JPH0359115A - Production of carbon fiber by vapor-phase method - Google Patents

Production of carbon fiber by vapor-phase method

Info

Publication number
JPH0359115A
JPH0359115A JP19338089A JP19338089A JPH0359115A JP H0359115 A JPH0359115 A JP H0359115A JP 19338089 A JP19338089 A JP 19338089A JP 19338089 A JP19338089 A JP 19338089A JP H0359115 A JPH0359115 A JP H0359115A
Authority
JP
Japan
Prior art keywords
vapor
raw material
carbon fiber
benzene
polycyclic aromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19338089A
Other languages
Japanese (ja)
Inventor
Yukio Fukuyama
幸男 福山
Nobuyuki Mitarai
信幸 御手洗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP19338089A priority Critical patent/JPH0359115A/en
Publication of JPH0359115A publication Critical patent/JPH0359115A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title fiber having high strength, high elasticity and high electrical conductivity and high corrosion resistance free from admixture of carbonaceous chain material by using a condensed polycyclic aromatic compound dissolved in benzene (derivative) as a raw material hydrocarbon. CONSTITUTION:A condensed polycyclic aromatic compound (derivative) having 2-4 rings is dissolved in benzene (derivative) and used as a raw material hydrocarbon to give the objective fiber.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は気相法による炭素繊維の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing carbon fiber using a vapor phase method.

[従来の技術] 従来、炭素繊維の製造方法としては、ポリアクリロニト
リルなどの有機繊維を炭化する方法、ピッチを溶融紡糸
後戻化する方法が代表的な方法として知られている。
[Prior Art] Conventionally, typical methods for producing carbon fibers include a method of carbonizing organic fibers such as polyacrylonitrile, and a method of recirculating pitch after melt-spinning.

これに対し、炭化水素化合物を原料とし、これを気相熱
分解しフィラメント状炭素を生成する気相法炭素繊維の
製造方法があり、この方法によるものは高強度、高弾性
、高導電性、高耐食性などの優れた特性を有している。
On the other hand, there is a method for manufacturing vapor-grown carbon fiber that uses a hydrocarbon compound as a raw material and pyrolyzes it in the vapor phase to produce filamentous carbon.Those produced by this method have high strength, high elasticity, high conductivity, It has excellent properties such as high corrosion resistance.

この気相法炭素繊維の製造はアルミナなどの磁器や黒鉛
などの基板上に、金属または金属化合物の触媒粒子を散
布し、これを反応炉内に導入し、しかる後に基板上に生
成した炭素繊維を取り出す方法(例えば、特開昭52−
103528号、特開昭52−107329号、特開昭
60−27700号など)が知られている。
The production of vapor-grown carbon fiber involves scattering catalyst particles of metal or metal compound onto a substrate made of porcelain such as alumina or graphite, introducing this into a reactor, and then producing carbon fibers on the substrate. A method for extracting
103528, JP-A-52-107329, JP-A-60-27700, etc.) are known.

さらに近年になり高温反応炉に金属または金属化合物の
触媒と炭化水素原料を供給し、触媒の存在下で反応を行
なわせる方法(例えば、特開昭58−180615号、
特開昭60−54998号、特開昭60−231821
号など)が開発された。この方法によれば基板などを必
要としない為に、生産性に優れ、かつ工業的規模で気相
法炭素繊維を得ることが可能である。
Furthermore, in recent years, a method has been developed in which a metal or metal compound catalyst and a hydrocarbon raw material are supplied to a high-temperature reactor, and the reaction is carried out in the presence of the catalyst (for example, JP-A-58-180615,
JP-A-60-54998, JP-A-60-231821
etc.) were developed. According to this method, since a substrate or the like is not required, the productivity is excellent and it is possible to obtain vapor-grown carbon fibers on an industrial scale.

従来のこれらの方法は、キャリヤガスとして水素、アル
ゴン等が用いられ、原料炭化水素としてはメタン、エタ
ン等の脂肪族系炭化水素、ベンゼン或はベンゼン誘導体
を主体とする環数が1である芳香族炭化水素、或は2環
以上の現数を有するナフタレン等の縮合多環式芳香族化
合物を用いるものである。
In these conventional methods, hydrogen, argon, etc. are used as a carrier gas, and the raw material hydrocarbons are aliphatic hydrocarbons such as methane and ethane, and aromatic hydrocarbons mainly having one ring, such as benzene or benzene derivatives. A group hydrocarbon or a condensed polycyclic aromatic compound such as naphthalene having two or more rings is used.

[発明が解決しようとする課題] ところで、気相法炭素繊維を工業的に生産する方法は1
反応の条件、例えば、キャリヤガスの通気量と原料ガス
の供給量を厳密に管理する必要があり(例えば、特開昭
63−219630など)、またこれらを厳密に行なっ
たとしても完全に繊維状気相法炭素繊維を得ることは困
難であった。気相法炭素繊維の製造において繊維質の物
を得るのが困難であるのは、例えば特開昭61−工32
507に開示されているような炭素質鎖状体がしばしば
混入する事に起因する。炭素鎖状体の混入は気相法炭素
繊維自体の製品価値を阻害するのみばかりでなく、例え
ば樹脂との複合を行なった場合、炭素質鎖状体が異物と
して作用し十分な物性を発揮出来ないばかりか、極端な
場合には複合物性そのものを低下させる場合がある。更
に、得られた気相法炭素繊維からこの様な炭素質鎖状体
をN1械的に分離しようとすると製造プロセスが複雑と
なるばかりかコスト高ともなり好ましいことではない。
[Problem to be solved by the invention] By the way, the method for industrially producing vapor-grown carbon fiber is 1.
It is necessary to strictly control the reaction conditions, such as the amount of carrier gas aeration and the amount of raw material gas supplied (e.g., Japanese Patent Application Laid-open No. 63-219630), and even if these are strictly carried out, complete fibrous formation may occur. It was difficult to obtain vapor grown carbon fiber. The difficulty in obtaining fibrous materials in the production of vapor-grown carbon fibers is, for example, as disclosed in Japanese Patent Application Laid-Open No. 61-32.
This is due to the fact that carbonaceous chains such as those disclosed in No. 507 are often mixed in. The contamination of carbon chains not only impedes the product value of the vapor-grown carbon fiber itself, but also, for example, when composited with resin, the carbon chains act as foreign substances and may not exhibit sufficient physical properties. Not only is this not possible, but in extreme cases, the properties of the composite itself may be deteriorated. Furthermore, attempting to mechanically separate such carbonaceous chain bodies from the obtained vapor-grown carbon fibers not only complicates the manufacturing process but also increases costs, which is not preferable.

従って前述の如くキャリヤガスや原料炭化水素の反応炉
内に於ける混合比率を厳密に管理する必要があった。原
料炭化水素の供給方法としては、メタン、エタン等のガ
ス状炭化水素は流量計を用いて正確な計量が可能であり
、ベンゼン等の液状炭化水素は定量ポンプを用いる事で
定量供給が可能である。ところでナフタレン、アントラ
セン等の縮合多環式芳香族原料は常温で固体であり、気
化させて供給するのが一般的である。この様に気化させ
て行なう場合には定量的な供給が行なわれず、その結果
、例えば炭素質鎖状粒子が混入する繊維形状の不揃いな
気相法炭素繊維しか得られないことになる。
Therefore, as mentioned above, it is necessary to strictly control the mixing ratio of the carrier gas and the raw material hydrocarbon in the reactor. Regarding the supply method of feedstock hydrocarbons, gaseous hydrocarbons such as methane and ethane can be accurately measured using a flow meter, and liquid hydrocarbons such as benzene can be supplied in a fixed amount using a metering pump. be. By the way, condensed polycyclic aromatic raw materials such as naphthalene and anthracene are solid at room temperature, and are generally supplied after being vaporized. In the case of vaporization in this manner, quantitative supply is not carried out, and as a result, only vapor-grown carbon fibers with irregular fiber shapes mixed with, for example, carbonaceous chain particles are obtained.

本発明は、この様な問題点に対し、炭素質鎖状体の混入
しない繊維質のみの気相法炭素繊維を得る事を目的とす
る。
SUMMARY OF THE INVENTION The present invention aims to solve these problems and to obtain a vapor-grown carbon fiber containing only fibrous material without contamination of carbonaceous chain bodies.

[11gを解決するための手段] 本発明者らは、炭素質鎖状体の混入が無く。[Means to solve 11g] The present inventors have found that there is no contamination of carbonaceous chain bodies.

繊維性に優れた良質な気相法炭素繊維を得るためには、
特定の原料を用い、しかも反応炉に定量的に供給されれ
ば遠戚される事を見いだし本発明に至った。
In order to obtain high quality vapor grown carbon fiber with excellent fibrous properties,
It was discovered that a distant relative can be achieved by using a specific raw material and supplying it quantitatively to the reactor, leading to the present invention.

即ち本発明の要旨は、原料である炭化水素の第一成分と
して環数が2〜4の縮合多環式芳香族化合物か該化合物
の誘導体を用い、第一成分へ′7セ゛ゾ を溶解せしめる溶媒として、 モη 講愈泳嶽また番へ誘導体を混合して用いることにより炭
素質鎖状体が混入しない良質な気相法炭素繊維得られる
ことにある。本発明で用いられる環数が2〜4の縮合多
環芳香族化合物としては、ナフタレン、及び誘導体であ
るα−メチルナフタレン、β−メチルナフタレン、2,
3−ジメチルナフタレン、あるいはアントラセンおよび
アントラセン誘導体、フへナントレンおよびフェナント
レン誘導体、同様にナフタセン。
That is, the gist of the present invention is to use a fused polycyclic aromatic compound having 2 to 4 rings or a derivative of the compound as the first component of the hydrocarbon raw material, and to dissolve '7seizo into the first component. By mixing and using a monomer derivative as a solvent, it is possible to obtain high-quality vapor-grown carbon fibers that are free from contamination with carbonaceous chain bodies. Examples of the fused polycyclic aromatic compound having 2 to 4 rings used in the present invention include naphthalene and its derivatives α-methylnaphthalene, β-methylnaphthalene, 2,
3-Dimethylnaphthalene, or anthracene and anthracene derivatives, phenanthrene and phenanthrene derivatives, as well as naphthacene.

ピレンおよび該化合物誘導体などが挙げられる。Examples include pyrene and derivatives of the compound.

また上記化合物を溶解させる第二成分としては、ベンゼ
ン、トルエン、キシレン等が挙げられる。
Further, examples of the second component that dissolves the above compound include benzene, toluene, xylene, and the like.

一般に気相法炭素繊維生成のメカニズムは原料炭化水素
が熱分解し原子状炭素となり、還元、清浄化された金属
触媒と接し炭素原子が触媒金属表面を拡散するか、或は
触媒金属中に溶解し。
In general, the mechanism of gas-phase carbon fiber production is that the raw material hydrocarbon is thermally decomposed to become atomic carbon, which comes into contact with a reduced and purified metal catalyst, and the carbon atoms diffuse on the surface of the catalyst metal, or dissolve into the catalyst metal. death.

触媒作用によって黒鉛構造を形成し繊維状の炭素質を形
成するとされている。ここで原料炭化水素としては脂肪
族、芳香族の多くのものを用いることが出来るとされて
いる1本発明者らは、原料炭化水素の種類と生成炭素繊
維の形態及び構造との間には密接な関係があり、それら
は原料の構造や熱力学的性質に帰結される事を見いだし
た。原料炭化水素の構造はITI肪族であるか芳香族で
あるか、または飽和化合物であるか不飽和化合物である
かに分類されるし、熱力学的性質は1反応源度にて発熱
反応か吸熱反応かに分類される。例えば脂肪族飽和炭化
水素であるメタンやエタンは反応温度において吸熱反応
であり、ベンゼン、ナフタレン等の芳香族炭化水素は発
熱反応である。本発明者らは炭化水素の基本構造と熱力
学的性質に着目し鋭意研究を行なった結果、気相法炭素
繊維の繊維形態と繊維構造は芳香族炭化水素であって発
熱反応を示すものが好ましい事を見いだした。
It is said that a graphite structure is formed through catalytic action, forming a fibrous carbonaceous substance. Here, it is said that many aliphatic and aromatic hydrocarbons can be used as the raw material hydrocarbon.1 The present inventors found that there is a difference between the type of raw material hydrocarbon and the morphology and structure of the produced carbon fiber. We found that there is a close relationship, and that these are caused by the structure and thermodynamic properties of the raw materials. The structure of the raw material hydrocarbon is classified into ITI aliphatic or aromatic, or whether it is a saturated compound or an unsaturated compound, and its thermodynamic properties are whether it is an exothermic reaction at one reaction source level. It is classified as an endothermic reaction. For example, methane and ethane, which are aliphatic saturated hydrocarbons, have an endothermic reaction at the reaction temperature, while aromatic hydrocarbons such as benzene and naphthalene have an exothermic reaction. The present inventors focused on the basic structure and thermodynamic properties of hydrocarbons, and as a result of intensive research, we found that the fiber morphology and fiber structure of vapor-grown carbon fibers are aromatic hydrocarbons that exhibit exothermic reactions. I found something nice.

該原料炭化水素としては芳香族系炭化水素のうち、特に
縮合多環式芳香族炭化水素が好ましい。しかしながら縮
合多環式芳香族炭化水素は常温で通常固体であり、しか
も気化性を有しているために反応炉への定量供給には多
くの障害がある。この問題を解決するためにはベンゼン
又はベンゼン誘導体のごとき液状芳香族炭化水素であっ
て、縮合多環式芳香族化合物を溶解する溶媒を選択する
ことが最適であり、しかもベンゼン又はベンゼン誘導体
の如き液状芳香族炭化水素に溶解する縮合多環式芳香族
化合物としては、2〜4環のものが最適である。例えば
ベンゼンを溶媒とし、多環芳香族炭化水素としてナフタ
レンを用いた場合にはナフタレンはベンゼン中に釣30
wt%溶解する事が出来る。又アントラセンを用いた場
合には約20wt%溶解させることが出来る。このよう
に、縮合多環式芳香族化合物を溶媒に溶解することによ
り反応炉への定量供給は容易となる。
Among aromatic hydrocarbons, condensed polycyclic aromatic hydrocarbons are particularly preferred as the raw material hydrocarbon. However, since fused polycyclic aromatic hydrocarbons are usually solid at room temperature and have vaporizability, there are many obstacles to quantitatively supplying them to a reactor. In order to solve this problem, it is optimal to select a liquid aromatic hydrocarbon such as benzene or a benzene derivative that dissolves the fused polycyclic aromatic compound, and also a liquid aromatic hydrocarbon such as benzene or a benzene derivative. As the condensed polycyclic aromatic compound that dissolves in the liquid aromatic hydrocarbon, those having 2 to 4 rings are most suitable. For example, when benzene is used as a solvent and naphthalene is used as a polycyclic aromatic hydrocarbon, naphthalene is dissolved in benzene at 30%
It is possible to dissolve wt%. Furthermore, when anthracene is used, it can be dissolved in an amount of about 20 wt%. In this manner, by dissolving the fused polycyclic aromatic compound in a solvent, it becomes easy to supply the fused polycyclic aromatic compound in a quantitative manner to the reactor.

更に説明すると、これらの条件を満足する原料を選択す
れば、繊維の形態に関しては炭素質鎖状体の混入の無い
繊維状のみの気相法炭素繊維が得られるし、構造面から
は充分に黒鉛性の発達した繊維が得られる。これら優れ
た気相法炭素繊維が得られる理由は定かではないが、金
属微粒子の触媒作用を受ける時の炭素の構成単位に起因
していると考えられる。即ち、触媒作用を受ける構成単
位は、原子状炭素あるいは直鎖状炭素化合物でなく、芳
香族化合物の単量体あるいは多量体であると予想される
。これら縮合多環芳香族化合物は、一部は熱分解するが
、芳香族ラジカルを生威しやすく容易に多量化し、ある
種の芳香族多量体として触媒作用を受は熱力学的に安定
な黒鉛構造をとり、最終的にwl、雄状のものとなるも
のと予想される。芳香族化合物が脂肪族炭化水素に比べ
好ましいのは、熱力学的に安定な芳香環を骨格とした芳
香族多量体が確率よく得られる為と思われる。また原料
が発熱反応であるのは、反応に必要な温度を維持すると
ともに、触媒作用を促進するための推進力となっている
と予想される。
To explain further, if a raw material that satisfies these conditions is selected, it is possible to obtain a vapor-grown carbon fiber that is only in the form of fibers without any contamination of carbonaceous chain bodies, and is sufficiently satisfactory from the structural point of view. Fibers with developed graphite properties are obtained. The reason why these excellent vapor-grown carbon fibers are obtained is not clear, but it is thought to be due to the structural unit of carbon when subjected to the catalytic action of fine metal particles. That is, the structural unit that undergoes catalytic action is expected to be a monomer or polymer of an aromatic compound, rather than an atomic carbon or a linear carbon compound. Although some of these condensed polycyclic aromatic compounds decompose thermally, they tend to generate aromatic radicals and easily become abundant, and as a type of aromatic polymer, thermodynamically stable graphite undergoes catalytic action. It is expected that the structure will eventually become wl, male-shaped. The reason why aromatic compounds are preferable to aliphatic hydrocarbons is thought to be that aromatic polymers having thermodynamically stable aromatic rings as a skeleton can be obtained with high probability. Furthermore, the exothermic reaction of the raw materials is expected to serve as a driving force to maintain the temperature necessary for the reaction and to promote the catalytic action.

本発明において、金属微粒子としては従来公知のFe、
Co、Ni等、及びフェロセン等のこれら金属を含む化
合物の分解によって微粒子を生ずるものが用いられ、ま
た生成温度も従来と変りないが特に1100℃〜130
0℃が好ましい、生成方法も空間で微細な繊維とする場
合の外、基板上に長時間かけて比較的長い繊維とするこ
とも可能である。
In the present invention, the metal fine particles include conventionally known Fe,
A compound that generates fine particles by decomposing a compound containing these metals such as Co, Ni, and ferrocene is used, and the generation temperature is also the same as before, but in particular, it is 1100°C to 130°C.
The temperature is preferably 0° C., and in addition to forming fine fibers in space, it is also possible to form relatively long fibers over a long period of time on a substrate.

以下に、実施例を示し本発明を更に詳しく説明する。The present invention will be explained in more detail below with reference to Examples.

[実施例1コ 第1図に本実施例に用いた、装置図を示す。[Example 1 FIG. 1 shows a diagram of the apparatus used in this example.

ベンゼンにナフタレン溶解させナフタレン濃度を30重
量%とじ、混合溶液に対し2重量%の割合でフェロセン
を混合し、原料供給タンクlに注入した。続いて120
0℃に保持され、流量計3によって毎分20リツトルの
割合で水素が通気されている内径80mmの反応炉中4
に、供給ポンプ2を用い、毎分Logの割合で原料を供
給した。IJK料を供給して1o分経過した後に、反応
を停止し、反応炉4を冷却し、ボックス5に生威し炭素
質生成物を取り出した。図で6はフィルター、7はガス
の排出口である。生成した炭素繊維を計量すると、62
gであり、原料供給量に対する収率は、62重量%であ
った。更に本生酸物を走査型電子顕微鏡で観察すると、
直径は0. 3μm−0,5μm、長さは500μm以
上の炭素質鎖状体の全く混入しない、良質な繊維であっ
た。
Naphthalene was dissolved in benzene to adjust the naphthalene concentration to 30% by weight, and ferrocene was mixed at a ratio of 2% by weight with respect to the mixed solution, and the mixture was poured into a raw material supply tank 1. followed by 120
4 in a reactor with an inner diameter of 80 mm maintained at 0°C and hydrogen bubbled through at a rate of 20 liters per minute by a flow meter 3.
Then, the feed pump 2 was used to feed the raw material at a rate of Log per minute. After 1 minute had elapsed since the IJK material was supplied, the reaction was stopped, the reactor 4 was cooled, and the carbonaceous product was taken out from the box 5. In the figure, 6 is a filter, and 7 is a gas outlet. Weighing the carbon fiber produced, it is 62
g, and the yield based on the amount of raw material supplied was 62% by weight. Furthermore, when this bioacid was observed with a scanning electron microscope,
The diameter is 0. The fibers were of good quality, measuring 3 μm to 0.5 μm and having a length of 500 μm or more, with no contamination of carbonaceous chain bodies.

また本繊維を学振法に従いX線回折を行なったところ、
 (OO2)面の回折角は26.工。
In addition, when this fiber was subjected to X-ray diffraction according to the Gakushin method,
The diffraction angle of the (OO2) plane is 26. Engineering.

であり、黒鉛性に優れた繊維であった。It was a fiber with excellent graphitic properties.

[比較例1] 第1図に示した装置を用い、原料をベンゼンのみとした
他は、実施例1と同様の反応を行なった。炭素の収率は
、45重重量であった。また走査型電子R徴鏡による観
察では炭素質鎖状体を多く含み、X&!回折では回折角
が25.0と25.4°にビークを有する混合体であっ
た。
[Comparative Example 1] Using the apparatus shown in FIG. 1, the same reaction as in Example 1 was carried out except that only benzene was used as the raw material. Carbon yield was 45 gw. In addition, observation using a scanning electron R mirror shows that it contains many carbonaceous chains, and X&! Diffraction revealed a mixture with peaks at diffraction angles of 25.0 and 25.4 degrees.

[比較例2コ 第1図に示した装置を用い、原料をn−ヘキサンとした
他は、実施例1と同様の反応を行なった。炭素の収率は
2工%と極めて低く、また走査型電子顕1M鏡による観
察では炭素質鎖状体のみであり繊維は確認されなかった
[Comparative Example 2] The same reaction as in Example 1 was carried out using the apparatus shown in FIG. 1, except that n-hexane was used as the raw material. The carbon yield was extremely low at 2%, and observation using a 1M scanning electron microscope revealed only carbonaceous chains and no fibers.

[発明の効果] 炭素質鎖状体の混入しない、繊維質のみの気相法炭素繊
維は、補強効果にも優れ様ざまな分野での用途が期待で
きる。
[Effects of the Invention] The vapor-grown carbon fiber, which is fibrous only and is not mixed with carbonaceous chain bodies, has an excellent reinforcing effect and can be expected to be used in a variety of fields.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の気相法炭素繊維を製造する装置の一
例を示す説明図である。 工・・・原料タンク、 4・・・反応炉、 6・・・フィルター
FIG. 1 is an explanatory diagram showing an example of an apparatus for manufacturing vapor-grown carbon fiber of the present invention. Engineering: raw material tank, 4: reactor, 6: filter

Claims (1)

【特許請求の範囲】[Claims] 気相法による炭素繊維の製造方法において、原料炭化水
素として、環数が2〜4の縮合多環式芳香族化合物ある
いは縮合多環式芳香族化合物誘導体を、ベンゼンまたは
その誘導体に溶解し用いる事を特徴とする方法。
In a method for producing carbon fiber by a gas phase method, a fused polycyclic aromatic compound or a fused polycyclic aromatic compound derivative having 2 to 4 rings is used as a raw material hydrocarbon by dissolving it in benzene or a derivative thereof. A method characterized by:
JP19338089A 1989-07-26 1989-07-26 Production of carbon fiber by vapor-phase method Pending JPH0359115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19338089A JPH0359115A (en) 1989-07-26 1989-07-26 Production of carbon fiber by vapor-phase method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19338089A JPH0359115A (en) 1989-07-26 1989-07-26 Production of carbon fiber by vapor-phase method

Publications (1)

Publication Number Publication Date
JPH0359115A true JPH0359115A (en) 1991-03-14

Family

ID=16306962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19338089A Pending JPH0359115A (en) 1989-07-26 1989-07-26 Production of carbon fiber by vapor-phase method

Country Status (1)

Country Link
JP (1) JPH0359115A (en)

Similar Documents

Publication Publication Date Title
EP1618234B1 (en) Method of producing vapor-grown carbon fibers
Height et al. Flame synthesis of single-walled carbon nanotubes
US20090176100A1 (en) Vapor-grown carbon fiber and production process thereof
Jiao et al. Single-walled tubes and encapsulated nanoparticles: comparison of structural properties of carbon nanoclusters prepared by three different methods
JPS6054998A (en) Production of carbon fiber grown in vapor phase
EP1507903B1 (en) Process for producing vapor-grown carbon fibers
JP2007191840A (en) Vapor grown carbon fiber and method for producing the same
EP1791991B1 (en) Process for the production of vapor-grown carbon fibers
Xu et al. Parametric study on growth of carbon nanocoil by catalytic chemical vapor deposition
Terry et al. Catalytic growth of carbon nanofibers and nanotubes
JP4010974B2 (en) Method for producing vapor grown carbon fiber
Takahashi et al. Synthesis of carbon nanofibers from poly (ethylene glycol) with controlled structure
JPH0359115A (en) Production of carbon fiber by vapor-phase method
EP0424922B1 (en) Carbonaceous fibers and production process therefor
JPS6278217A (en) Vapor-phase production of carbon fiber
JPS59152298A (en) New production process for carbon fiber
KR100864418B1 (en) Vapor-grown carbon fiber and productiion process thereof
JPH0712924B2 (en) Powdery highly crystalline graphite containing iron group element or alloy containing it
JP2670040B2 (en) Hollow carbon fiber by fluidized vapor deposition
JP2586055B2 (en) Method for producing vapor grown carbon fiber
JPH0813254A (en) Hollow carbon yarn by fluidized vapor-phase growth method
JPS60224815A (en) Gas-phase production of carbon fiber
JP2004270088A (en) Method for producing vapor-grown carbon fiber
JPH07843B2 (en) Method for producing vapor grown carbon fiber
JPH06123014A (en) Production of carbon fiber by gaseous phase method