JPH0358907B2 - - Google Patents

Info

Publication number
JPH0358907B2
JPH0358907B2 JP59184774A JP18477484A JPH0358907B2 JP H0358907 B2 JPH0358907 B2 JP H0358907B2 JP 59184774 A JP59184774 A JP 59184774A JP 18477484 A JP18477484 A JP 18477484A JP H0358907 B2 JPH0358907 B2 JP H0358907B2
Authority
JP
Japan
Prior art keywords
continuously
weight
saturated polyester
unsaturated polyester
resin liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59184774A
Other languages
Japanese (ja)
Other versions
JPS60174644A (en
Inventor
Yasuo Fushiki
Masaharu Abe
Masayuki Ooizumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP59184774A priority Critical patent/JPS60174644A/en
Publication of JPS60174644A publication Critical patent/JPS60174644A/en
Publication of JPH0358907B2 publication Critical patent/JPH0358907B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】 本発明は寸法安定性の改善された電気用積層板
の連続製造方法に関するものである。ここでいう
電気用積層板とは、印刷回路用基板として用いら
れる金属箔張り積層板を意味し、その形状は厚み
がおよそ0.5〜5mmである板状物をいう。 電気用積層板に対する要求性能は、建材等一般
用の積層板に対するそれと比べ厳しいものがあ
り、高度の機械的特性、電気的特性の他に高度の
寸法安定性が要求される。印刷回路用基板に対し
ては、加工工程中繰り返し受ける加熱、冷却等の
処理によつて膨張、収縮、反りの少ない板が望ま
れる。更に、近年自動挿入機の導入に伴い、板の
反りに関してはますます厳しい監視が行われるよ
うになつてきた。 本発明者らは、これらの性能上の諸要求に答え
る電気用積層板を連続的に製造できる方法を既に
特願昭54−35805、特願昭54−35806、特願昭54−
83239、特願昭54−89623等において提案してき
た。本発明の目的はこれらの製造方法の改良にあ
り、寸法安定性のよりすぐれた電気用積層板を連
続的並びに工業的に製造する方法を提供すること
にある。 即ち、不飽和ポリエステル樹脂液を長尺のシー
ト上基材へ連続的に含浸させ、続いて複数枚積層
し、金属箔を連続的にラミネートし、余分の樹脂
を取り除き、続いて連続的に硬化せしめ、金属箔
張り積層板を得る製造方法において本発明は、用
いる不飽和ポリエステル樹脂液に飽和ポリエステ
ルを添加することにより、不飽和ポリエステル樹
脂の硬化時の硬化収縮をおさえ、寸法安定性のよ
り改善された金属箔張り積層板を得ることにあ
る。 以下、本発明を更に詳しく説明する。 通常、熱硬化性樹脂は硬化時に体積収縮を生じ
る。中ても不飽和ポリエステル樹脂は硬化時の収
縮率が大きく、7〜10%といわれている。 本発明者らが検討したところによると、金属箔
張り積層板の反り特性、加熱収縮特性は用いる熱
硬化性樹脂液の硬化収縮率と極めて強い相関関係
のあることがわかつた。従つて、用いる熱硬化性
樹脂液の硬化収縮率を下げることにより、金属箔
張り積層板の加熱収縮特性や反り特性等のいわゆ
る寸法安定性を改善することが可能であり、具体
的には不飽和ポリエステル樹脂液に飽和ポリエス
テルを含有せしめることにより、得られる金属箔
張り積層板の寸法安定性の改善が達せられること
を明らかにすることができた。 本発明に用いる飽和ポリエステルとしては、例
えば、無水フタル酸、イソフタル酸、テレフタル
酸、アジピン酸、セバシン酸等の酸成分とプロピ
レングリコール、エチレングリコール等のグリコ
ール成分とを反応させて得られる飽和ポリエステ
ル類をあげることができる。 上記の飽和ポリエステルの添加量は含浸する不
飽和ポリエステル樹脂液に3重量%から25重量%
の範囲が望ましい。添加量が40重量%を越えると
寸法安定性の改善の効果はあつても飽和ポリエス
テルの混入により積層板の強度が低下し、かつじ
ん性が乏しくなる。寸法安定性及びその他の諸性
能のバランスを保つために最も好ましい添加量は
3重量%から25重量%の範囲であつた。 飽和ポリエステルの添加の方法は、室温で流状
の飽和ポリエステルを直接添加したり、あるいは
あらかじめ不飽和ポリエステル樹脂の共重合性ビ
ニル単量体に溶解ないしは分散させたものを添加
等する。 本発明に用いる長尺なシート状基材としては、
ガラス繊維布、ガラス不織布、クラフト紙、リン
ター紙、石綿布等があげられる。これらの基材に
対して、上記の飽和ポリエステルを含有する不飽
和ポリエステル樹脂液を含浸する前に必要に応じ
て種々のプレ含浸を行うことができる。例えば本
発明者らが既に特願昭54−53239で提案している
ように不飽和結合を官能基として有するN−メチ
ロール化合物を用いて紙基材をプレ含浸したり、
あるいは特願昭54−121180において提案している
ようにメチロールメラミン及び/又はメチロール
グアナミン及び分子内にメチロール基と縮合可能
な基を少なくとも1個有する高級脂肪族誘導体と
の混合物もしくは縮合生成物で、紙基材をプレ含
浸するのは、製品の特性、とりわけ吸湿や給水時
の特性を高めるために好ましい。 なお、本発明に用いる金属箔とは、電解銅箔、
圧延銅箔、アルミニウム箔、鉄箔などであり、通
常、印刷回路基板用としては電解銅箔が主であ
る。この金属箔に対して、本発明者らが既に特願
昭54−83239において提案しているように、接着
剤を塗布し、加熱処理を行つた後、樹脂を含浸し
た基材と連続的にラミネートし、加熱硬化せしめ
るのが望ましい。 又、硬化を行う際の成形圧については、過剰分
の樹脂のはみ出しが起こらない程度まで加圧を行
うことも、本発明の実施態様の一つであるが、実
質的に無圧の条件下で硬化せしめることが本発明
の好ましい実施態様の一つである。 以上のような方法により得られる金属箔張り積
層板は寸法安定性のみならず機械的特性及び電気
的特性にすぐれ、印刷回路用基板として電気用途
に広く利用される。 以下、本発明を実施例でもつて説明する。 実施例 1 プロピレングリコールとアジピン酸から合成し
た分子量約3500の室温で液状の飽和ポリエステル
10%を添加した市販の不飽和ポリエステル樹脂
(武田薬品製ポリマール6304)100重量部に対して
硬化触媒として1,1−ビス(t−ブチルパーオ
キシ)3,3,5−トリメチルシクロヘキサン
(日本油脂製パーヘキサ3M)1重量部及び硬化助
剤として6%ナフテン酸コバルト溶液0.2重量部
を配合して単浸用樹脂液を得た。100℃で20分間
あらかじめ乾燥した厚み280μのクラフト紙(巴
川製紙MKP−150)にカーテンフロー方式で片面
から該樹脂液を連続的に含浸し、6枚重ね合わせ
更に該積層物の片面からエポキシ系接着剤を塗布
した35μの銅箔を他の片面から35μのセロフアン
フイルムをラミイトネートし、100℃で30分間加
熱した。このものを切断した後、更に硬化を進め
るため100℃で10時間、160℃で10分間の熱処理を
行い、最終的に厚さ1.6mmの銅張り積層板を得た。
得られた積層板の銅箔を塩化第2鉄液によるエツ
チングで除去し、1cm角の大きさに切り取つたサ
ンプルについて、常態調整後23℃から150℃まで
の加熱膨張率及び収縮率をパーキンエルマー社製
熱物理試験機TMS−1型で測定した。測定結果
を表1に示す。 実施例 2 実施例1と同様の樹脂液をクラフト紙のかわり
に厚み185μのガラスクロス(日東紡績製WE18K
−BR)に片面から連続液に含浸させ8枚重ね合
わせた後、実施例1と同じ条件で厚さ1.6mmの銅
張り積層板を得た。得られたサンプルの加熱膨張
収縮の測定結果を表1に示す。 比較例 1、2 飽和ポリエステルを含まない市販の不飽和ポリ
エステル樹脂(武田薬品製ポリマール6304)から
実施例1および実施例2と同様の方法で1.6mm銅
張り積層板を作成した。基材としてクラフト紙
(巴川製紙MKP−150)を用いたものを比較例1、
基材としてガラスクロス(日東紡績製WE18K−
BS)を用いたものを比較例2とした。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for continuously producing electrical laminates with improved dimensional stability. The term "electrical laminate" as used herein refers to a metal foil-covered laminate used as a printed circuit board, and is a plate-like product with a thickness of about 0.5 to 5 mm. The performance requirements for electrical laminates are stricter than those for general-purpose laminates such as building materials, and in addition to high mechanical and electrical properties, a high degree of dimensional stability is required. For printed circuit boards, it is desirable to have boards that are less likely to expand, shrink, or warp due to repeated heating, cooling, and other treatments during processing. Furthermore, with the introduction of automatic insertion machines in recent years, the warpage of boards has come to be increasingly monitored. The present inventors have already developed a method for continuously manufacturing electrical laminates that meet these performance requirements in Japanese Patent Applications No. 54-35805, No. 35806, No. 1983, and No. 54-35806.
83239, patent application No. 89623, etc. The object of the present invention is to improve these manufacturing methods, and to provide a method for continuously and industrially manufacturing electrical laminates with better dimensional stability. That is, unsaturated polyester resin liquid is continuously impregnated into a long sheet base material, then multiple sheets are laminated, metal foil is continuously laminated, excess resin is removed, and then continuously cured. In the manufacturing method for obtaining metal foil-clad laminates, the present invention adds saturated polyester to the unsaturated polyester resin liquid used, thereby suppressing curing shrinkage during curing of the unsaturated polyester resin and further improving dimensional stability. The purpose of the present invention is to obtain a metal foil-clad laminate. The present invention will be explained in more detail below. Normally, thermosetting resins undergo volumetric contraction during curing. Among these, unsaturated polyester resins have a large shrinkage rate during curing, said to be 7 to 10%. According to the studies conducted by the present inventors, it was found that the warping characteristics and heat shrinkage characteristics of a metal foil-clad laminate have an extremely strong correlation with the curing shrinkage rate of the thermosetting resin liquid used. Therefore, by lowering the curing shrinkage rate of the thermosetting resin liquid used, it is possible to improve the so-called dimensional stability such as heat shrinkage characteristics and warp characteristics of metal foil-clad laminates. It has been revealed that by incorporating saturated polyester into the saturated polyester resin liquid, the dimensional stability of the resulting metal foil-clad laminate can be improved. Examples of the saturated polyester used in the present invention include saturated polyesters obtained by reacting acid components such as phthalic anhydride, isophthalic acid, terephthalic acid, adipic acid, and sebacic acid with glycol components such as propylene glycol and ethylene glycol. can be given. The amount of the above saturated polyester added is 3% to 25% by weight to the unsaturated polyester resin liquid to be impregnated.
A range of is desirable. If the amount added exceeds 40% by weight, although there is an effect of improving dimensional stability, the strength of the laminate decreases due to the inclusion of saturated polyester, and the toughness becomes poor. In order to maintain a balance between dimensional stability and other various properties, the most preferred addition amount was in the range of 3% by weight to 25% by weight. The saturated polyester can be added by directly adding the saturated polyester in a fluid state at room temperature, or by adding the unsaturated polyester resin dissolved or dispersed in a copolymerizable vinyl monomer in advance. The elongated sheet-like base material used in the present invention includes:
Examples include glass fiber cloth, glass nonwoven fabric, kraft paper, linter paper, asbestos cloth, etc. Before impregnating these base materials with the unsaturated polyester resin liquid containing the above-mentioned saturated polyester, various pre-impregnations can be performed as necessary. For example, as already proposed by the present inventors in Japanese Patent Application No. 53239/1984, a paper base material may be pre-impregnated with an N-methylol compound having an unsaturated bond as a functional group;
Or a mixture or condensation product of methylolmelamine and/or methylolguanamine and a higher aliphatic derivative having at least one group capable of condensing with a methylol group in the molecule, as proposed in Japanese Patent Application No. 121180/1982. Pre-impregnating the paper substrate is preferred in order to improve the properties of the product, especially its moisture absorption and water supply properties. Note that the metal foil used in the present invention includes electrolytic copper foil,
These include rolled copper foil, aluminum foil, iron foil, etc., and electrolytic copper foil is usually used for printed circuit boards. As already proposed by the present inventors in Japanese Patent Application No. 83239/1983, this metal foil is coated with an adhesive, heat treated, and then continuously bonded to a resin-impregnated base material. It is preferable to laminate and heat cure. Regarding the molding pressure during curing, it is one of the embodiments of the present invention to apply pressure to a level that does not cause excess resin to protrude, but it is possible to apply the molding pressure under substantially no pressure conditions. One of the preferred embodiments of the present invention is curing with. The metal foil-clad laminate obtained by the above method has excellent not only dimensional stability but also mechanical and electrical properties, and is widely used as a printed circuit board for electrical purposes. The present invention will be explained below with reference to Examples. Example 1 Saturated polyester synthesized from propylene glycol and adipic acid and having a molecular weight of approximately 3500 and is liquid at room temperature.
1,1-bis(t-butylperoxy) 3,3,5-trimethylcyclohexane (NOF) was added as a curing catalyst to 100 parts by weight of a commercially available unsaturated polyester resin (Polymer 6304, manufactured by Takeda Pharmaceutical). A resin liquid for single dipping was obtained by blending 1 part by weight of Perhexa 3M (manufactured by Perhexa 3M) and 0.2 part by weight of a 6% cobalt naphthenate solution as a curing aid. Kraft paper (Tomoekawa Paper MKP-150) with a thickness of 280μ, which has been pre-dried for 20 minutes at 100℃, is continuously impregnated with the resin liquid from one side using the curtain flow method, six sheets are stacked, and the epoxy resin is applied from one side of the laminate. A 35μ copper foil coated with adhesive was laminated with a 35μ cellophane film on the other side and heated at 100°C for 30 minutes. After cutting this material, heat treatment was performed at 100°C for 10 hours and at 160°C for 10 minutes to further promote curing, and finally a copper-clad laminate with a thickness of 1.6 mm was obtained.
The copper foil of the resulting laminate was removed by etching with ferric chloride solution, and the sample was cut into 1 cm square pieces. After normal adjustment, the thermal expansion and contraction rates from 23°C to 150°C were measured using Perkin Elmer. Measurement was carried out using a thermophysical tester model TMS-1 manufactured by Kawasaki. The measurement results are shown in Table 1. Example 2 The same resin liquid as in Example 1 was applied to 185μ thick glass cloth (WE18K manufactured by Nittobo Co., Ltd.) instead of kraft paper.
-BR) was impregnated with a continuous liquid from one side and stacked on top of eight sheets, and then a copper-clad laminate with a thickness of 1.6 mm was obtained under the same conditions as in Example 1. Table 1 shows the measurement results of heating expansion and contraction of the obtained samples. Comparative Examples 1 and 2 A 1.6 mm copper-clad laminate was prepared in the same manner as in Examples 1 and 2 from a commercially available unsaturated polyester resin (Polymer 6304 manufactured by Takeda Pharmaceutical Co., Ltd.) containing no saturated polyester. Comparative Example 1 uses kraft paper (Tomoekawa Paper MKP-150) as the base material.
Glass cloth (WE18K manufactured by Nitto Boseki) was used as the base material.
BS) was used as Comparative Example 2. 【table】

Claims (1)

【特許請求の範囲】 1 室温で液状の飽和ポリエステルを含有し、本
質的に乾燥工程を必要とせず、かつ硬化反応過程
で気体や液体等の反応副生成物を実質的に発生し
ない不飽和ポリエステル樹脂液を含浸した長尺の
シート状基材を複数枚連続的に搬送し、続いて連
続的に積層し、さらに金属箔をラミネートし次い
で連続的に硬化せしめることを特徴とする電気用
積層板の連続製造方法。 2 不飽和ポリエステル樹脂液が3重量%から25
重量%の飽和ポリエステルを含有することを特徴
とする特許請求の範囲第1項記載の電気用積層板
の連続製造方法。
[Scope of Claims] 1. An unsaturated polyester that contains a saturated polyester that is liquid at room temperature, that essentially does not require a drying process, and that does not substantially generate reaction by-products such as gas or liquid during the curing reaction process. An electrical laminate, characterized in that a plurality of long sheet-like substrates impregnated with a resin liquid are continuously conveyed, successively laminated, further laminated with metal foil, and then continuously cured. continuous manufacturing method. 2 Unsaturated polyester resin liquid is 3% to 25% by weight
2. A method for continuously manufacturing an electrical laminate according to claim 1, characterized in that it contains saturated polyester in an amount of % by weight.
JP59184774A 1984-09-03 1984-09-03 Continuous manufacture of laminated board for electricity Granted JPS60174644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59184774A JPS60174644A (en) 1984-09-03 1984-09-03 Continuous manufacture of laminated board for electricity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59184774A JPS60174644A (en) 1984-09-03 1984-09-03 Continuous manufacture of laminated board for electricity

Publications (2)

Publication Number Publication Date
JPS60174644A JPS60174644A (en) 1985-09-07
JPH0358907B2 true JPH0358907B2 (en) 1991-09-06

Family

ID=16159074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59184774A Granted JPS60174644A (en) 1984-09-03 1984-09-03 Continuous manufacture of laminated board for electricity

Country Status (1)

Country Link
JP (1) JPS60174644A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2596162A (en) * 1945-03-01 1952-05-13 Marco Chemicals Inc Method of polymerizing fiber-reinforced resinous materials and product
JPS5170457A (en) * 1974-12-16 1976-06-18 Mitsubishi Gas Chemical Co Sekisoban oyobi sonoseiho
JPS51133392A (en) * 1975-05-14 1976-11-19 Sumitomo Chem Co Ltd A low shrinkage unsaturated polyester resin composition
JPS554838A (en) * 1978-06-26 1980-01-14 Kanegafuchi Chemical Ind Method of continuously manufacturing electric laminated insulating plate or metallic foil laminated plate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2596162A (en) * 1945-03-01 1952-05-13 Marco Chemicals Inc Method of polymerizing fiber-reinforced resinous materials and product
JPS5170457A (en) * 1974-12-16 1976-06-18 Mitsubishi Gas Chemical Co Sekisoban oyobi sonoseiho
JPS51133392A (en) * 1975-05-14 1976-11-19 Sumitomo Chem Co Ltd A low shrinkage unsaturated polyester resin composition
JPS554838A (en) * 1978-06-26 1980-01-14 Kanegafuchi Chemical Ind Method of continuously manufacturing electric laminated insulating plate or metallic foil laminated plate

Also Published As

Publication number Publication date
JPS60174644A (en) 1985-09-07

Similar Documents

Publication Publication Date Title
JPH0147297B2 (en)
JPS6221371B2 (en)
CA1175335A (en) Production of metal clad reinforced resin laminates
EP0031852A1 (en) Process and apparatus for continuous production of laminates
JPH0358907B2 (en)
JPS642136B2 (en)
JPS5856995B2 (en) Electrical laminate and its continuous manufacturing method
JPS6345415B2 (en)
JPS6221626B2 (en)
JPS6335422B2 (en)
JP4229509B2 (en) Surface treatment agent for glass fiber
JPS63122507A (en) Continuous manufacture of laminated sheet
JPS6345416B2 (en)
JPH0321337B2 (en)
JPS6092844A (en) Laminated board for electricity and metallic foil lined laminated board
JPS6354543B2 (en)
JPH0253225B2 (en)
JPH0126374B2 (en)
JP2898690B2 (en) Manufacturing method of prepreg
JPS6315910B2 (en)
JPS59136251A (en) Manufacture of paper base material phenol resin laminated board
JPS6345697B2 (en)
JPH09227699A (en) Production of prepreg
JPS6346101B2 (en)
JPH0438770B2 (en)