JPH0359145B2 - - Google Patents

Info

Publication number
JPH0359145B2
JPH0359145B2 JP14170982A JP14170982A JPH0359145B2 JP H0359145 B2 JPH0359145 B2 JP H0359145B2 JP 14170982 A JP14170982 A JP 14170982A JP 14170982 A JP14170982 A JP 14170982A JP H0359145 B2 JPH0359145 B2 JP H0359145B2
Authority
JP
Japan
Prior art keywords
nickel
sulfur
electrolytic
electrolysis
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14170982A
Other languages
Japanese (ja)
Other versions
JPS5931876A (en
Inventor
Juzo Fukuoka
Masaki Imamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP14170982A priority Critical patent/JPS5931876A/en
Publication of JPS5931876A publication Critical patent/JPS5931876A/en
Publication of JPH0359145B2 publication Critical patent/JPH0359145B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、ニツケルメツキ用陽極として使用す
るのに最適な硫黄含有電解ニツケルを製造する方
法に関する。 ニツケルメツキ用陽極として、例え0.005〜
0.040重量%の硫黄を含有するニツケル板は、高
活性で均一な溶解をするためにメツキ業界で好ん
で用いられている。 従来、硫黄含有電解ニツケルを製造する方法
は、ニツケルマツトや粗ニツケルなどを陽極と
し、電解ニツケルに含有させるための硫黄源とし
て電解液に可溶な硫黄含有無機化合物、電解液に
不溶な硫黄含有微粒子または電解液に可溶な硫黄
含有有機化合物をその電解浴中に添加して電解
し、陰極であるニツケル種板上に硫黄含有量
0.005〜0.040重量%の電解ニツケルを得る方法が
行なわれている。使用される上記硫黄源のうち電
解液に可溶な硫黄含有無機化合物以外の添加剤は
得られる電解ニツケル中の硫黄の分布に比較的大
きいバラツキを生じさせたり、電解液の浄液工程
などで不完全に分解してできた分解生成物が電解
液として再使用する際に得らる電解ニツケルの表
面に凹凸を生じ易く、また電解液中添加物の濃度
管理に支障を来たすなどの欠点があり、その結果
硫黄含有無機化合物が広く用いられている。 このような硫黄含有無機化合物としては、アル
カリ金属の亜硫酸塩、チオ硫酸塩、チオン酸塩な
どを使用するのが普通である。 しかしながら、これらの硫黄含有無機化合物も
実際には得らる硫黄含有電解ニツケルの性質に対
する作用やこの電解操業の管理に及ぼす影響にお
いて個々に相違し、必ずしも全てが有効であると
は限らない。 一般に、これらの無機化合物は、電解液中での
安定性が充分でなく、有効に作用させる硫黄の濃
度管理が困難であつたり、得られる電着物の表面
の平滑性やメツキの際の溶解性などに影響する含
有硫黄の分布の均一性の問題、または電解操業中
の電流密度分布の不均一化や短絡の発生などをも
たらす電着歪などの諸問題を包含し、その対策が
望まれている。 本発明者等はこれらの硫黄含有の無機化合物を
使用したときに生起する種々の欠点を解消すべく
その電解条件について検討した結果、硫黄含有無
機化合物として特に四チオン酸塩を使用した場合
について極めて特異性のある電解条件を見出して
本発明を完成した。 本発明によれば、ニツケルマツトまたは粗ニツ
ケルの陽極と、金属ニツケル板陰極を用い、硫酸
塩−塩化物混合物または単一塩化物の電解浴を用
いて硫黄含有電解ニツケルを製造する場合に、添
加する硫黄含有化合物として四チオン酸塩を使用
するが、その際電解に先立つて短時間、逆電流を
流すことを特徴とする。 陽極に用いるニツケル源は、硫黄を20重量%前
後含有する所謂ニツケルマツトでも金属状のニツ
ケルでもよく、また電解液としては硫酸塩−塩化
物混合浴でも塩化物単一浴でもよい。 電解液に硫黄源として添加する四チオン酸塩は
種々の硫黄含有無機化合物の中で、電解液中で比
較的安定で、電着物中の硫黄が均一に分布され、
且つ電着歪が最も少ないことが知られている。し
かし、これを添加した電解液を用いた硫黄含有電
解ニツケル生成物はこれを市場に供する為の切断
時に、例えば、電解開始直前の金属ニツケル陰極
表面と電着ニツケル層との界面、あるいは電解操
業中通電を中断したときに形成される電着ニツケ
ル層間の界面で剥離する傾向が見られる。この剥
離現象を防止するためには、電解の通電開始時に
この通電に先立つて短時間逆電流を流す必要があ
ることが判つた。これによつて剥離現象が防止で
きるのは、電解の通電開始時に陰極表面上に生成
していた導電性被膜が酸化洗浄されることや陰極
表面上にその部分溶解によつて凹凸が生ずること
などによると推察されるが、詳細は不明である。
このように逆電流を流すことによつて前記のよう
な剥離現象を完全に防止することができる。 電解液中の四チオン酸塩の含有量を時々測定し
て5〜25mg/の含有量を保つように不足分を補
給すれば、得られる電解ニツケルの硫黄含有量を
0.005〜0.040重量%に維持でき、且つ硫黄の分布
をほぼ均一に保つことができる。四チオン酸塩の
含有量が0.025g/を越えると、硫黄の分布が
不均一になり電解ニツケルの表面状態が不良にな
る傾向があり、更にこの電解ニツケルをメツキ用
陽極として使用した場合にはスライムの発生率が
多くなり好ましくない。 前記目的で行なう電解開始時に行なう逆電解
は、電解操業時の正方向の電流条件と同様で電解
操業時の極性を単に逆にするだけでよく、通常電
流密度は0.5〜4A/dm2程度である。この電流密
度は陽極(逆電解時の)がニツケル種板の場合で
も硫黄含有電解ニツケルの場合でも変わることは
なく、その通電時間は2〜15分程度である。 電解操業時の電解条件は慣用条件を採用すれば
よく、例えば、カソードボツクス内の電解液はPH
が2.0〜3.2、温度が45〜75℃、カソードボツクス
への供給電解液量を50〜400ml/A・H程度とす
る。 本発明に従つて製造された硫黄含有電解ニツケ
ルには硫黄が実質的に均一に分布されており、ま
た電着歪は硫黄不含の電解ニツケルのそれと同程
度もしくはそれ以下である。 次に本発明を実施例によつて更に詳細に説明す
る。 実施例 1 陽極としてNi9.12%、S0.01%、Fe3.5%、
Cu2.7%、Co0.4%(各重量%)、大きさ100mm×
150mm×15mmの粗金属ニツケル板を用い、陰極と
して大きさ80mm×108mm×0.2mmの電気ニツケル種
板を内寸100mm×160mm×25mmのカソードボツクス
内に入れ、電解槽内に上記陽極板2枚を上記陰極
板1枚の両面に対向させて配置した。電解液は、
Ni80g/、SO4127g/、Cl64g/、Na38
g/、H3BO310g/の組成のものを約80
準備し、次いで硫酸を添加してPHを2.5±0.05に
調整し、さらに四チオン酸ナトリウムを0.015
g/含有するように添加して、給液温度60℃、
カソードボツクス給液量100ml/A・Hなる給液
条件で電解した。陰極電流密度は2A/dm2で、
カソードボツクスからの排出電解液は循環しなか
つた。 電解の開始に先立つて、この電解のときの極性
を単に逆にしたのみの逆方向電解を5分間行なつ
た。また、その後の正方向電解を3時間行なつた
後、再び電流を切り陰極の歪を矯正した。この歪
を矯正後、再び前と同様の逆方向電解を5分間行
なつて正方向電解にした。その後の電解は、連続
で8日間行なつた。この結果、表面状態良好の電
解ニツケルとしてNi99.97%、Co0.01%、Fe0.004
%、Cu0.002%、S0.019%(各重量%)の組成で
厚さ約8mmのものを得た。この電解ニツケルの中
の硫黄分布はほぼ均一で平均S0.019重量%を示し
たが、下隅部分は給液側が0.021重量%、その反
対側が0.020重量%であつた。 この電解ニツケルを下記のメツキ試験用を除い
て切断機で10mm角に切断したが、電解ニツケルの
種板からの剥離はどの切片にもみられなかつた。 この電解ニツケル(50mm×100mm)を用いてス
ルフアミン酸ニツケル450g/、H3BO330g/
、PH4.0の浴、陰極電流密度2A/dm2でメツキ
試験を行なつた結果、陽極流効率100.05%、スラ
イム発生率0.087重量%の結果を得た。 比較例 1 電解開始に先立つ逆電流および3時間電解後中
断し電解再開に先立つ逆電解を行なわなかつた以
外は、実施例1と実質的に同様条件で電解した。
この結果得られた電解ニツケルを切断機で10mm角
に切断したところ、切断片の殆んどに電解ニツケ
ルの種板からの剥離がみられた。 実施例 2 電解液中の四チオン酸ナトリウム含有量が
0.010、0.020および0.025g/になるように四チ
オン酸ナトリウムを添加して準備した3種の電解
液を使用した以外は、実施例1と実質的に同様条
件で電解した。この結果得られた電解ニツケルの
表面状態は良好で、その硫黄含有量はそれぞれ
0.015、0.026、0.035重量%であつた。これらの電
解ニツケルを切断機で10mm角に切断すると、何れ
も種板からの剥離がみられなかつた。 これらの電解ニツケルを用いて、実施例1と同
様のメツキ試験を行なつた結果、第1表の結果が
得られた。
The present invention relates to a method for producing sulfur-containing electrolytic nickel suitable for use as an anode for nickel plating. For example, 0.005 ~ as an anode for nickel metal
Nickel plates containing 0.040% sulfur are preferred in the plating industry for their high activity and uniform dissolution. Conventionally, the method for manufacturing sulfur-containing electrolytic nickel uses nickel pine or coarse nickel as an anode, and a sulfur-containing inorganic compound that is soluble in the electrolytic solution and a sulfur-containing fine particle that is insoluble in the electrolytic solution as the sulfur source to be included in the electrolytic nickel. Alternatively, a sulfur-containing organic compound soluble in the electrolytic solution is added to the electrolyte bath, electrolyzed, and the sulfur content is deposited on the nickel seed plate, which is the cathode.
A method of obtaining 0.005 to 0.040% by weight of electrolytic nickel has been used. Among the above sulfur sources used, additives other than sulfur-containing inorganic compounds that are soluble in the electrolyte may cause relatively large variations in the distribution of sulfur in the resulting electrolyzed nickel, or may cause problems in the electrolyte purification process. When the incompletely decomposed decomposition products are reused as an electrolyte, the surface of the electrolytic nickel tends to become uneven, and the concentration of additives in the electrolyte becomes difficult to control. As a result, sulfur-containing inorganic compounds are widely used. As such sulfur-containing inorganic compounds, alkali metal sulfites, thiosulfates, thionates, etc. are usually used. However, these sulfur-containing inorganic compounds actually differ individually in their effects on the properties of the sulfur-containing electrolytic nickel obtained and on the control of electrolytic operations, and not all of them are necessarily effective. In general, these inorganic compounds do not have sufficient stability in the electrolyte, and it is difficult to control the concentration of sulfur to make them work effectively. Countermeasures are desired, including issues such as the uniformity of the distribution of sulfur, which affects the electrolytic process, and electrodeposition distortion, which causes uneven current density distribution and short circuits during electrolytic operation. There is. The present inventors investigated the electrolytic conditions in order to eliminate the various drawbacks that occur when using these sulfur-containing inorganic compounds, and found that they found extremely The present invention was completed by discovering specific electrolytic conditions. According to the present invention, when producing sulfur-containing electrolytic nickel using a nickel pine or coarse nickel anode and a metal nickel plate cathode using a sulfate-chloride mixture or single chloride electrolytic bath, A tetrathionate salt is used as the sulfur-containing compound, which is characterized in that a reverse current is applied for a short period of time prior to electrolysis. The nickel source used for the anode may be so-called nickel pine containing about 20% by weight of sulfur or metallic nickel, and the electrolyte may be a sulfate-chloride mixed bath or a chloride single bath. Tetrathionate, which is added to the electrolyte as a sulfur source, is relatively stable in the electrolyte among various sulfur-containing inorganic compounds, and the sulfur in the electrodeposit is uniformly distributed.
It is also known to have the least distortion due to electrodeposition. However, when cutting the sulfur-containing electrolytic nickel product using an electrolytic solution containing this, for example, the interface between the metal nickel cathode surface and the electrodeposited nickel layer immediately before the start of electrolysis, or during electrolysis operation. There is a tendency for the electrodeposited nickel layers to peel off at the interface between them when the current is interrupted. In order to prevent this peeling phenomenon, it has been found that it is necessary to flow a reverse current for a short period of time at the start of electrolytic current application. This prevents peeling phenomena such as the conductive film that was formed on the cathode surface at the start of electrolytic energization being oxidized and cleaned, and the formation of unevenness on the cathode surface due to partial dissolution. It is assumed that this is the case, but the details are unknown.
By flowing a reverse current in this manner, the above-mentioned peeling phenomenon can be completely prevented. If you measure the content of tetrathionate in the electrolyte from time to time and replenish the deficiency to maintain the content between 5 and 25 mg, the sulfur content of the resulting electrolytic nickel can be reduced.
It can be maintained at 0.005 to 0.040% by weight, and the distribution of sulfur can be kept almost uniform. If the content of tetrathionate exceeds 0.025g/, the distribution of sulfur becomes uneven and the surface condition of the electrolytic nickel tends to be poor. Furthermore, when this electrolytic nickel is used as an anode for plating, This is not desirable as the slime generation rate increases. Reverse electrolysis performed at the start of electrolysis for the above purpose is similar to the positive current conditions during electrolysis operation, and it is sufficient to simply reverse the polarity during electrolysis operation, and the current density is usually about 0.5 to 4 A/dm2. be. This current density does not change whether the anode (during reverse electrolysis) is a nickel seed plate or sulfur-containing electrolytic nickel, and the energization time is about 2 to 15 minutes. The electrolytic conditions during electrolytic operation may be conventional conditions. For example, the electrolyte in the cathode box has a pH of
is 2.0 to 3.2, the temperature is 45 to 75°C, and the amount of electrolyte supplied to the cathode box is approximately 50 to 400 ml/A.H. The sulfur-containing electrolytic nickel produced in accordance with the present invention has a substantially uniform distribution of sulfur, and the electrodeposition strain is comparable to or less than that of sulfur-free electrolytic nickel. Next, the present invention will be explained in more detail with reference to Examples. Example 1 Ni9.12%, S0.01%, Fe3.5% as anode,
Cu2.7%, Co0.4% (each weight%), size 100mm×
Using a 150mm x 15mm coarse metal nickel plate, place an 80mm x 108mm x 0.2mm electric nickel seed plate as the cathode in a cathode box with inner dimensions 100mm x 160mm x 25mm, and place the above two anode plates in the electrolytic cell. were placed facing each other on both sides of the single cathode plate. The electrolyte is
Ni80g/, SO 4 127g/, Cl64g/, Na38
g/, with a composition of H 3 BO 3 10 g/approximately 80
then add sulfuric acid to adjust the PH to 2.5 ± 0.05, and then add sodium tetrathionate to 0.015
g/containing, feed liquid temperature 60℃,
Electrolysis was carried out under the conditions of supplying liquid to the cathode box: 100 ml/A.H. The cathode current density is 2A/ dm2 ,
The electrolyte drained from the cathode box was not circulated. Prior to the start of electrolysis, reverse electrolysis was performed for 5 minutes in which the polarity of the electrolysis was simply reversed. Further, after performing the subsequent positive direction electrolysis for 3 hours, the current was turned off again to correct the distortion of the cathode. After correcting this distortion, reverse direction electrolysis was performed again for 5 minutes in the same manner as before to change to forward direction electrolysis. Subsequent electrolysis was carried out for 8 consecutive days. As a result, as electrolytic nickel with good surface condition, Ni99.97%, Co00.01%, Fe0.004
%, Cu 0.002%, and S 0.019% (each weight %) and a thickness of about 8 mm was obtained. The sulfur distribution in this electrolytic nickel was almost uniform, with an average S content of 0.019% by weight, but in the lower corner, the concentration was 0.021% by weight on the liquid supply side and 0.020% by weight on the opposite side. This electrolytic nickel was cut into 10 mm square pieces with a cutting machine except for the plating test described below, but no peeling of the electrolytic nickel from the seed plate was observed in any of the sections. Using this electrolytic nickel (50 mm x 100 mm), 450 g of nickel sulfamate/30 g of H 3 BO 3 /
As a result of conducting a plating test in a bath with pH 4.0 and a cathode current density of 2 A/dm 2 , an anodic flow efficiency of 100.05% and a slime generation rate of 0.087% by weight were obtained. Comparative Example 1 Electrolysis was carried out under substantially the same conditions as in Example 1, except that the reverse current was applied prior to the start of electrolysis, the electrolysis was interrupted for 3 hours, and the reverse electrolysis was not performed prior to restarting electrolysis.
When the electrolytic nickel obtained as a result was cut into 10 mm square pieces using a cutting machine, peeling of the electrolytic nickel from the seed plate was observed in most of the cut pieces. Example 2 The sodium tetrathionate content in the electrolyte was
Electrolysis was carried out under substantially the same conditions as in Example 1, except that three types of electrolytic solutions prepared by adding sodium tetrathionate at concentrations of 0.010, 0.020, and 0.025 g were used. The surface condition of the electrolytic nickel obtained as a result is good, and its sulfur content is
They were 0.015, 0.026, and 0.035% by weight. When these electrolytic nickels were cut into 10 mm square pieces using a cutting machine, no peeling from the seed plate was observed in any of them. Using these electrolytic nickels, plating tests similar to those in Example 1 were conducted, and the results shown in Table 1 were obtained.

【表】 比較例 2 電解液中にチオ硫酸ナトリウムをその含有量が
0.016g/になるように添加して電解した以外
は全く実施例1と同様にして電解した。その結果
得られた電解ニツケルの中の硫黄分布を調査した
ところ平均S0.013重量%を示したが、下隅部分は
給液側が0.014重量%、その反対側が0.017重量%
であつた。 参考例 1 本発明を実施して硫黄含有電着ニツケルを製造
する際にこの電着ニツケルに生ずる電着歪を、他
の硫黄源を使用した場合に生ずる電着歪と比較す
るため、スパイラル(つる巻ねじりバネ)式の電
着応力計で測定した。供試電解液は実施例1で使
用したと同様の組成のものを用意し、これに所定
の硫黄源を添加した。陽極として電気ニツケル板
を使用し、陰極電流密度2A/dm2、電解温度55
〜60℃で電解し陰極のスパイラル板(幅b=13
mm、厚みs=0.2mm)に約20μm電着させた後、そ
の時のスパイラル弾性k・Kg・mm/度ねじれ角度
α度、電着膜厚みdmmを測定し、次式により電着
応力σKg/mm2を算出して第2表に示した。 σ=2・k・α/b・s・d なお、電着応力の数値は電着膜厚20μm付近の
データを求め補正によつて膜厚20μmとして算出
した。 第2表により示した通り、四チオン酸塩の添加
はチオ硫酸塩の場合より電着応力において優れ、
無添加の場合と同等もしくはそれ以上の結果を与
えることが判つた。
[Table] Comparative Example 2 The content of sodium thiosulfate in the electrolyte was
Electrolysis was carried out in the same manner as in Example 1, except that it was added and electrolyzed at a concentration of 0.016 g. When we investigated the sulfur distribution in the electrolytic nickel obtained as a result, we found that the average S content was 0.013% by weight, but in the lower corner, it was 0.014% by weight on the liquid supply side and 0.017% by weight on the opposite side.
It was hot. Reference Example 1 In order to compare the electrodeposition strain that occurs in the electrodeposited nickel when producing sulfur-containing electrodeposited nickel by carrying out the present invention with the electrodeposition strain that occurs when other sulfur sources are used, spiral ( It was measured using a helical torsion spring type electrodeposition stress meter. A test electrolytic solution having the same composition as that used in Example 1 was prepared, and a predetermined sulfur source was added thereto. An electric nickel plate was used as the anode, cathode current density 2A/dm 2 , electrolysis temperature 55
Electrolyze at ~60℃ and use a cathode spiral plate (width b = 13
mm, thickness s = 0.2 mm), the spiral elasticity k・Kg・mm/degree twist angle α degrees and electrodeposited film thickness dmm were measured, and the electrodeposition stress σKg/ mm 2 was calculated and shown in Table 2. σ=2·k·α/b·s·d Note that the numerical value of the electrodeposition stress was calculated by obtaining data for an electrodeposited film thickness of around 20 μm and correcting it as a film thickness of 20 μm. As shown in Table 2, the addition of tetrathionate is superior to thiosulfate in terms of electrodeposition stress;
It was found that the results were equivalent to or better than those without additives.

【表】 参考例 2 実施例1で得られた硫黄0.019重量%含有する
電解ニツケルの陽分極を電位増加速度0.15V/mm
の定電位法により測定した。電解液は、スルフア
ミン酸ニツケル450g/およびH3BO330g/
の組成を有し、PH4.0のスルフアミン酸浴である。
液温は50℃であつた。この結果、この硫黄含有電
解ニツケルは0.25V(vs.S.C.E.)より活性溶解領
域に入り、その領域での電気量は88クーロン/d
m2であつた。 以上から、本発明方法によつて所望の硫黄量を
均一に含有させ、電着歪が硫黄を含有しない電解
ニツケルと同程度もしくはそれ以下程度に小さ
く、剥離し難く、かつ陽極溶解性の優れた硫黄含
有電着ニツケルを安定して製造することができる
ことが判る。
[Table] Reference Example 2 The electrolytic nickel containing 0.019% by weight of sulfur obtained in Example 1 was anodically polarized at a potential increase rate of 0.15V/mm.
It was measured by the potentiostatic method. The electrolyte is nickel sulfamate 450g/and H 3 BO 3 30g/
It is a sulfamic acid bath with a pH of 4.0.
The liquid temperature was 50°C. As a result, this sulfur-containing electrolytic nickel enters the active dissolution region from 0.25V (vs. SCE), and the amount of electricity in that region is 88 coulombs/d.
It was m2 . From the above, the method of the present invention can uniformly contain a desired amount of sulfur, have a small electrodeposition strain comparable to or lower than that of electrolytic nickel that does not contain sulfur, is difficult to peel off, and has excellent anodic solubility. It can be seen that sulfur-containing electrodeposited nickel can be stably produced.

Claims (1)

【特許請求の範囲】[Claims] 1 ニツケルマツトまたは粗ニツケルの陽極と、
金属ニツケル板陰極を用い、硫黄含有化合物を含
む硫酸塩−塩化物混合物または単一塩化物の電解
浴を用いる硫黄含有電解ニツケルの製造方法にお
いて、上記硫黄含有化合物として四チオン酸塩を
用い、かつ電解に先立つて短時間、逆電流を流す
ことを特徴とする硫黄含有電解ニツケルの製造方
法。
1. A nickel pine or coarse nickel anode,
A method for producing sulfur-containing electrolytic nickel using a metal nickel plate cathode and an electrolytic bath of a sulfate-chloride mixture or single chloride containing a sulfur-containing compound, using a tetrathionate as the sulfur-containing compound, and A method for producing sulfur-containing electrolytic nickel characterized by flowing a reverse current for a short period of time prior to electrolysis.
JP14170982A 1982-08-17 1982-08-17 Production of electrolytic nickel containing sulfur Granted JPS5931876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14170982A JPS5931876A (en) 1982-08-17 1982-08-17 Production of electrolytic nickel containing sulfur

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14170982A JPS5931876A (en) 1982-08-17 1982-08-17 Production of electrolytic nickel containing sulfur

Publications (2)

Publication Number Publication Date
JPS5931876A JPS5931876A (en) 1984-02-21
JPH0359145B2 true JPH0359145B2 (en) 1991-09-09

Family

ID=15298372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14170982A Granted JPS5931876A (en) 1982-08-17 1982-08-17 Production of electrolytic nickel containing sulfur

Country Status (1)

Country Link
JP (1) JPS5931876A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104213150A (en) * 2014-07-04 2014-12-17 襄阳化通化工有限责任公司 Sulfur-containing active nickel briquette produced through electrolytic process

Also Published As

Publication number Publication date
JPS5931876A (en) 1984-02-21

Similar Documents

Publication Publication Date Title
JP4221064B2 (en) Electrodeposition method of copper layer
US4430173A (en) Additive composition, bath and process for acid copper electroplating
US3303111A (en) Electro-electroless plating method
JP2003503598A5 (en)
JP2006316328A (en) Method for manufacturing two-layer flexible copper-clad laminate
US2313371A (en) Electrodeposition of tin and its alloys
CN111850670A (en) Electrolytic stripping solution for steel electroplating hanger and stripping method
US2541721A (en) Process for replenishing nickel plating electrolyte
US1750092A (en) Electroplating process
US2457061A (en) Method for bonding a nickel electrodeposit to a nickel surface
US3463707A (en) Electrodeposition of lead dioxide
US3864227A (en) Method for the electrolytic refining of copper
US2745800A (en) Electroplating with iron
US4297179A (en) Palladium electroplating bath and process
JPS63270492A (en) Industrial nickel plating method using insoluble anode
JPH0359145B2 (en)
US1960029A (en) Electrodeposition of alloys
US2358029A (en) Process of electrodepositing indium
US3799850A (en) Electrolytic process of extracting metallic zinc
CN115216828A (en) Novel environment-friendly electrolytic deplating liquid and deplating method thereof
US2398614A (en) Electrodeposition of manganese
US2436244A (en) Metalworking and strippingplating process
US4411744A (en) Bath and process for high speed nickel electroplating
US2690997A (en) Electrodeposition of copper
US3374154A (en) Electroforming and electrodeposition of stress-free nickel from the sulfamate bath