JPH03597A - Three axis attitude control type artificial satellite - Google Patents

Three axis attitude control type artificial satellite

Info

Publication number
JPH03597A
JPH03597A JP1136339A JP13633989A JPH03597A JP H03597 A JPH03597 A JP H03597A JP 1136339 A JP1136339 A JP 1136339A JP 13633989 A JP13633989 A JP 13633989A JP H03597 A JPH03597 A JP H03597A
Authority
JP
Japan
Prior art keywords
panel
cooling panel
earth
heat
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1136339A
Other languages
Japanese (ja)
Inventor
Masahito Higuchi
雅人 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1136339A priority Critical patent/JPH03597A/en
Publication of JPH03597A publication Critical patent/JPH03597A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radio Relay Systems (AREA)

Abstract

PURPOSE:To improve the receiving performance characteristic by performing efficient heat radiation to the space from optical solar reflectors and placing a receiver disposed on a cooling panel under the low-temperature environment where a noise factor becomes extremely small. CONSTITUTION:The title artificial satellite is formed of an earth directing panel 1 with mission machinery and tools on board, a U-shaped cooling panel provided thereon, an insulation for insulating the heat conduction of both panels 1, 16, connecting bolts 17 for connecting the cooling panel 16 to the earth directing panel 1 through the insulation, optical solar reflectors 7 mounted on the space side of the cooling panel 16, and micro-heat pipes 18, integrally provided with the cooling panel 16, for performing efficient heat radiation from the reflectors 7. With this structure, the receiving performance characteristic is improved by performing efficient heat radiation to the space from the optical solar reflectors 7 and placing a receiver disposed on the cooling panel 16 under the ideal environment of low temperature where a noise fctor becomes extremely small.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、地球指向面パネル部に設けられた冷却用パネ
ルに受信機を配置し低温状態に保つことにより、受信性
能の改善を計る三軸姿勢制御型人工衛星に関するもので
ある。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a three-dimensional system that improves reception performance by arranging a receiver on a cooling panel provided on the earth-oriented surface panel and keeping it in a low temperature state. This relates to an axial attitude control type artificial satellite.

〔従来の技術〕[Conventional technology]

第7図は従来の三軸姿勢制御型人工衛星の外観図であシ
、第8図はそのミッション機器パネルのレイアウト図で
ある。図に2いて、(1)は地球指向面パネル、(2)
は北面パネル、(3)は東面パネル、(4)は地上局と
信号の授受を行うアンテナ、(5)は太陽電池パドルと
衛星本体を機械的に結合するヨーク部、(6)は衛星所
要電力を供給する太陽電池パドル。
FIG. 7 is an external view of a conventional three-axis attitude control type artificial satellite, and FIG. 8 is a layout diagram of its mission equipment panel. In Figure 2, (1) is the earth-oriented surface panel, (2)
is the north panel, (3) is the east panel, (4) is the antenna that sends and receives signals to the ground station, (5) is the yoke that mechanically connects the solar array paddle to the satellite body, and (6) is the satellite. Solar paddles provide the required power.

(7)は太陽光外部入力を遮断し衛星内部の熱を放射す
るオプチカルソーラリフレクタ、(8)はアンテナ(4
)と衛星本体を機械的に結合するヒンジ部、(9)はア
ンテナ(4)と信号の授受を行うフィーダ一部、α呻は
南面パネル、(lυは太陽電池パドル(6)を1日当9
1回転させる太陽電池パドル駆動部、αりはこの太陽電
池パドル駆動部αυを制御する太陽心性パドル駆動エレ
クトロニクス、α凄は進行波管増幅器、固体増幅器等の
高発熱機器、α荀はオプチカルソーラリフレクタ(7)
から宇宙空間へ熱を放射する放熱領域、 aSは地上局
からアンテナ(4)及びフィーダ一部(9)を介しアッ
プリンク信号を受信する受信機である。
(7) is an optical solar reflector that blocks external sunlight input and radiates heat inside the satellite, and (8) is an antenna (4).
) and the satellite body, (9) is a part of the feeder that sends and receives signals to the antenna (4), α is the south panel, (lυ is the solar array paddle (6) that is used for daily allowance) 9
The solar array paddle drive unit that rotates one revolution, the solar array paddle drive unit αυ, the heliocentric paddle drive electronics that control the solar array paddle drive unit αυ, the α unit that controls high heat generation equipment such as traveling wave tube amplifiers and solid-state amplifiers, and the α unit that operates the optical solar reflector. (7)
The aS is a receiver that receives uplink signals from the ground station via an antenna (4) and a portion of the feeder (9).

従来の三軸姿勢制御型人工衛星は上記のように構成され
、静止軌道上での北面パネル(2)及び南面パネル四を
放熱面とし、搭載機器が発生した熱をすべてこの面から
宇宙空間に放出しておシ、各放熱面には太陽光吸収率が
小さく、熱放射率が大きいオプチカルソーラリフレクタ
(7)を装着し、所要の放熱領域α4を確保していた。
A conventional three-axis attitude control artificial satellite is configured as described above, with the north panel (2) and the south panel (4) used as heat dissipation surfaces in geostationary orbit, and all the heat generated by the onboard equipment is transferred to space from these surfaces. In order to release the heat, an optical solar reflector (7) having a low solar absorption rate and a high heat emissivity was attached to each heat dissipation surface to ensure the required heat dissipation area α4.

低発熱機器である受信機αS及び信号の切換えを行うス
イッチ類はすべて地球指向面パネル(1)上に配置して
お9.アンテナ(4)との間で信号の授受を行うフィー
ダ一部(9)からなるべく近い位置に受信機αlを配置
することで、給電系損失を小さくシ、所要の受信性能指
数を得ていた。
9. The receiver αS, which is a low heat generating device, and switches for switching signals are all placed on the earth orientation panel (1). By arranging the receiver αl as close as possible to the feeder part (9) that transmits and receives signals to and from the antenna (4), the feeding system loss can be reduced and the required reception performance index can be obtained.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の三軸姿勢制御型人工衛星は上記のように。 Conventional three-axis attitude control satellites are as described above.

地球指向面パネル上に受信機を配置し、フィーダ一部と
の間をできるだけ短い給電ケーブルまたは導波管で接続
することで、給電系損失を小さくし衛星システムとして
所要の受信性能指数を得ていた。受信性能指数は、アン
テナ熱雑音、給電系損失及び受信機雑音指数の対数換算
の合計値をアンテナ利得から差し引くことで、G/T(
ジ−オーバティー)として得られるため、給電系損失を
小さくすることで確かに改善される。しかし、給電系損
失を小さくすることには、レイアウト設計上の限界があ
シ、衛星システム設計、特に、ユーザ宇宙機捕捉追尾系
で高い追尾精度を得る必要があるため、所要受信性能指
数が大きく、かつレイアウト設計上の制約条件が多いデ
ータ中継追跡衛星のシステム設計に2いて、所要受信性
能指数が得られない場合の受信性能指数改善手法を確立
することが大きな課題となっていた。
By placing the receiver on the earth-oriented surface panel and connecting it to part of the feeder with a feeder cable or waveguide as short as possible, we can reduce the loss in the feeder system and obtain the required reception performance index for the satellite system. Ta. The reception figure of merit is calculated by subtracting the logarithmically converted sum of the antenna thermal noise, feed system loss, and receiver noise figure from the antenna gain.
This can certainly be improved by reducing the power supply system loss. However, reducing feed system loss has limitations in layout design, and in satellite system design, in particular, it is necessary to obtain high tracking accuracy in the user spacecraft acquisition and tracking system, so the required reception performance index is large. , and in the system design of data relay tracking satellites, which have many layout design constraints, it has become a major challenge to establish a method for improving the reception performance index when the required reception performance index cannot be obtained.

この発明はかかる課題を解決するためになされたもので
あシ、地球指向面パネル部に設けられたコの字形冷却用
パネルの宇宙空間側に太陽光吸収率が小さく熱放射率の
大きいオプチカルソーラリフレクタを実装し、放熱領域
を確保し、冷却用パネルと一体化して設けられたマイク
ロヒートパイプにより効率良く宇宙空間への熱放射を行
うことにより、冷却用パネルに搭載される受信機を雑音
指数が小さくなる理想的な低温環境下におき、受信性能
指数を改善する三軸姿勢制御型人工衛星を得ることを目
的とする。また、この発明の別の発明は上記目的に加え
て、地球指向面パネル部に設けられた冷却用パネルに一
体化した南北面連結ヒートパイプを備え、静止軌道上で
の衛星放熱面である南北両面の宇宙空間側に実装される
太陽光吸収率が小さく熱放射率の大きいオプチカルソー
ラリフレクタから、効率良く熱放射を行い、冷却用パネ
ルに搭載される受信機を雑音指数が小さくなる理想的な
低温環境下におき、受信性能指数を改善する三軸姿勢制
御型人工衛星を得ることを目的とする。
This invention was made in order to solve this problem, and an optical solar panel with low sunlight absorption and high thermal emissivity is installed on the outer space side of the U-shaped cooling panel provided on the earth-oriented surface panel. By mounting a reflector to secure a heat dissipation area and efficiently radiating heat to space using a micro heat pipe integrated with the cooling panel, the receiver mounted on the cooling panel has a noise figure The purpose of this study is to obtain a three-axis attitude control artificial satellite that improves the reception figure of merit under an ideal low-temperature environment where the In addition to the above-mentioned object, another invention of the present invention is provided with a north-south surface connecting heat pipe integrated into a cooling panel provided in the earth-oriented surface panel section, and a north-south surface connecting heat pipe is provided which is a heat dissipation surface of a satellite on a geostationary orbit. Optical solar reflectors with low solar absorption and high thermal emissivity are mounted on the space side of both sides, and efficiently radiate heat, making the receiver mounted on the cooling panel ideal for low noise figures. The purpose is to obtain a three-axis attitude control artificial satellite that improves the reception figure of merit in a low-temperature environment.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る三軸姿勢制御型人工衛星は、地球指向面
パネルに、断熱インシユレーシヨンで熱的にアイソレー
トされたコの字形冷却用パネルを備え、一体化したマイ
クロヒートパイプと宇宙空開側に装着したオプチカルソ
ー2リフレクタにより、効率良く熱放射を行い、冷却用
パネル上に配置した受信機を雑音指数が極めて小さくな
る理想的な低温環境下におく。
The three-axis attitude control artificial satellite according to the present invention is equipped with an earth-oriented surface panel, a U-shaped cooling panel thermally isolated by heat insulation, and an integrated micro heat pipe and space The Optical Saw 2 reflector attached to the open side radiates heat efficiently, placing the receiver placed on the cooling panel in an ideal low-temperature environment with an extremely low noise figure.

また、この発明の別の発明に係る三軸姿勢制御型人工衛
星は、地球指向面パネルに断熱インシユレーシヨンによ
り、熱的にアイソレートされた冷却用パネルを設け、一
体化した南北面連結ヒートパイプを備えることで南北両
面の宇宙空間側に実装したオプチカルソーラリフレクタ
より効率良く熱放射を行い、冷却用パネル上に配置した
受信機を雑音指数が極めて小さくなる理想的な低温環境
下におく。
In addition, a three-axis attitude control artificial satellite according to another invention of the present invention is provided with a cooling panel that is thermally isolated by heat insulation insulation on the earth-oriented surface panel, and has an integrated north-south surface connection. Equipped with a heat pipe, it radiates heat more efficiently than the optical solar reflectors mounted on both the north and south sides of space, and places the receiver placed on the cooling panel in an ideal low-temperature environment with extremely low noise figure. .

〔作用〕[Effect]

この発明においては、地球指向面パネルに熱遮へいして
設けられたコの字形冷却用パネルの宇宙空間側に実装し
たオプチカルノーラリ7レクタと。
In this invention, an optical polari 7 rectifier is mounted on the outer space side of a U-shaped cooling panel provided as a heat shield to the earth-oriented surface panel.

熱伝導マイクロヒートパイプにより効率良く熱放射が行
われるため、冷却用パネルが低温状態に保たれる。従っ
て冷却用パネルに搭載されている受信機の雑音指数が極
めて小さくなる。
Thermal conduction micro heat pipes radiate heat efficiently, keeping the cooling panel at a low temperature. Therefore, the noise figure of the receiver mounted on the cooling panel becomes extremely small.

また、この発明の別の発明においては、地球指向面パネ
ルに熱遮へいして設けられた冷却用ノ(ネルに一体化し
て埋め込まれた南北面連結ヒートノ(イブによυ冷却用
パネル上の熱が南北両面に実装したオプチカルソーラリ
フレクタよシ効率良く放熱される。これにより冷却用パ
ネルに搭載されている受信機の温度が低下し、雑音指数
が極めて小さくなる。
In addition, in another invention of the present invention, a cooling nozzle (a cooling nozzle) provided as a heat shield on the earth-oriented surface panel (a north-south connecting heat nozzle (eve) integrally embedded in the flannel) heats the heat on the υ cooling panel. The heat is efficiently dissipated by the optical solar reflectors mounted on both the north and south sides.This lowers the temperature of the receiver mounted on the cooling panel and reduces the noise figure to an extremely low level.

〔実施例〕〔Example〕

第1図は本発明の一実施例を示す三軸姿勢制御型人工衛
星の外観図であシ、第2図はこの発明の別の発明におけ
る三軸姿勢制御型人工衛星の外観図、第3図は本発明の
一実施例を示す三軸姿勢制御型人工衛星のミッションパ
ネルのレイアウト図。
FIG. 1 is an external view of a three-axis attitude control type artificial satellite showing one embodiment of the present invention, FIG. 2 is an external view of a three-axis attitude control type artificial satellite according to another invention of the present invention, and FIG. The figure is a layout diagram of a mission panel of a three-axis attitude control type artificial satellite showing an embodiment of the present invention.

第4図はこの発明の別の発明における三軸姿勢制御型人
工衛星のミッションパネルのレイアウト図。
FIG. 4 is a layout diagram of a mission panel of a three-axis attitude control type artificial satellite according to another invention of the present invention.

第5図は本発明の一実施例を示す三軸姿勢制御型人工衛
星の断面図、第6図はこの発明の別の発明における三軸
姿勢制御型人工衛星の断面図である。
FIG. 5 is a cross-sectional view of a three-axis attitude control type artificial satellite showing one embodiment of the present invention, and FIG. 6 is a cross-sectional view of a three-axis attitude control type artificial satellite according to another invention of the present invention.

図において、(1)〜員は上記従来装置と全く同一のも
のでs、b、(lsはコの字形冷却用パネル、αηは冷
却用パネルと地球指向面パネルとを締結する結合ポル)
、t18はコの字形冷却用パネルと一体化して設けられ
たマイクロヒートパイプ、 (1!Jは冷却用パネル、
00はこの冷却用パネルσ憧に埋め込まれ、南面及び北
面の各放熱領域Iに効率良く熱を伝導する南北面連結ヒ
ートパイプ、Qηはコの字形冷却用パネルaQ及び冷却
用パネル(19と、地球指向面パネル(1)との間を熱
的にアイソレートする断熱インシユレーシヨン、■は宇
宙空間とパネル面との間を熱的にアイソレートする多層
インシュレーショ/。
In the figure, members (1) to 1 are exactly the same as the above-mentioned conventional device, s, b, (ls is a U-shaped cooling panel, αη is a connecting pole that connects the cooling panel and the earth-oriented surface panel)
, t18 is a micro heat pipe integrated with a U-shaped cooling panel, (1!J is a cooling panel,
00 is a north-south surface connecting heat pipe that is embedded in this cooling panel σ and efficiently conducts heat to each heat radiation area I on the south and north surfaces, Qη is a U-shaped cooling panel aQ and a cooling panel (19, Thermal insulation that thermally isolates between the earth-oriented surface panel (1), and multilayer insulation that thermally isolates between outer space and the panel surface.

(2)はオプチカルソーラリフレクタ(7)から宇宙空
間へ放射される放射熱である。
(2) is radiant heat radiated from the optical solar reflector (7) to outer space.

本発明の一実施例である三軸姿勢制御域人工衛星は、第
1図に示すように地球指向面パネル+1)上に、オプチ
カルノーラリ7レクタ(7)を実装すると共にマイクロ
ヒートパイプを一体化して備えたコの字形冷却用パネル
住eを設け、第3図のレイアウト図に示す通シ、受信機
(1!1をパネル上に配置するように構成される。
As shown in Fig. 1, a three-axis attitude control area artificial satellite, which is an embodiment of the present invention, is equipped with an optical polarity rectifier (7) and a micro heat pipe integrated on the earth-oriented surface panel +1). A U-shaped cooling panel housing e is provided, and a receiver (1!1) shown in the layout diagram of FIG. 3 is arranged on the panel.

コの字形冷却用パネルαeは、アンテナ(4)からの信
号を供給するフィーダ一部(9)の近くに設けられてお
り、小さな給電系損失でフィーダ一部(9)から受信機
α9に信号が供給される。コの字形冷却用パネルαeは
第5図の断面図に示すように、ガラス繊維強化プラスチ
ック等の断熱性を有する断熱インシエレーションc1力
により、地球指向面パネル(1)と熱的にアイソレート
されている。これにより、高発熱機器(l[有]が放熱
領域a4から放射する発生熱量のうちの一部が、パネル
間の熱伝導により地球指向面パネル(1)を介しコの字
形冷却用パネル翰に伝導することを防ぐ。コの字形冷却
用パネル(leの宇宙空間側には、太陽光吸収率が小さ
く熱放射率が大きいオプチカルソーラリフレクタ(7)
が装着されておシ、非装着面はアルミナイズドカプトン
、マイ2等で構成される多層イ/シュレーション■で覆
われ、宇宙空間と熱的にアイソレートされている。
The U-shaped cooling panel αe is installed near the feeder part (9) that supplies the signal from the antenna (4), and allows the signal to be sent from the feeder part (9) to the receiver α9 with small power feeding system loss. is supplied. As shown in the cross-sectional view in Figure 5, the U-shaped cooling panel αe is thermally isolated from the earth-oriented surface panel (1) by means of a heat-insulating insulation c1 made of glass fiber-reinforced plastic or the like. has been done. As a result, a part of the heat generated by the high-heating equipment (l) radiates from the heat radiation area a4 is transferred to the U-shaped cooling panel through the earth-oriented surface panel (1) due to heat conduction between the panels. Prevent conduction.On the space side of the U-shaped cooling panel (le), there is an optical solar reflector (7) with low solar absorption and high thermal emissivity.
is attached, and the non-attached surface is covered with multilayer insulation made of aluminized Kapton, My 2, etc., and is thermally isolated from outer space.

コの字形冷却用パネルαeに搭載される受信機傾が発生
する熱は、パネルと一体化して埋め込まれ九マイクロヒ
ートパイプ(1sにより、宇宙空間方向へ効率良く熱拡
散する形で伝導し、宇宙空間側に備えたオプチカルソー
ラリフレクタ(7)よシ放射熱(至)として放射される
The heat generated by tilting the receiver mounted on the U-shaped cooling panel αe is conducted in the form of efficient heat diffusion toward outer space through nine micro heat pipes (1s) embedded integrally with the panel. It is radiated as radiant heat from the optical solar reflector (7) provided on the space side.

この場合、コの字形冷却用パネルαeに搭載される受信
機αeの熱環境は以下に示す平衡式に示す通シとなる。
In this case, the thermal environment of the receiver αe mounted on the U-shaped cooling panel αe is expressed by the following balanced equation.

A−1!?・σT4・η−A・αより ’ do l 
+ Q   −−−−・−(1)ここで、A:放熱面の
面積〔ぜ〕 σ:ステファンボルトマン定数 (s、5yxto  vr7ぜに4) T:マイクロヒートパイプの動作平 均温度(K) η:放熱フィン効率(a、S) 工S:太陽光照射強度(夏至: 1310W/7F+’
、 冬至:1400W/7F?)θ:サンアングル(2
λ5cleg) q:受信機の発生熱量〔W〕 α:太陽光吸収率(α25) ε:熱放射率(0,8) F:放熱面から宇宙空間を見る形状 係数(1,0) つまり、受信機上りのおかれる環境温度が、大降光照射
強度、サンアングル、受信機発生熱量及び放熱面の面積
のバランスにより決まることを示しており、このことか
ら、低発熱機器である受信機傾を搭載するコの字形冷却
用パネル(IQの放熱面積を、常温に基づく熱設計値よ
シもやや大きくすることで、受信機(1!9を雑音指数
が極めて小さくなる理想的な低温環境下におくことがで
き、受信性能指数を改善できることがわかる。
A-1! ?・From σT4・η−A・α ' do l
+ Q −−−−・−(1) Here, A: Area of the heat dissipation surface [Z] σ: Stefan Boltmann constant (s, 5yxto vr7zini4) T: Operating average temperature of the micro heat pipe (K) η : Radiation fin efficiency (a, S) Engineering S: Solar irradiation intensity (summer solstice: 1310W/7F+'
, Winter solstice: 1400W/7F? ) θ: Sun angle (2
λ5cleg) q: Amount of heat generated by the receiver [W] α: Solar absorption rate (α25) ε: Thermal emissivity (0,8) F: Shape factor when viewing outer space from the heat radiation surface (1,0) In other words, reception This shows that the environmental temperature at the top of the aircraft is determined by the balance of the large rainfall irradiation intensity, the sun angle, the amount of heat generated by the receiver, and the area of the heat dissipation surface. By making the heat dissipation area of the U-shaped cooling panel (IQ) slightly larger than the thermal design value based on room temperature, the receiver (1!9) can be placed in an ideal low-temperature environment where the noise figure is extremely small. It can be seen that the reception figure of merit can be improved.

さて、この発明は、上記のように、受信機a!9を搭載
するパネルを断熱インシュン−ジョン12Dにより、衛
星本体部と熱的にアイソレートシ、オプチカルソーラリ
フレクタ(7)を装着した放熱面積を熱設計値よシもや
や大きくとシ、受信mttsを低温環境下におくもので
あるが、この発明の別の発明に係る三軸姿勢制御型人工
衛星は、第2図に示すように地球指向面パネル(1)上
に、南北面連結ヒートパイプ(至)を埋め込んだ冷却用
パネル+1’Jを設け、第4図のレイアウト図に示す通
シ受信機a$をパネル上に配置するように構成される。
Now, as mentioned above, this invention is a receiver a! The panel carrying the 9 is thermally isolated from the satellite main body by the insulation injection 12D, and the heat dissipation area equipped with the optical solar reflector (7) is slightly larger than the thermal design value, and the receiving mtts is placed in a low-temperature environment. As shown below, a three-axis attitude control artificial satellite according to another invention of the present invention has a north-south surface connecting heat pipe (toward) on an earth-oriented surface panel (1) as shown in FIG. A cooling panel +1'J is provided, and a communication receiver a$ shown in the layout diagram of FIG. 4 is arranged on the panel.

冷却用パネル<11はアンテナ(4)からの信号を供給
するフィーダ一部(9)の近くに設けられ、小さな給電
系損失でフィーダ一部(9)から受信機時に信号が供給
される。冷却用パネルα値は、第6図の断面図に示すよ
うに、ガラス繊維強化プラスチック等の断熱性を有する
断熱イ/シュレーションc11)により。
The cooling panel <11 is provided near the feeder part (9) that supplies the signal from the antenna (4), and the signal is supplied from the feeder part (9) at the time of the receiver with small power supply system loss. As shown in the cross-sectional view of FIG. 6, the α value of the cooling panel is determined by insulation c11) having heat insulating properties such as glass fiber reinforced plastic.

地球指向面パネル(1)と熱的にアイソレートされてい
る。これにより、高発熱機器(13が放熱領域Iから放
射する発生熱量の内の一部が、パネル間の熱伝導により
地球指向面パネル(1)を介し、冷却用パネルα優に伝
導し、パネル温度の上昇をもたらすことを防いでいる。
It is thermally isolated from the earth-oriented surface panel (1). As a result, a part of the amount of heat generated by the high heat generating equipment (13) radiated from the heat radiation area I is conducted to the cooling panel α through the earth-oriented surface panel (1) due to heat conduction between the panels, and This prevents the temperature from rising.

冷却用パネルα値の宇宙空間側はアルミナイズドカプト
ン、マイラ等で構成される多層イ/シュレーション(2
)で覆われ、宇宙空間と熱的にアイソレートされている
The outer space side of the cooling panel α value is made of multilayer insulation (2
) and is thermally isolated from outer space.

冷却用パネルα優に搭載される受信機aSが発生する熱
は、パネルと一体化して埋め込まれた南北面連結ヒート
パイプ翰により、南面、北面のそれぞれの方向へ効率良
く熱拡散する形で伝導し、各面の放熱領域αるの宇宙空
間側に実装したオプチカルソーラリフレクタ(7)よシ
放射される。この場合。
The heat generated by the receiver aS mounted on the cooling panel α-Y is conducted in the form of efficient heat diffusion in each direction to the south and north faces through the north-south face connecting heat pipes that are embedded and integrated with the panel. Then, it is radiated by an optical solar reflector (7) mounted on the outer space side of the heat dissipation area α of each surface. in this case.

受信機α鴎のおかれる熱環境は、上記の衛星熱環境平衡
式(1)式によりあられすことができ、受信機のおかれ
る環境温度が、太陽光照射強度、サンアングル、受信機
発生熱量及び放熱面の面積のバランスにより決まること
を示している。このことから。
The thermal environment in which the receiver α-Hou is placed can be determined by the satellite thermal environment equilibrium equation (1) above, and the environmental temperature in which the receiver is placed is determined by the solar irradiation intensity, the sun angle, and the amount of heat generated by the receiver. This shows that it is determined by the balance of the area of the heat dissipation surface. From this.

低発熱機器である受信機上9を搭載する冷却用パネル員
の放熱面積である南面及び北面のオプチカルソーラリフ
レクタ(7)実装面積を、常温に基づく熱設計値よ)も
やや大きくすることで、受信機α9を雑音指数が極めて
小さくなる理想的な低温環境下におくことができ、受信
性能指数を改善できることがわかる。
By slightly increasing the mounting area of the optical solar reflectors (7) on the south and north sides, which are the heat dissipation area of the cooling panel member that mounts the upper receiver 9, which is a low heat generation device, (based on the thermal design value based on room temperature), It can be seen that the receiver α9 can be placed in an ideal low-temperature environment where the noise figure is extremely small, and the reception figure of merit can be improved.

ハニカムパネルへのヒートパイプの埋め込みについては
、既に宇宙実証が成されていること、また、南北両面の
ヒートパイプの連結化手法についても、従来の面内連結
化手法を応用することにより、製造上の問題は無い。な
お、受信機(IS単体の低温側の温度補償は内蔵したヒ
ータのON10 IF ?制御により行う。
Regarding the embedding of heat pipes in honeycomb panels, space demonstrations have already been carried out, and the method for connecting heat pipes on both the north and south sides has been improved by applying the conventional in-plane connection method. There is no problem. Note that temperature compensation on the low temperature side of the receiver (IS alone) is performed by ON10 IF? control of the built-in heater.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明した通シ、衛星のミッションパネル
である地球指向面パネル上に、マイクロヒートパイプを
一体化して埋め込んだコの字形冷却用パネルを設け、受
信機を搭載することにより。
The present invention is based on the above-described method, by providing a U-shaped cooling panel in which a micro heat pipe is integrated and embedded on the earth-oriented surface panel, which is a mission panel of a satellite, and mounting a receiver thereon.

受信機を雑音指数が極めて小さくなる理想的な低温環境
下におくことができる。従って受信性能指数を改善する
効果がある。また、この発明の別の発明は、地球指向面
パネル上に、南北面連結ヒートパイプを一体化して埋め
込んだ冷却用パネルを設け、受信機を搭載することによ
り、受信機を雑音指数が極めて小さくなる理想的な低温
環境下におくことができる。従って受信性能指数を改善
する効果がある。
The receiver can be placed in an ideal low-temperature environment where the noise figure is extremely small. Therefore, it has the effect of improving the reception performance index. In addition, another invention of the present invention is to provide a cooling panel in which a north-south surface connecting heat pipe is integrated and embedded on the earth-oriented surface panel, and to mount a receiver thereon, so that the receiver has an extremely low noise figure. It can be placed in an ideal low temperature environment. Therefore, it has the effect of improving the reception performance index.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す三軸姿勢制御型人工衛
星の外観図、第2図はこの発明の別の発明における三軸
姿勢制御型人工衛星の外観図、第3図は本発明の一実施
例を示す三軸姿勢制御型人工衛星のミッションパネルの
レイアウト図、第4図はこの発明の別の発明における三
軸姿勢制御型人工衛星のミッションパネルのレイアウト
図、第5図は本発明の一実施例を示す三軸姿勢制御型人
工衛星の断面図、第6図はこの発明の別の発明における
三軸姿勢制御型人工衛星の断面図、第1図は従来の三軸
姿勢制御型人工衛星の外観図、第8図は従来の三軸姿勢
制御型人工衛星のミッションパネルのレイアウト図であ
る。 図、において、(1)は地球指向面パネル、(2)は北
面パネル、(3)は東面パネル、(4)はアンテナ、(
5)はヨーク部、(6)は太陽電池パドル、(7)はオ
プチカルソーラリフレクタ、(8)はヒンジ部、(9)
はフィーダー部、αりは南面パネル、住υは太陽電池パ
ドル駆動部。 (1のは太陽電池パドル駆動エレクトロニクス、(I3
は高発熱機器、a4は放熱領域、α$は受信機、αeは
コの字形冷却用パネル、在りは結合ポル)、a8はマイ
クロヒートパイプ、(I9は冷却用パネル、翰は南北間
連結ヒートパイプ、Qカは断熱インシユレーシヨン、(
2)ハ多層インシユレーシヨン、(ハ)は放射熱を示し
ている。 なお、各図中同一符号は、同−又は相当部分を示す。
Fig. 1 is an external view of a three-axis attitude control type artificial satellite showing an embodiment of the present invention, Fig. 2 is an external view of a three-axis attitude control type artificial satellite according to another invention of the present invention, and Fig. FIG. 4 is a layout diagram of a mission panel of a three-axis attitude control type artificial satellite showing an embodiment of the invention, FIG. 4 is a layout diagram of a mission panel of a three-axis attitude control type artificial satellite according to another invention of the present invention, and FIG. FIG. 6 is a sectional view of a three-axis attitude controlled artificial satellite according to another embodiment of the present invention, and FIG. 1 is a conventional three-axis attitude controlled artificial satellite. FIG. 8, an external view of a control type artificial satellite, is a layout diagram of a mission panel of a conventional three-axis attitude control type artificial satellite. In the figure, (1) is the earth orientation panel, (2) is the north panel, (3) is the east panel, (4) is the antenna, (
5) is the yoke part, (6) is the solar array paddle, (7) is the optical solar reflector, (8) is the hinge part, (9)
is the feeder section, α is the south panel, and υ is the solar array paddle drive section. (1 is solar array paddle drive electronics, (I3
is a high heat generating device, a4 is a heat dissipation area, α$ is a receiver, αe is a U-shaped cooling panel, is a connecting pole), a8 is a micro heat pipe, (I9 is a cooling panel, and a wire is a north-south connecting heat Pipe, Q is insulation insulation, (
2) Multilayer insulation (c) shows radiant heat. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] (1)ミッション機器を搭載する地球指向面パネルと、
この地球指向面パネル部に設けられたコの字形冷却用パ
ネルと、この冷却用パネルと地球指向面パネルの熱伝導
を遮断するインシユレーシヨンと、このインシユレーシ
ヨンを介し冷却用パネルを地球指向面パネルに結合する
結合ボルトと、冷却用パネルの宇宙空間側に実装したオ
プチカルソーラリフレクタと、このオプチカルソーラリ
フレクタから効率良く熱放射を行うために、冷却用パネ
ルと一体化して設けられたマイクロヒートパイプにより
構成され、オプチカルソーラリフレクタから宇宙空間へ
効率良く熱放射を行い、冷却用パネル上に配置した受信
機を雑音指数が極めて小さくなる理想的な低温環境下に
おくことにより、受信性能指数を改善することを特徴と
する三軸姿勢制御型人工衛星。
(1) Earth-oriented surface panel carrying mission equipment;
A U-shaped cooling panel provided on this earth-oriented surface panel, an insulation that blocks heat conduction between this cooling panel and the earth-oriented surface panel, and a cooling panel that connects the cooling panel through this insulation. A coupling bolt that connects to the earth-oriented surface panel, an optical solar reflector mounted on the space side of the cooling panel, and an optical solar reflector that is integrated with the cooling panel in order to efficiently radiate heat from this optical solar reflector. Composed of a micro heat pipe, the optical solar reflector efficiently radiates heat into space, and the receiver placed on the cooling panel is placed in an ideal low-temperature environment with an extremely low noise figure, improving reception performance. A three-axis attitude control artificial satellite characterized by improved index.
(2)ミッション機器を搭載する地球指向面パネルと、
この地球指向面パネル部に設けられた冷却用パネルと、
この冷却用パネルに一体化した南北面連結ヒートパイプ
と、冷却用パネルと地球指向面パネルの熱伝導を遮断す
るインシユレーシヨンと、このインシユレーシヨンを介
し冷却用パネルを地球指向面パネルに結合する結合ボル
トと、静止軌道上での衛星放熱面である南面と北面の宇
宙空間側に実装したオプチカルソーラリフレクタにより
構成され、このオプチカルソーラリフレクタから宇宙空
間に効率良く熱放射を行い、冷却用パネル上に配置した
受信機を雑音指数が極めて小さくなる理想的な低温環境
下におくことにより、受信性能指数を改善することを特
徴とする三軸姿勢制御型人工衛星。
(2) Earth-oriented surface panel carrying mission equipment;
A cooling panel provided on this earth-oriented surface panel,
A north-south connecting heat pipe integrated into this cooling panel, an insulation that blocks heat conduction between the cooling panel and the earth-oriented surface panel, and a cooling panel that connects the cooling panel to the earth-oriented surface panel through this insulation. It consists of a coupling bolt that connects to the spacecraft, and an optical solar reflector mounted on the space side of the south and north surfaces, which are the satellite's heat dissipation surfaces in geostationary orbit.The optical solar reflectors efficiently radiate heat into space and provide cooling. A three-axis attitude control artificial satellite that improves the reception performance index by placing the receiver placed on the satellite panel in an ideal low-temperature environment where the noise figure is extremely low.
JP1136339A 1989-05-30 1989-05-30 Three axis attitude control type artificial satellite Pending JPH03597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1136339A JPH03597A (en) 1989-05-30 1989-05-30 Three axis attitude control type artificial satellite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1136339A JPH03597A (en) 1989-05-30 1989-05-30 Three axis attitude control type artificial satellite

Publications (1)

Publication Number Publication Date
JPH03597A true JPH03597A (en) 1991-01-07

Family

ID=15172897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1136339A Pending JPH03597A (en) 1989-05-30 1989-05-30 Three axis attitude control type artificial satellite

Country Status (1)

Country Link
JP (1) JPH03597A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017212180A1 (en) * 2016-06-10 2017-12-14 Airbus Defence And Space Sas Space vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017212180A1 (en) * 2016-06-10 2017-12-14 Airbus Defence And Space Sas Space vehicle
FR3052443A1 (en) * 2016-06-10 2017-12-15 Airbus Defence & Space Sas SPACE ENGINE
US11299296B2 (en) 2016-06-10 2022-04-12 Airbus Defence And Space Sas Spacecraft

Similar Documents

Publication Publication Date Title
US11718421B2 (en) Thermal management system for structures in space
JPH05193592A (en) Heat controller for space-ship
US5823477A (en) Device and method for minimizing radiator area required for heat dissipation on a spacecraft
US6394395B1 (en) Combination solar array assembly and antenna for a satellite
US8967547B2 (en) Spacecraft east-west radiator assembly
US10793297B2 (en) Passive thermal system comprising combined heat pipe and phase change material and satellites incorporating same
EP3277586B1 (en) Method for thermal stabilization of a communications satellite
US20160305714A1 (en) Fluidicially Coupled Heat Pipes and Method Therefor
CN107249984A (en) Spacecraft
US6854510B2 (en) Spacecraft radiator system and method using cross-coupled deployable thermal radiators
US9908643B2 (en) Passive thermal system providing an embedded interface for heat pipes
US7048233B2 (en) Dual conduction heat dissipating system for a spacecraft
JPH03597A (en) Three axis attitude control type artificial satellite
JP2013233906A (en) Spacecraft
JP2001511091A (en) An improved thermally controlled geosynchronous orbit satellite stabilized by three axes.
JP2012100205A (en) Transmission antenna
JPH03598A (en) Three axis attitude control type artificial satellite
JP7341382B1 (en) spacecraft
US20230322419A1 (en) Radiating coupling heat pipe
Williamson Spacecraft thermal design
JP2685213B2 (en) Radiation cooling
Chang et al. The thermal design and test performance of the SUPERBIRD communications spacecraft
Walker et al. The impact of the lunar thermal environment on the design of telescopes for lunar surface operation
EP3970200A1 (en) Thermal management system for structures in space
SPENCER et al. INTELSAT V thermal design, testing and flight performance