JPH0358903B2 - - Google Patents

Info

Publication number
JPH0358903B2
JPH0358903B2 JP58230745A JP23074583A JPH0358903B2 JP H0358903 B2 JPH0358903 B2 JP H0358903B2 JP 58230745 A JP58230745 A JP 58230745A JP 23074583 A JP23074583 A JP 23074583A JP H0358903 B2 JPH0358903 B2 JP H0358903B2
Authority
JP
Japan
Prior art keywords
heat
steel pipe
cover sheet
pipe pile
shrinkable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58230745A
Other languages
Japanese (ja)
Other versions
JPS60122133A (en
Inventor
Mitsuo Tanaka
Fuyuhiko Ootsuki
Yoji Harakawa
Iwao Tsuruya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Ube Corp
Original Assignee
Nippon Steel Corp
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Ube Industries Ltd filed Critical Nippon Steel Corp
Priority to JP23074583A priority Critical patent/JPS60122133A/en
Publication of JPS60122133A publication Critical patent/JPS60122133A/en
Publication of JPH0358903B2 publication Critical patent/JPH0358903B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
    • B29C63/0065Heat treatment
    • B29C63/0069Heat treatment of tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
    • B29C63/38Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor by liberation of internal stresses
    • B29C63/40Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor by liberation of internal stresses using sheet or web-like material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
    • B29C63/38Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor by liberation of internal stresses
    • B29C63/42Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor by liberation of internal stresses using tubular layers or sheathings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L58/00Protection of pipes or pipe fittings against corrosion or incrustation
    • F16L58/18Protection of pipes or pipe fittings against corrosion or incrustation specially adapted for pipe fittings
    • F16L58/181Protection of pipes or pipe fittings against corrosion or incrustation specially adapted for pipe fittings for non-disconnectible pipe joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/04Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using liquids, gas or steam
    • B29C35/045Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using liquids, gas or steam using gas or flames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2009/00Layered products
    • B29L2009/003Layered products comprising a metal layer

Description

【発明の詳細な説明】 [発明の分野] 本発明は、土木、建設工事等において、地中、
あるいは海岸線に打設される鋼管杭、特に溶接す
る端部を除いて本体部がミルコーテイングされて
いる鋼管杭の溶接ジヨント部の周囲を防食被覆す
る方法に係る。 [発明の背景] 鋼管杭は、地盤の保護などを目的として建設現
場において地中に打設されたり、海岸線の保護な
どを目的として海岸線に打設される。このような
鋼管杭としては、従来では通常の防錆加工以外に
は特別な加工を行なつていない鋼管が使用されて
いた。しかし、鋼管杭の長期使用あるいは防食信
頼性の確保などを目的として、鋼管杭に樹脂被覆
を施すことが近年検討されてきた。この樹脂被覆
の方法としては、初期には、樹脂塗料などの液状
の樹脂材料を鋼管杭の表面にスプレー塗布して樹
脂塗膜を形成する方法などが考えられてきたが、
それらの樹脂塗膜では実用上充分な防食性が得ら
れにくいとの問題があつた。一方、防食性の高い
樹脂材料としては、ポリエチレンなどのポリオレ
フイン樹脂が従来より知られているが、これらは
通常の溶剤には溶解し難く、このため、スプレー
などを利用する樹脂塗膜の形成方法によりポリオ
レフイン樹脂皮膜を鋼管杭の表面に形成すること
はできない。 このような理由から、ポリオレフイン樹脂のよ
うな防食性の高い樹脂の被覆層を、鋼管杭の製造
時に工事にて予め、溶融樹脂の押し出し被覆、樹
脂粉末の溶融、樹脂テープ、樹脂シートの巻き付
けなどによつて形成する方法(すなわち、ミルコ
ート)を利用することが考えられる。 本発明者の検討によると、上記のようにして鋼
管杭をポリオレフイン樹脂などでミルコートした
場合、防食性能が高く、実用上において有用なも
のが得られることがわかつた。しかし、ミルコー
トした鋼管杭の実用性を更に検討した結果、鋼管
杭の溶接ジヨイント部の防食被覆についても問題
があることが判明した。すなわち、長尺の鋼管杭
を必要とする場合には、通常の鋼管杭の打設機械
では、長尺の鋼管杭をそのまま打ち込むには高さ
が足りないため、建設現場等にて、まず、通常の
長さの鋼管杭を途中まで打ち込んだのち、その上
端部に他の鋼管杭を溶接、接続し、それを打設す
ることが一般的である。この溶接作業は、通常、
予め一本の鋼管杭を途中まで打設した後、その上
端部に他の鋼管杭の下端部を載せ、その端部同士
を溶接する方法により行なわれる。このようにし
て接合された鋼管杭は次いで打設を続ける方法に
より埋設される。このような溶接を想定したミル
コート鋼管杭は、溶接作業を円滑に行なうため
に、通常は、端部にて鋼管部表面が露出した状態
にて製品とされる。従つて、溶接部分(溶接ジヨ
イント部)では、鋼管部表面が露出しているた
め、溶接後にこの部分の防食被覆を行なう必要が
ある。この溶接ジヨイント部の防食被覆方法とし
ては、樹脂塗料を溶接ジヨイント部の表面にスプ
レーなどして樹脂塗膜を形成する方法が考えられ
るが、鋼管部被覆の場合と同様に、それらの樹脂
塗膜では実用上充分な防食性が得られにくいとの
問題がある。 従来、原油、天然ガスなどの輸送用のパイプラ
インの溶接ジヨイント部に対して、チユーブ状、
もしくはスリーブ状の厚手の熱収縮性架橋ポリオ
レフインカバーシートで被覆して、防食性と共に
を埋設作業に伴う土砂の衝撃に対する抵抗性を付
与することが知られている。 本発明者は、上記の輸送用のパイプラインの溶
接ジヨイント部の防食被覆技術に着目して、その
防食技術が、類似の形状にある鋼管杭の防食加工
に利用できないかとの点について鋭意研究を行な
つた。その結果、従来より一般的に利用されてい
るチユーブ状の熱収縮性被覆材料は、特に、鋼管
杭の溶接接合作業を、鋼管杭を一部打設した状態
で実施する場合には、熱収縮性被覆材料の溶接ジ
ヨイント部への被覆(被覆材料の熱収縮性を利用
しての被覆)に先立つて行なわれる被覆材料の溶
接ジヨイント部における仮固定が困難であること
を見出した。このため、次に、スリーブ状の厚手
の熱収縮性カバーシートを溶接ジヨント部の周囲
に巻き付け、シートの両端部を重ね合わせた状態
で固定具を利用しチユーブ状とし、次いで該熱収
縮性カバーシートの表面にバーナーの火炎を当て
て、カバーシートを熱収縮性させ、溶接ジヨイン
ト部の被覆を行なうことについても検討した。そ
の結果、この被覆方法により、立設状態にある鋼
管杭の溶接ジヨイント部の被覆を容易に行なうこ
とができることを確認した。しかしながら、本発
明者の検討によると、上記のように防食被覆シー
トを溶接ジヨイント部に被覆した接合鋼管杭を更
に打設した場合に、カバーシートの両端部を機械
的係合により固定した場合には、その係合部は破
損しやすいことが判明した。 また、溶接ジヨント部に密着被覆されたカバー
シートの劣化が発明し、機械的物性が低下しやす
いことも判明した。この防食被覆用のカバーシー
トに劣化が発生すると、打設された鋼管杭の長期
間の防食がむずかしくなるため、鋼管杭の実用の
おいて大きな問題となる。 本発明者は、上記の溶接ジヨイント部に密着被
覆されたカバーシートの劣化の原因を究明するた
めに研究を行なつた結果、その劣化は主として、
加熱用バーナーによるカバーシートの収縮密着作
業の工程において発生するカバーシートの熱劣
化、およびカバーシート内側の接着層内の残留空
気に起因するものであることを見いだした。すな
わち、原油、天然ガスなどの輸送用のパイプライ
ンの溶接ジヨイント部の熱収縮性カバーシートに
よる熱収縮、密着作業に際しては、溶接ジヨイン
ト部の中央部(ビード部)の周囲を先ず、バーナ
ーで加熱し、次いで、その両側を順次加熱して、
カバーシートの熱収縮を発生させ、これによりジ
ヨイント部周辺に密着させる方法が一般的に採用
されている。これは、ビードの部分が若干外側に
突出する傾向があり、両端部より加熱収縮を開始
した場合には、このビード周辺に空気が閉じ込め
られやすいためであるとされている。 また更に、本発明者の検討によると、上記のよ
うに防食被覆シートを溶接ジヨイント部に被覆し
た接合鋼管杭を更に打設して、埋設を行なつた場
合に、その被覆部の下端部にて、防食被覆シート
の剥れ(めくれ)が現れ、その結果、接合ジヨイ
ント部にて腐食発生しやすくなることが判明し
た。 本発明者は、上記の防食被覆シートの剥れの原
因を調べるために、更に研究を行なつた結果、被
覆シートの重ね合せ部が非常に厚くなり、その部
分にて鋼管杭表面から段差を形成して突き出る形
状となるため、その重ね合せ部の下端部(段差
部)が、鋼管杭を地中に打設する際に生じる、主
として杭の長さ方向に作用する衝撃に抵抗でき
ず、その下端部にて防食被覆シートの剥れが現れ
ることが、防食被覆シートの剥れの主原因である
ことを見い出した。そして、この剥れは、被覆シ
ートの重ね合せ部の接合強度を単に強くしても有
効に解決できないことも判明した。すなわち、被
覆シートの重ね合せ部の接合方法としては、従来
より、機械的結合手段を利用する方法、あるいは
ヒートシールテープを接合部(防食シートの外側
端部と内側に巻き込まれた他の端部側のシート表
面との接触部)に貼り付ける方法などが利用され
ているが、いずれの方法における接合強度を向上
させても、上記の剥れの問題の有効な解決にはな
らない。例えば、特開昭56−75825公報には、鋼
管または電線ケーブルなどの接続部を、熱収縮制
を有するカバーシートで被覆したのち、そのカバ
ーシートの接合部(カバーシートの外側端部と内
側に巻き込まれた他の端部側のシート表面との接
触部)をヒートシールテープにて、そのテープの
両端部がカバーシートの重ね部の内側にリープ状
に入り込むような配置にて接着することにより、
カバーシートの端部の所定を容易かつ強固に実現
する方法が開示されている。しかし、この方法を
鋼管杭の被覆部の接着に利用しても、問題の段差
をむしろ大きくなり、上記の問題点(溶接鋼管杭
の打設時における、防食被覆シートの重ね合せ部
の下端部にての防食被覆シートの剥れ)の有効な
解決にはならない。 [発明の構成] 本発明者は、上記の熱収縮防食被覆シートによ
つて溶接ジヨイント部を防食被覆する際に防食被
覆シートに発生する熱劣化による防食性能の低下
および、防食被覆した溶接鋼管杭の打設時におけ
る、防食被覆シートの重ね合せ部の下端部にて発
生する防食被覆シートの剥れ(めくれ)の問題の
解決を目的として更に研究を行なつた結果、加熱
用バーナーによるカバーシートの収縮密着作業の
操作を変更し、かつヒートシールテープを、その
重ね合わせ部分を実質的に全領域を覆うように、
かつ前記カバーシートの端縁から若干突出させた
状態で配置し、その突出部を、少なくとも被覆溶
接ジヨイント部の埋設前に、鋼管杭のミルコーテ
イング部表面に加熱接合する方法を利用して、前
記重ね合わせ部分の下端部における大きな段差を
低減する(なだらかにする)ことにより、鋼管杭
の溶接ジヨイント部の防食被覆シートのめくれが
効果的に防止できることを見い出し、本発明に到
達した。 本発明は、地中に直立に打設されているミルコ
ーテイングされた鋼管杭の上端部に他のミルコー
テイングされた鋼管杭が溶接により接続されてな
る鋼管杭の溶接ジヨイント部の周囲に、加熱融着
性の接着剤層を有する熱収縮性の架橋ポリオレフ
インカバーシートを巻き付けてそのカバーシート
の両先端部を互いに重ね合わせ、その重ね合わせ
部分の上にヒートシールテープを、その下端部が
カバーシートの端縁から鋼管杭の打設方向に突出
させた状態で重ね配置し、前記熱収縮性カバーシ
ートの重ね合わせ部およびヒートシールテープを
一体に熱融着して、前記熱収縮性カバーシートの
管状体を形成し、次いでガスバーナーの火炎で前
記の管状体の下部から順次上方に向かつてその管
状体を加熱して熱収縮させ、その結果、その管状
体を鋼管杭の周面に密着させた状態で、前記接着
剤層で接合させて、防食被覆を形成することを特
徴とする立設状態のミルコート鋼管杭の溶接ジヨ
イント部の被覆方法にある。 すなわち、本発明者の検討によると、直立した
鋼管杭に熱収縮性カバーシートを被覆する場合に
は、公知の方法では熱収縮性カバーシートの管状
体の上方の表面が長時間、火炎による高熱の上昇
気流に曝され熱的に劣化して、耐久性の乏しい防
食被覆層が形成されてしまい、さらに管状体の下
方に向つて加熱する際には、鋼管杭の表面と被覆
層との間に気泡を内包するとの欠点が発生するこ
とが判明した。このため、本発明者は、加熱方向
を変更するとの簡単な方法により、上記の欠点が
同時に解決することを見い出し、本発明に到達し
たものである。 また、本発明の被覆法によれば、厚手の熱収縮
性カバーシートを鋼管杭の周囲に巻き付けて、そ
の先端部を重ね合わせて管状体を形成する際に、
その重ね合わせ部分の上に、その重ね合せ部分を
ほぼ覆うように、長さが大きく、かつ幅も広いヒ
ートシールテープを前記熱収縮性カバーシートの
端縁から鋼管杭の打設方向に突出させて配置して
重ね合わせ、熱収縮性カバーシートの重ね合わせ
部およびヒートシールテープを一体に接合して熱
収縮性カバーシートの管状体を形成し、その管状
体の加熱によつて防食被覆層を形成する共に、前
記ヒートシールテープの突出部によつて、防食被
覆層の重ね合わせ部の大きな段差を被覆し、その
段差をなだらかにし、しかもその段差部をその被
覆によつて保護しているので、鋼管杭の打設時の
衝撃にたいして充分に耐えることができる優れた
防食被覆層を形成することが出来る。 以下、本発明の被覆法について、図面を参考に
してさらに詳しく説明する。 第1図a−dは、この発明の被覆法の工程の一
例を順次、模式的に示す斜視図である。 まず、第1図のa図に示すような、地中に打設
されたミルコーテイング層(プラスチツクス樹脂
層)2を有する鋼管杭1のジヨイント部(溶接ジ
ヨイント部であり、鋼管杭の金属表面が露出して
いる部分全体)3の周囲に、b図に示すように熱
収縮性架橋ポリオレフインカバーシート4を巻き
付けてそのカバーシート4の長手方向(熱収縮性
方向)の先端部を互いに重ね合わせ、次いで、そ
のカバーシート4の重ね合わせ部分5の上に、前
記カバーシート4の幅方向の長さ(熱収縮方向に
垂直な方向の長さ)より長く、しかも前記の重ね
合わせ部分5より広い幅を有する耐熱性のヒート
シールテープ6を、前記重ね合わせ部分のほぼ全
領域を覆うように、かつ前記カバーシート4の端
縁からその鋼管杭1の打設方向(a図の矢印の方
向)に若干突出した状態で配置する。次ぎに、そ
して前記熱収縮性カバーシート4の重ね合わせ部
分5およびヒートシールテープ6を一体に加熱お
よび融着して、前記熱収縮性カバーシート4の管
状体を形成する。 次ぎの前記熱収縮性カバーシート4の加熱収縮
作業は、ガスバーナーの火炎を前記管状体の下部
から順次上方に移動するように向かつて行なう。
この加熱操作は、ガスバーナーを複数取り付けた
加熱部材(例えば、リングバーナーなど)を上下
に移動できるようにした装置を使用して、機械的
に行なうこともできる。 本発明の被覆方法においては、鋼管杭の周囲に
配置された熱収縮性カバーシートの管状体を、そ
の下部から順次上方に向かつて加熱及び熱収縮さ
せることが、特に重要である。 仮に、前記管状体の上部から下方に向かつてガ
スバーナーの火炎で加熱を行えば、その管状体の
上部が熱収縮を完了しても、その管状体の下方を
加熱するので、その加熱作業の間ずつと、その管
状体の上部がガスバーナーの火炎によつて生ずる
高熱の上昇気流に曝され、その管状体の表面が一
部燃焼して劣化してしまうのであるが、この発明
の被覆方法では、第1図のc図に示すように、加
熱収縮の完了した管状体の部分8には、ガスバー
ナー7の火炎の高熱の上昇気流が到達することが
ないので、加熱収縮時の熱的な劣化を注意すれ
ば、管状体の表面加熱収縮後に、前述の高熱の上
昇気流による焼成劣化をこうむることがない。 また、前記管状体の上部から下部に向かつてガ
スバーナーの火炎で加熱を行なつた場合には、鋼
管杭と管状体の間に存在する気体が加熱操作によ
つて加熱され上方に向つて排気されようとするの
に対して、先に管状体の上部の熱収縮によつて逃
げ道を封じられてしまうので、その逃げることの
できない滞留した気体が鋼管杭の表面と被覆層4
との間に内蔵されることになるのであるが、この
発明の被覆方法では、第1図のc図に示すように
管状体の上部加熱作業に完了まで開口しており、
前述のように逃げることのできない気体が鋼管杭
1の表面と防食被覆層4との間に内蔵されてしま
うことが殆どない。 上記のようにして、管状体のカバーシート4の
全体を加熱して熱収縮させ、d図に示すように、
鋼管杭1の周面に密着接合して、防食被覆層4を
形成すると共に、前記ヒートシールテープ6の突
出部7を鋼管杭1の表面(ミルコート部)に加熱
接合する。なお、ヒートシールテープの突出部の
ミルコート部表面への加熱接合は任意の時期に行
なうことができる。たとえば、熱収縮性カバーシ
ートの管状体の形成直後、あるいは熱収縮性カバ
ーシートの溶接ジヨイント部への密着接合後など
の期間が選ばれる。 本発明の被覆法に使用する熱収縮性カバーシー
トは、熱収縮性シート層と加熱接着性の接着剤層
とからなるものであれば、公知のどのようなタイ
プの熱収縮性架橋ポリオレフインカバーシートで
あつてもよい。この熱収縮性シート層は、例えば
熱収縮温度が約80〜200℃、特に好ましくは90〜
180℃程度であつて、その収縮率が約20〜80%、
特に好ましくは30〜70%程度である架橋ポリオレ
フインシート、特に架橋ポリエチレンシートから
形成されていることが好ましい。 前記の熱収縮性シートは、その架橋の程度が後
述のゲル分率で示して約20〜90%、特に30〜80%
程度である架橋ポリオレフインから形成されてい
ることが耐熱性の点から好適である。 上述のゲル分率は、試料(架橋プラスチツクス
フイルムまたはシート)をキシレン中に入れて、
約10時間、約130℃の温度で還流しながら重量
(Ag)を、使用した全試料の重量(Bg)で割
つて得られた値を100倍した値であり、次式で表
わされる。 ゲル分率=(A/B)×100 (%) また、熱収縮性カバーシートの接着剤層は、鋼
管杭の金属表面に対する接着強度が、常温で約2
〜20Kg/cm、特に好ましくは5〜15Kg/cm程度で
あり、約60〜80℃で約60〜80℃で約0.05〜5Kg/
cm、特に好ましくは0.1〜3Kg/cm程度である加
熱融着性の接着剤からなることが好ましい。例え
ば、オレフイン系重合体、あるいはそれらの重合
体変性物を主成分とし、その他の熱可塑性重合
体、粘着付与剤、酸化防止剤、無機充填剤などの
添加剤を適当に配合した接着剤組成物から形成さ
れた厚さが約0.1〜3mm、特に0.2〜2mm程度の接
着剤層であることが、その接着強度及び施工の容
易さの点から適当である。 前記のヒートシールテープは、たとえば、架橋
プラスチツクス層と加熱接着性の接着剤層とから
なる柔軟で強度の大きい薄手の耐熱性のテープで
あればよい。また前記のヒートシールテープは、
前記の架橋プラスチツクス層の外表面にさらに耐
熱性の補強層(例えば、ガラスクロス層、アルミ
箔層、シリコン樹脂層)を有した構成でも良い。 前記の架橋プススチツクス層は、たとえば、電
子線、α線、γ線、β線などの活性エネルギー線
によつて適当な架橋度(例えば、後述のゲル分率
で示して、約20〜90%、特に好ましくは25〜80%
程度である)に架橋されているポリオレフイン
(ポリエチレン、エチレン−酢酸ビニル共重合体、
エチレン−プロピレン共重合体、エチレン−アク
リルニトリル共重合体、ポリプロピレンなど)、
ポリ塩化ビニル、ポリエステル、ポリアミドなど
の形成されている柔軟で高い強度のプラスチツク
スフイルムまたはシートから構成されていればよ
い。 また、前記の加熱接着性の接着剤層は、約50〜
180℃、特に60〜160℃程度の温度で加熱接着する
ことができ、鋼管杭のミルコーテイング層の表面
に対する接着強度(25℃)が約2〜30Kg/cm、特
に3〜20Kg/cm程度のピール強度(180度剥離強
度)であるホツトメルトタイプの接着剤から形成
されていることが、前述の被覆層4の重ね合わせ
部分5の保護のために特に適当である。 接着剤としては、例えば、ポリエチレ、エチレ
ン−酢酸ビニル共重合体、エチレン−プロピレン
共重合体、エチレン−(メタ)アクリロニトリル
共重合体、エチレン−アクリロニロリル−メタグ
リシジルアクリレート共重合体、エチレン−酢酸
ビニル−メタグリシジルアクリレート共重合体な
どのエチレン系重合体、ポリプロピレン、ポリ塩
化ビニル、ポリエステル、ポリアミド、あるいは
それらの重合体の変性物(例、マレイン化ポリエ
チレン、マレイン化エチレン系共重合体、マレイ
ン化ポリプロピレン)を主成分とし、適当な粘着
付与剤(例、クマロン樹脂、クマロン・インデン
樹脂、石油樹脂、芳香族炭化水素樹脂)、その他
の添加剤からなるホツトメルトタイプの接着剤が
適当である。前記の接着剤は、前述のような活性
エネルギー線によつて適当な架橋度(例えば、ゲ
ル分率で示して約5〜50%、特に10〜40%程度で
ある)を有するように処理されていることが、熱
収縮性カバーシートの管状体の加熱時に加えられ
る熱収縮応力に対して耐えられる高温での接着力
(剪断力)の点から最適である。 本発明において、熱収縮性カバーシートの先端
部とヒートシールテープとの加熱接合、及び熱の
加熱は、種々の電熱線、電気的ヒーター、ガスバ
ーナー火炎等によつて行なえばよい。 本発明の被覆法は、一般に土木、建設、特に港
湾浚渫、護岸などの際に使用される鋼管杭の防食
被覆に好適に適用される。本発明の被覆法によつ
て被覆された鋼管杭は、極めて長時間(約20〜40
年間)の防食性能を有する防食被覆層が形成され
る。 次に、本発明の実施例および比較例を示す。 実施例 1 3mm厚みのカーボンブラツクを含有する低密度
ポリエチレンで被覆した直径1016mm、長さ12mの
ポリエチレン被覆鋼管杭を、上部1mを残して土
中に打ち込むみ、その上にもう一本の同サイズの
ポリエチレン被覆鋼管杭を溶接して接続したの
ち、ポリエチレン被覆されていない溶接ビード部
から上下150mmの部分の錆やよごれを取り除き、
その部分を熱収縮性架橋ポリエチレンカバーシー
トで被覆した。すなわち、まず鋼管表面を120℃
以上に予熱したのち、厚み1.0mmゲル分率を50%、
150℃での収縮率30%の加熱収縮性架橋ポリエチ
レンシートと、エチレン−酢酸ビニル共重合体と
スチレン−ブタジエン共重合体、粘着付与剤、酸
化防止剤およびカーボンブラツクよりなり、
ASTM−E28によつて測定したときの軟化温度
133℃を有する、厚み1.5mmの接着層を積層した幅
600mm熱収縮性カバーシートを、両先端が75mm重
なるように円周方向にゆるくまきつけ、次に幅
150mm、厚み1.5mm、長さ670mmのポリエチレン製
ヒートシールテープを、そのヒートシールテープ
の幅方向の中心が熱収縮性カバーシートの両先端
の重なり部分の上層の先端に一致するように配置
し、表面から、プロパンガスバーナーを用いて加
熱しながら接着させ、熱収縮性カバーシートの管
状体を形成させた。この時、管状体の上下は鋼管
杭被覆層のポリエチレン(ミルコート層)上に幅
150mmつづ重なるように配置するとともに、熱収
縮カバーシートにより形成された管状体より下方
側に、ヒートシールテープ下端が70mm突きでるよ
うにセツトさせた。 次に、鋼管杭をはさんで2名の作業者がプロパ
ンガスバーナーを用いて管状になつた熱収縮性カ
バーシートの下方先端より円周方向にそつて順次
加熱収縮させ鋼管杭上のポリエチレン層上に溶着
させた。最下部の円周方向が完了したら、少しず
つ上方の部分をやはり円周方向にそつて加熱収縮
させ、これを繰り返して最上部の円周方向が収縮
し密着するまで加熱し、溶接ジヨイントの被覆を
完了した。収縮被覆時間は約5分であつた。 収縮後、環境温度(約30℃)まで冷却させたの
ち、熱収縮性カバーシートのポリエレン層の表面
を観察したが、焼けによる損傷は認められず充分
に性能が発揮出来るものであつた。 次に、ポリエチレン層の上半分を剥ぎ取り、そ
の一部(上半分の中央部)を用いて、ASTM−
D−638による引張試験(引張強度と引張伸び)
とDSC法による酸化劣化誘導期の測定を行なつ
たが、第1表に示すように、殆ど劣化を生じてい
なかつた。 また、ポリエチレン層を剥ぎ取つたのちの鋼管
表面の接着層の流動状態を観察したが、鋼管表面
によく接着しており気泡は見られなかつた。 比較例 1 実施例1と同様にして鋼管杭の溶接ジヨイント
部に、熱収縮カバーシートの管状体を形成したの
ち、下記の方法により、カバーシートの加熱収縮
作業を行なつた。 まず、シートの中心に位置する溶接ビート部上
を円周方向に沿つて加熱収縮させたのちに、上半
分を下から上に向つて加熱収縮させ、その後下方
部分を上から下に向かつて収縮させた。収縮被覆
時間は11分であつた。 収縮後、環境温度(約30℃)まで冷却させたの
ち、熱収縮性カバーシートのポリエチレン層の表
面を観察したところ、特にビード部とそのすぐ下
の部分に過熱による表面の損傷が認められた。 次に、ポリエチレン層の上半分を剥ぎ取り、そ
の一部(上半分の中央部)を用いて、実施例1と
同様に引張試験と酸化劣化誘導期の測定を行なつ
たところ、第1表に示すように、物性の低下が激
しいことが判明した。 また、ポリエチレン層を剥ぎ取つたのちの、鋼
管表面の接着層の流動状態を観察したところ、特
にビード部の下とそれより下方部分に、多数の気
泡が存在していることが判明した。 比較例 2 実施例1と同様にして鋼管杭の溶接ジヨイント
部に、熱収縮カバーシートの管状体を形成したの
ち、下記の法により、カバーシートの加熱収縮作
業を行なつた。 まず、鋼管杭をはさんで2名の作業者がプロパ
ンガスバーナを用いて管状になつた熱収縮性カバ
ーシートの上方先端より円周方向にそつて順次加
熱収縮させ鋼管杭上のポリエチレン層上に密着さ
せた。最上部の円周方向が完了したら、少しずつ
下方の部分をやはり円周方向にそつて加熱収縮さ
せ、これを繰り返して最下部の円周方向が収縮し
密着するまで加熱し、溶接ジヨイントの被覆を完
了した。収縮被覆時間は約18分であつた。 収縮後、環境温度(約30℃)まで冷却させたの
ち、熱収縮性カバーシートのポリエチレン層の表
面を観察したところ、全体にわたり過熱による表
面の損傷が認れられた。 次に、ポリエチレン層の上半分を剥ぎ取り、そ
の一部(上半分の中央部)を用いて、実施例1と
同様に引張試験と酸化劣化誘導期の測定を行なつ
たところ、第1表に示すように、物性の低下が激
しいことが判明した。 また、ポチエチレン層を剥ぎ取つたのちの、鋼
管表面の接着層の流動状態が観察したところ、全
体的に多数の気泡の存在が認められた。 【表】
[Detailed Description of the Invention] [Field of the Invention] The present invention is applicable to civil engineering, construction work, etc.
Alternatively, the present invention relates to a method of coating the periphery of the weld joint part of a steel pipe pile to be driven on a coastline, particularly the weld joint part of a steel pipe pile whose main body is mill-coated except for the end part to be welded. [Background of the Invention] Steel pipe piles are driven into the ground at construction sites for the purpose of protecting the ground, or on the coastline for the purpose of protecting the coastline. Conventionally, such steel pipe piles have been made of steel pipes that have not undergone any special processing other than normal anti-rust processing. However, in recent years, with the aim of ensuring long-term use of steel pipe piles and corrosion protection reliability, the application of resin coating to steel pipe piles has been studied in recent years. Initially, a method of applying resin coating to the surface of the steel pipe pile by spraying a liquid resin material such as resin paint to form a resin coating was considered.
The problem with these resin coatings is that it is difficult to obtain practically sufficient corrosion resistance. On the other hand, polyolefin resins such as polyethylene have long been known as highly corrosion-resistant resin materials, but these are difficult to dissolve in ordinary solvents, and for this reason, methods for forming resin coatings using spraying, etc. Therefore, it is not possible to form a polyolefin resin film on the surface of steel pipe piles. For this reason, a coating layer of highly anti-corrosion resin such as polyolefin resin is applied in advance during construction when manufacturing steel pipe piles, such as extrusion coating with molten resin, melting resin powder, wrapping with resin tape or resin sheet, etc. It is conceivable to use a method of forming the film (ie, mill coat). According to studies conducted by the present inventors, it has been found that when steel pipe piles are mill-coated with polyolefin resin or the like as described above, a product with high anticorrosion performance and useful in practical use can be obtained. However, as a result of further examination of the practicality of mill-coated steel pipe piles, it was found that there were also problems with the anti-corrosion coating of the weld joints of steel pipe piles. In other words, when long steel pipe piles are required, a normal steel pipe pile driving machine is not tall enough to drive the long steel pipe piles as they are, so first, at the construction site, etc. It is common to drive a steel pipe pile of normal length halfway, then weld and connect another steel pipe pile to its upper end, and then drive it. This welding work is usually
This is done by driving one steel pipe pile part way in advance, placing the lower end of another steel pipe pile on top of it, and welding the ends together. The steel pipe piles joined in this way are then buried by a continuous driving method. Mill-coated steel pipe piles designed for such welding are usually manufactured with the surface of the steel pipe portion exposed at the end in order to facilitate welding work. Therefore, since the surface of the steel pipe is exposed at the welded portion (weld joint), it is necessary to apply an anti-corrosion coating to this portion after welding. As a corrosion-proof coating method for the weld joint, it is possible to form a resin coating by spraying resin paint on the surface of the weld joint, but as with the case of coating steel pipes, these resin coatings However, there is a problem in that it is difficult to obtain practically sufficient corrosion resistance. Traditionally, tube-shaped,
Alternatively, it is known to cover with a sleeve-shaped thick heat-shrinkable crosslinked polyolefin inner cover sheet to provide corrosion resistance and resistance to the impact of earth and sand during burial work. The present inventor has focused on the anti-corrosion coating technology for the weld joints of the above-mentioned transportation pipelines, and has conducted intensive research into whether the anti-corrosion technology can be used for anti-corrosion treatment of steel pipe piles with similar shapes. I did it. As a result, the tube-shaped heat-shrinkable sheathing materials that have been commonly used in the past are difficult to heat-shrink, especially when welding and joining steel pipe piles with the steel pipe piles partially driven. It has been found that it is difficult to temporarily fix the coating material at the weld joint, which is performed prior to coating the weld joint with the heat-shrinkable coating material (covering by utilizing the heat shrinkability of the coating material). For this reason, next, a sleeve-shaped thick heat-shrinkable cover sheet is wrapped around the weld joint, and with both ends of the sheet overlapped, a fixing device is used to form a tube shape, and then the heat-shrinkable cover We also investigated applying heat from a burner to the surface of the sheet to make the cover sheet heat-shrinkable to cover the weld joint. As a result, it was confirmed that this coating method could easily cover the weld joints of steel pipe piles in an erected state. However, according to the study of the present inventor, when a bonded steel pipe pile whose weld joint part is covered with an anti-corrosion coating sheet as described above is further driven, and both ends of the cover sheet are fixed by mechanical engagement, It was found that the engaging part was easily damaged. It has also been found that the cover sheet closely covering the weld joint part deteriorates and the mechanical properties tend to deteriorate. If this cover sheet for corrosion protection coating deteriorates, it becomes difficult to protect the driven steel pipe pile from corrosion over a long period of time, which poses a major problem in the practical use of steel pipe piles. The present inventor conducted research to determine the cause of the deterioration of the cover sheet that tightly covers the weld joint, and found that the deterioration is mainly caused by the following:
It was discovered that this is due to thermal deterioration of the cover sheet that occurs during the process of shrinking and adhering the cover sheet using a heating burner, and residual air in the adhesive layer inside the cover sheet. In other words, when performing heat shrinkage and adhesion work using a heat-shrinkable cover sheet on the weld joint of a pipeline for transporting crude oil, natural gas, etc., the area around the center (bead) of the weld joint is first heated with a burner. and then sequentially heat both sides,
A commonly used method is to cause the cover sheet to shrink due to heat, thereby causing the cover sheet to adhere tightly to the periphery of the joint. This is said to be because the bead portion tends to protrude slightly outward, and when heat shrinkage starts from both ends, air is likely to be trapped around the bead. Furthermore, according to the study of the present inventor, when a bonded steel pipe pile whose weld joint part is covered with an anti-corrosion coating sheet as described above is further driven and buried, the lower end of the coated part It was found that the anti-corrosion coating sheet peeled off, and as a result, corrosion was more likely to occur at the joining joint. The inventor of the present invention conducted further research to investigate the cause of the peeling of the anti-corrosion coating sheet, and as a result found that the overlapping portion of the coating sheet became extremely thick, and at that point, a step was removed from the surface of the steel pipe pile. Because of the formed and protruding shape, the lower end (step part) of the overlapping part cannot resist the impact that mainly acts in the length direction of the pile, which occurs when driving the steel pipe pile into the ground. It has been found that the appearance of peeling of the anti-corrosion coating sheet at the lower end is the main cause of the peeling of the anti-corrosion coating sheet. It has also been found that this peeling cannot be effectively solved by simply increasing the bonding strength of the overlapped portion of the covering sheets. In other words, conventional methods for joining the overlapping parts of the coating sheets include using mechanical joining means, or using heat-sealing tape to connect the joined parts (the outer edge of the anti-corrosion sheet and the other edge wound inside). Some methods have been used, such as attaching the adhesive to the side surface of the sheet), but no matter which method improves the bonding strength, it does not effectively solve the above-mentioned problem of peeling. For example, in Japanese Patent Application Laid-open No. 56-75825, after covering the joints of steel pipes or electric wire cables with a heat-shrinkable cover sheet, By adhering the rolled-up part (the part that contacts the sheet surface on the other end side) with heat-sealing tape in such a way that both ends of the tape enter into the inside of the stacked part of the cover sheet in a leap shape. ,
A method for easily and firmly establishing the edge of a cover sheet is disclosed. However, even if this method is used to bond the sheathing parts of steel pipe piles, the problem of the difference in level will become larger, and the above-mentioned problem (when driving welded steel pipe piles, the lower end of the overlapping part of the anti-corrosion sheathing sheet) It is not an effective solution to the problem of peeling of anti-corrosion coating sheets. [Structure of the Invention] The present inventor has discovered that when a weld joint is coated with the above-mentioned heat-shrinkable anti-corrosion coating sheet, the anti-corrosion performance is reduced due to thermal deterioration that occurs in the anti-corrosion coating sheet, and the welded steel pipe pile covered with the anti-corrosion coating is As a result of further research aimed at solving the problem of peeling (turning up) of the anticorrosive coating sheet that occurs at the lower end of the overlapped part of the anticorrosive coating sheet when pouring, we found that The shrink adhesion operation is changed, and the heat seal tape is applied so as to cover substantially the entire area of the overlapping part.
The cover sheet is arranged so as to slightly protrude from the edge of the cover sheet, and the protruding portion is heat-bonded to the surface of the mill coating portion of the steel pipe pile at least before burying the covered weld joint portion. We have discovered that by reducing (smoothing) the large step difference at the lower end of the overlapping portion, it is possible to effectively prevent the anticorrosive coating sheet from turning over at the weld joint of a steel pipe pile, and have arrived at the present invention. The present invention provides heating around the weld joint of a steel pipe pile in which another mill-coated steel pipe pile is connected by welding to the upper end of a mill-coated steel pipe pile that is driven vertically into the ground. A heat-shrinkable cross-linked polyolefin cover sheet with a fusible adhesive layer is wrapped around it, both ends of the cover sheet are overlapped with each other, and a heat seal tape is applied on the overlapping part, and the bottom end of the cover sheet is wrapped with a heat-shrinkable cross-linked polyolefin cover sheet. The overlapping portions of the heat-shrinkable cover sheets and the heat-seal tape are heat-sealed together so that they protrude from the edges in the driving direction of the steel pipe pile, and the heat-shrinkable cover sheets A tubular body is formed, and then the flame of a gas burner is applied sequentially upward from the bottom of the tubular body to heat and shrink the tubular body, so that the tubular body is brought into close contact with the circumferential surface of the steel pipe pile. The present invention provides a method for coating a weld joint of a mill-coated steel pipe pile in an erected state, characterized in that the weld joint portion of a mill-coated steel pipe pile in an erected state is bonded with the adhesive layer to form an anticorrosive coating. That is, according to the study of the present inventor, when covering an upright steel pipe pile with a heat-shrinkable cover sheet, in a known method, the upper surface of the tubular body of the heat-shrinkable cover sheet is exposed to high heat due to flame for a long time. A corrosion-resistant coating layer with poor durability is formed due to thermal deterioration due to exposure to rising air currents of steel pipe piles. It has been found that the inclusion of air bubbles causes disadvantages. Therefore, the inventors of the present invention have found that the above-mentioned drawbacks can be solved at the same time by a simple method of changing the heating direction, and have arrived at the present invention. Further, according to the covering method of the present invention, when a thick heat-shrinkable cover sheet is wrapped around a steel pipe pile and the tips thereof are overlapped to form a tubular body,
A long and wide heat-seal tape is made to protrude from the edge of the heat-shrinkable cover sheet in the driving direction of the steel pipe pile so as to substantially cover the overlapped portion. The overlapped portions of the heat-shrinkable cover sheet and the heat-sealing tape are bonded together to form a tubular body of the heat-shrinkable cover sheet, and the anticorrosion coating layer is applied by heating the tubular body. At the same time, the protruding portion of the heat-sealing tape covers the large step difference in the overlapping portion of the anticorrosion coating layer, smoothing out the step, and protecting the step portion by the coating. , it is possible to form an excellent anti-corrosion coating layer that can sufficiently withstand the impact during driving of steel pipe piles. Hereinafter, the coating method of the present invention will be explained in more detail with reference to the drawings. FIGS. 1a to 1d are perspective views sequentially showing one example of the steps of the coating method of the present invention. First, as shown in Fig. 1a, the joint part (welded joint part) of a steel pipe pile 1 having a mill coating layer (plastic resin layer) 2 driven underground, As shown in figure b, wrap a heat-shrinkable cross-linked polyolefin cover sheet 4 around the entire exposed part) 3, and overlap the ends of the cover sheets 4 in the longitudinal direction (heat-shrinkable direction) with each other. , Next, on the overlapping portion 5 of the cover sheet 4, a material is placed on the overlapping portion 5 which is longer than the length in the width direction of the cover sheet 4 (the length in the direction perpendicular to the heat shrinking direction) and wider than the overlapping portion 5. A heat-resistant heat-sealing tape 6 having a width is applied so as to cover almost the entire area of the overlapped portion, and from the edge of the cover sheet 4 in the driving direction of the steel pipe pile 1 (the direction of the arrow in figure a). Place it so that it slightly protrudes. Next, the overlapping portion 5 of the heat-shrinkable cover sheet 4 and the heat seal tape 6 are heated and fused together to form a tubular body of the heat-shrinkable cover sheet 4. The next heat-shrinking operation of the heat-shrinkable cover sheet 4 is performed by directing the flame of the gas burner so as to move sequentially upward from the bottom of the tubular body.
This heating operation can also be performed mechanically using a device in which a heating member (such as a ring burner) equipped with a plurality of gas burners can be moved up and down. In the covering method of the present invention, it is particularly important to heat and heat-shrink the tubular body of the heat-shrinkable cover sheet placed around the steel pipe pile from the bottom upwards. If the tubular body is heated from the upper part downward with the flame of a gas burner, even if the upper part of the tubular body has completed its thermal contraction, the lower part of the tubular body will be heated, so the heating process will be delayed. Over time, the upper part of the tubular body is exposed to the high-temperature rising air generated by the flame of the gas burner, and the surface of the tubular body partially burns and deteriorates, but the coating method of the present invention Now, as shown in Fig. 1c, the high-temperature rising air current of the flame of the gas burner 7 does not reach the part 8 of the tubular body that has been completely heat-shrinked. If care is taken to prevent such deterioration, the tubular body will not suffer from the above-mentioned firing deterioration due to the high-temperature rising air current after the surface of the tubular body is heated and shrunk. Furthermore, when the tubular body is heated from the top to the bottom with the flame of a gas burner, the gas existing between the steel pipe pile and the tubular body is heated by the heating operation and exhausted upward. However, the escape route is blocked by the heat shrinkage in the upper part of the tubular body, and the stagnant gas that cannot escape is absorbed into the surface of the steel pipe pile and the coating layer 4.
However, in the coating method of the present invention, the upper part of the tubular body is opened until the heating operation is completed, as shown in FIG.
As mentioned above, there is almost no possibility that gas that cannot escape is trapped between the surface of the steel pipe pile 1 and the anticorrosive coating layer 4. As described above, the entire cover sheet 4 of the tubular body is heated and thermally contracted, as shown in Figure d.
It is closely bonded to the circumferential surface of the steel pipe pile 1 to form the anticorrosive coating layer 4, and the protruding portion 7 of the heat seal tape 6 is heat bonded to the surface (mill coat portion) of the steel pipe pile 1. Note that the heat-bonding of the protruding portion of the heat-sealing tape to the surface of the mill coat portion can be performed at any time. For example, the period is selected immediately after the formation of the tubular body of the heat-shrinkable cover sheet, or after the heat-shrinkable cover sheet is tightly joined to the weld joint. The heat-shrinkable cover sheet used in the coating method of the present invention may be any type of known heat-shrinkable crosslinked polyolefin cover sheet as long as it is composed of a heat-shrinkable sheet layer and a heat-adhesive adhesive layer. It may be. This heat-shrinkable sheet layer has a heat-shrinkage temperature of, for example, about 80 to 200°C, particularly preferably 90 to 200°C.
At about 180℃, the shrinkage rate is about 20-80%,
It is particularly preferably formed from a cross-linked polyolefin sheet, particularly a cross-linked polyethylene sheet having a content of about 30 to 70%. The heat-shrinkable sheet has a degree of crosslinking of approximately 20 to 90%, particularly 30 to 80%, as indicated by the gel fraction described below.
From the viewpoint of heat resistance, it is preferable that the crosslinked polyolefin be made of a crosslinked polyolefin having a certain degree of heat resistance. The above gel fraction can be determined by placing the sample (cross-linked plastic film or sheet) in xylene,
It is the value obtained by dividing the weight (Ag) by the weight (Bg) of all the samples used while refluxing at a temperature of about 130° C. for about 10 hours, multiplied by 100, and is expressed by the following formula. Gel fraction = (A/B) x 100 (%) In addition, the adhesive layer of the heat-shrinkable cover sheet has an adhesive strength of about 2 at room temperature to the metal surface of the steel pipe pile.
-20Kg/cm, particularly preferably about 5-15Kg/cm, and about 0.05-5Kg/cm at about 60-80℃.
cm, particularly preferably about 0.1 to 3 kg/cm, is preferably made of a heat-fusible adhesive. For example, an adhesive composition containing an olefin polymer or a modified polymer thereof as a main component and appropriately blending additives such as other thermoplastic polymers, tackifiers, antioxidants, and inorganic fillers. An adhesive layer having a thickness of about 0.1 to 3 mm, particularly about 0.2 to 2 mm, is suitable from the viewpoint of adhesive strength and ease of application. The heat-sealing tape may be, for example, a flexible, strong, thin, heat-resistant tape comprising a cross-linked plastic layer and a heat-adhesive adhesive layer. In addition, the heat seal tape mentioned above is
A structure may also be employed in which a heat-resistant reinforcing layer (for example, a glass cloth layer, an aluminum foil layer, a silicone resin layer) is further provided on the outer surface of the crosslinked plastic layer. The cross-linked plastic layer can be cross-linked to an appropriate degree of cross-linking (for example, approximately 20 to 90% as expressed by the gel fraction described below) using active energy rays such as electron beams, α rays, γ rays, and β rays. Particularly preferably 25-80%
polyolefins (polyethylene, ethylene-vinyl acetate copolymers,
(ethylene-propylene copolymer, ethylene-acrylonitrile copolymer, polypropylene, etc.),
It may be made of a flexible, high-strength plastic film or sheet made of polyvinyl chloride, polyester, polyamide, or the like. In addition, the heat-adhesive adhesive layer described above is about 50 to
It can be heated and bonded at a temperature of 180℃, especially about 60 to 160℃, and the adhesive strength (at 25℃) to the surface of the mill coating layer of steel pipe piles is about 2 to 30Kg/cm, especially about 3 to 20Kg/cm. It is particularly suitable for the protection of the overlapping portion 5 of the covering layer 4 that it is made of a hot melt type adhesive with peel strength (180 degree peel strength). Examples of adhesives include polyethylene, ethylene-vinyl acetate copolymer, ethylene-propylene copolymer, ethylene-(meth)acrylonitrile copolymer, ethylene-acrylonitrile-methaglycidyl acrylate copolymer, and ethylene-vinyl acetate copolymer. Ethylene polymers such as metaglycidyl acrylate copolymers, polypropylene, polyvinyl chloride, polyesters, polyamides, or modified products of these polymers (e.g., maleated polyethylene, maleated ethylene copolymers, maleated polypropylene) Suitable are hot melt type adhesives containing as a main component, a suitable tackifier (eg, coumaron resin, coumaron-indene resin, petroleum resin, aromatic hydrocarbon resin), and other additives. The adhesive is treated with active energy rays as described above so as to have an appropriate degree of crosslinking (for example, about 5 to 50%, particularly about 10 to 40%, expressed as a gel fraction). It is optimal in terms of adhesive strength (shearing force) at high temperatures that can withstand the heat shrinkage stress applied when the tubular body of the heat shrinkable cover sheet is heated. In the present invention, the thermal bonding of the tip of the heat-shrinkable cover sheet and the heat-sealing tape and the heating may be performed using various heating wires, electric heaters, gas burner flames, and the like. The coating method of the present invention is suitably applied to anti-corrosion coating of steel pipe piles used in general civil engineering and construction, particularly port dredging, seawalls, etc. Steel pipe piles coated by the coating method of the present invention can be used for an extremely long time (approximately 20 to 40
An anti-corrosion coating layer with anti-corrosion performance of 1 year) is formed. Next, Examples and Comparative Examples of the present invention will be shown. Example 1 A polyethylene-coated steel pipe pile with a diameter of 1016 mm and a length of 12 m coated with low-density polyethylene containing carbon black with a thickness of 3 mm is driven into the soil leaving the top 1 m, and another pile of the same size is driven on top of it. After welding and connecting the polyethylene-coated steel pipe piles, we removed rust and dirt from the area 150mm above and below the weld bead that was not coated with polyethylene.
The area was covered with a heat-shrinkable cross-linked polyethylene cover sheet. In other words, first heat the surface of the steel pipe to 120℃.
After preheating to above, the thickness is 1.0 mm, and the gel fraction is 50%.
It consists of a heat-shrinkable crosslinked polyethylene sheet with a shrinkage rate of 30% at 150°C, an ethylene-vinyl acetate copolymer, a styrene-butadiene copolymer, a tackifier, an antioxidant, and carbon black.
Softening temperature as measured by ASTM-E28
Width laminated with 1.5mm thick adhesive layer with 133℃
Wrap a 600mm heat-shrinkable cover sheet loosely in the circumferential direction so that both ends overlap by 75mm, then
A polyethylene heat seal tape of 150 mm, thickness 1.5 mm, and length 670 mm is arranged so that the center of the heat seal tape in the width direction matches the tip of the upper layer of the overlapping portion of both tips of the heat-shrinkable cover sheet. A heat-shrinkable cover sheet was bonded from the surface while being heated using a propane gas burner to form a tubular body of a heat-shrinkable cover sheet. At this time, the top and bottom of the tubular body are placed on the polyethylene (milcoat layer) of the steel pipe pile coating layer.
The heat seal tapes were arranged so that they overlapped by 150 mm, and the lower end of the heat seal tape protruded 70 mm below the tubular body formed by the heat shrinkable cover sheet. Next, with the steel pipe pile in between, two workers used a propane gas burner to heat-shrink the tubular heat-shrinkable cover sheet sequentially from the lower tip in the circumferential direction, thereby applying heat and shrinkage to the polyethylene layer on the steel pipe pile. Welded on top. Once the bottom circumferential direction is completed, heat shrink the upper part little by little along the circumferential direction, and repeat this process until the top circumferential direction shrinks and is tightly attached to cover the weld joint. completed. Shrink coating time was approximately 5 minutes. After shrinking, the surface of the polyethylene layer of the heat-shrinkable cover sheet was observed after being cooled to ambient temperature (approximately 30°C), and no damage due to burning was observed, indicating that it could fully demonstrate its performance. Next, peel off the top half of the polyethylene layer and use a portion of it (the center of the top half) to create an ASTM
Tensile test using D-638 (tensile strength and tensile elongation)
The oxidative deterioration induction period was measured using the DSC method, and as shown in Table 1, almost no deterioration occurred. Furthermore, after the polyethylene layer was peeled off, the flow state of the adhesive layer on the surface of the steel pipe was observed, and it was found that the adhesive layer adhered well to the surface of the steel pipe and no air bubbles were observed. Comparative Example 1 After forming a tubular body of a heat-shrinkable cover sheet at the weld joint of a steel pipe pile in the same manner as in Example 1, the cover sheet was heat-shrinked by the following method. First, the top of the weld bead located at the center of the sheet is heat-shrinked along the circumferential direction, then the upper half is heat-shrinked from bottom to top, and then the lower part is shrunk from top to bottom. I let it happen. Shrink coating time was 11 minutes. After shrinking, the surface of the polyethylene layer of the heat-shrinkable cover sheet was observed after cooling to the ambient temperature (approximately 30°C), and damage to the surface due to overheating was observed, especially at the bead and the area immediately below it. . Next, the upper half of the polyethylene layer was peeled off, and a part of it (the center of the upper half) was subjected to a tensile test and the measurement of the oxidative deterioration induction period in the same manner as in Example 1. As shown in Figure 2, it was found that the physical properties deteriorated significantly. Furthermore, when the flow state of the adhesive layer on the surface of the steel pipe was observed after the polyethylene layer was peeled off, it was found that a large number of air bubbles were present, particularly under the bead and in the area below it. Comparative Example 2 After forming a tubular body of a heat-shrinkable cover sheet at the weld joint of a steel pipe pile in the same manner as in Example 1, the cover sheet was heat-shrinked by the following method. First, with a steel pipe pile in between, two workers used a propane gas burner to heat-shrink the tubular heat-shrinkable cover sheet sequentially in the circumferential direction starting from the upper tip and placing it on the polyethylene layer on the steel pipe pile. Closely attached. Once the top circumferential direction is completed, heat shrink the lower part little by little along the circumferential direction, repeat this process until the bottom circumferential direction shrinks and is tightly attached, and cover the weld joint. completed. Shrink coating time was approximately 18 minutes. After shrinking, the surface of the polyethylene layer of the heat-shrinkable cover sheet was observed after cooling to ambient temperature (approximately 30°C), and damage to the surface due to overheating was observed throughout. Next, the upper half of the polyethylene layer was peeled off, and a part of it (the center of the upper half) was subjected to a tensile test and the measurement of the oxidative deterioration induction period in the same manner as in Example 1. As shown in Figure 2, it was found that the physical properties deteriorated significantly. Furthermore, when the fluid state of the adhesive layer on the surface of the steel pipe was observed after the polyethylene layer was peeled off, the presence of many air bubbles was observed throughout. 【table】

【図面の簡単な説明】[Brief explanation of drawings]

第1図a−dは、本発明のミルコート鋼管杭の
溶接ジヨイント部の被覆法の一例を模式的に示す
斜視図である。 1:鋼管杭、2:ミルコーテイング層、3:溶
接ジヨイント部、4:熱収縮性カバーシート、
5:重ね合わせ部分、6:ヒートシールテープ、
7:ガスバーナー。
1A to 1D are perspective views schematically showing an example of a method of covering a weld joint portion of a mill-coated steel pipe pile according to the present invention. 1: steel pipe pile, 2: mill coating layer, 3: weld joint part, 4: heat-shrinkable cover sheet,
5: Overlapping part, 6: Heat seal tape,
7: Gas burner.

Claims (1)

【特許請求の範囲】[Claims] 1 地中に直立に打設されているミルコーテイン
グされた鋼管杭の上端部に他のミルコーテイング
された鋼管杭が溶接により接続されてなる鋼管杭
の溶接ジヨイント部の周囲に、加熱融着性の接着
剤層を有する熱収縮性の架橋ポリオレフインカバ
ーシートを巻き付けてそのカバーシートの両先端
部を互いに重ね合わせ、その重ね合わせ部分の上
にヒートシールテープを、その下端部がカバーシ
ートの端縁から鋼管杭の打設方向に突出させた状
態で重ねて配置し、前記熱収縮性カバーシートの
重ね合わせ部およびヒートシールテープを一体に
熱融着して、前記熱収縮性カバーシートの管状体
を形成し、次いでガスバーナーの火炎で前記の管
状体の下部から順次上方に向かつてその管状体を
加熱して熱収縮させ、その結果、その管状体を鋼
管杭の周面に密着させた状態で、前記接着剤層で
接合させて、防食被覆を形成することを特徴とす
る立設状態のミルコート鋼管杭の溶接ジヨイント
部の被覆方法。
1 Heat-fusion bonding is applied around the weld joint of a steel pipe pile, which is formed by welding a mill-coated steel pipe pile to the upper end of a mill-coated steel pipe pile that is driven vertically into the ground. A heat-shrinkable cross-linked polyolefin cover sheet having an adhesive layer is wrapped around the cover sheet, and both ends of the cover sheet are overlapped with each other, and a heat seal tape is applied over the overlapping part, and the lower end is attached to the edge of the cover sheet. The tubular body of the heat-shrinkable cover sheet is formed by placing the heat-shrinkable cover sheet in a stacked manner so as to protrude in the driving direction of the steel pipe pile, and heat-sealing the overlapping portion of the heat-shrinkable cover sheet and the heat-sealing tape together to form a tubular body of the heat-shrinkable cover sheet. Then, the flame of the gas burner is applied sequentially upward from the bottom of the tubular body to heat and shrink the tubular body, so that the tubular body is brought into close contact with the circumferential surface of the steel pipe pile. A method for coating a weld joint part of an erected mill-coated steel pipe pile, characterized in that the weld joint part of an erected mill-coated steel pipe pile is bonded with the adhesive layer to form an anti-corrosion coating.
JP23074583A 1983-12-06 1983-12-06 Covering method of steel pipe pile Granted JPS60122133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23074583A JPS60122133A (en) 1983-12-06 1983-12-06 Covering method of steel pipe pile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23074583A JPS60122133A (en) 1983-12-06 1983-12-06 Covering method of steel pipe pile

Publications (2)

Publication Number Publication Date
JPS60122133A JPS60122133A (en) 1985-06-29
JPH0358903B2 true JPH0358903B2 (en) 1991-09-06

Family

ID=16912625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23074583A Granted JPS60122133A (en) 1983-12-06 1983-12-06 Covering method of steel pipe pile

Country Status (1)

Country Link
JP (1) JPS60122133A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2328689A1 (en) 2000-12-15 2002-06-15 Shaw Industries Ltd. Method and apparatus for heating a zone of an elongate tubular article

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS551170A (en) * 1979-03-19 1980-01-07 Nec Corp Semiconductor apparatus
JPS55111232A (en) * 1979-02-20 1980-08-27 Nippon Steel Corp Anticorrosive coating for frequently seawater splashed area of marine steel structure
JPS5675825A (en) * 1979-11-22 1981-06-23 Ube Ind Ltd Heat-contracting cover sheet for coating

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55111232A (en) * 1979-02-20 1980-08-27 Nippon Steel Corp Anticorrosive coating for frequently seawater splashed area of marine steel structure
JPS551170A (en) * 1979-03-19 1980-01-07 Nec Corp Semiconductor apparatus
JPS5675825A (en) * 1979-11-22 1981-06-23 Ube Ind Ltd Heat-contracting cover sheet for coating

Also Published As

Publication number Publication date
JPS60122133A (en) 1985-06-29

Similar Documents

Publication Publication Date Title
US5482087A (en) Method of environmentally protecting a pipeline
US5302428A (en) Multi-layer wraparound heat shrink sleeve
US5175032A (en) Heat shrinkable closure sheets and sleeve structures and methods employing the same
US6841212B2 (en) Heat-recoverable composition and article
RU2213903C2 (en) Method of connection of two pipes and joint sealing unit
GB1581558A (en) Method for joining heat-recoverable sheet material
JPS58101013A (en) Recoverable sleeve applied and its application
JPH0328282A (en) New contact device for contractile wrapping material
JP2521288B2 (en) Heat-recoverable article and manufacturing method thereof
JPH06504240A (en) Heat-shrinkable wraparound articles for covering long objects
JPH0358903B2 (en)
JPH0357852B2 (en)
JP2561980B2 (en) New tape coating
JPH0791588A (en) Material and method for coating outer surface of pipe
AU663433B2 (en) Multi-layer wraparound heat shrink sleeve
JPS6310277Y2 (en)
JPS61100438A (en) Method of covering steel pipe connected section for preventing corrosion
JPS6268932A (en) Corrosion-proof method for plastics-coated steel pipe pile joint section
JPH0353875Y2 (en)
JPS6026886A (en) Method of covering t pipe
JPS6316265B2 (en)
JPH0315073B2 (en)
JPS6310276Y2 (en)
GB2373559A (en) Applying a heat shrinkable protective sleeve and marine mastic onto a pipe
JP2000272011A (en) Part anti-corrosion method of outer surface of corrosion resistant metal tube and anti-corrosion material