publications (1)

Publication Number Publication Date
JPH03598A true JPH03598A (en) 1991-01-07

Family

ID=15172918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1136340A Pending JPH03598A (en) 1989-05-30 1989-05-30 Three axis attitude control type artificial satellite

Country Status (1)

Country Link
JP (1) JPH03598A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001106194A (en) * 1999-10-07 2001-04-17 Ihi Aerospace Co Ltd Traveling vehicle for space probing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001106194A (en) * 1999-10-07 2001-04-17 Ihi Aerospace Co Ltd Traveling vehicle for space probing

Similar Documents

Publication Publication Date Title
US10793297B2 (en) Passive thermal system comprising combined heat pipe and phase change material and satellites incorporating same
US6394395B1 (en) Combination solar array assembly and antenna for a satellite
JPH05193592A (en) Heat controller for space-ship
US4371135A (en) Solar array spacecraft reflector
CN105346737B (en) A kind of GEO orbiters laser aid heat control method
US5467814A (en) Graphite/epoxy heat sink/mounting for common pressure vessel
JPS6022600A (en) Despun platform type spin satellite
US7270302B1 (en) Scalable thermal control system for spacecraft mounted instrumentation
JPH03598A (en) Three axis attitude control type artificial satellite
US20050077432A1 (en) Dual conduction heat dissipating system for a spacecraft
US9908643B2 (en) Passive thermal system providing an embedded interface for heat pipes
JPH03597A (en) Three axis attitude control type artificial satellite
Bhandari et al. Overall Thermal Architecture & Design of the Mars Sample Return Lander Mission
JPS6382900A (en) Information transmitter for spaceship
JP2013233906A (en) Spacecraft
JP2973996B2 (en) Spacecraft power recovery structure
Jenness Radiative cooling of satellite-borne electronic components
Schuh et al. Solar-powered thermoelectric generator design considerations
Tulin et al. System of maintaining the thermal regime of a space radio telescope
Walker et al. The impact of the lunar thermal environment on the design of telescopes for lunar surface operation
US3324940A (en) Thermal control mechanism
JP2685213B2 (en) Radiation cooling
WO2024038548A1 (en) Spacecraft
Moses FLTSATCOM thermal test and flight experience
SPENCER et al. INTELSAT V thermal design, testing and flight performance