JPH0358783A - Stabilization of enzyme - Google Patents

Stabilization of enzyme

Info

Publication number
JPH0358783A
JPH0358783A JP19487389A JP19487389A JPH0358783A JP H0358783 A JPH0358783 A JP H0358783A JP 19487389 A JP19487389 A JP 19487389A JP 19487389 A JP19487389 A JP 19487389A JP H0358783 A JPH0358783 A JP H0358783A
Authority
JP
Japan
Prior art keywords
sample
enzyme
solution
covalent bond
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19487389A
Other languages
Japanese (ja)
Inventor
Masayuki Futaki
二木 政幸
Nagaomi Tsuda
津田 脩臣
Shuji Matsuura
脩治 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Wako Pure Chemical Corp
Original Assignee
Wako Pure Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wako Pure Chemical Industries Ltd filed Critical Wako Pure Chemical Industries Ltd
Priority to JP19487389A priority Critical patent/JPH0358783A/en
Publication of JPH0358783A publication Critical patent/JPH0358783A/en
Pending legal-status Critical Current

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE:To keep the activity of glycerol kinase in an aqueous solution over a long period and obtain a stabilized enzyme useful for the quantitative determination of glycerol (derivative) by bonding glycerol kinase to a water-soluble polysaccharide through covalent bond. CONSTITUTION:(A) Glycerol kinase is stabilized by bonding to (B) a water-soluble polysaccharide through covalent bond. Preferably, the component A is an enzyme originated from genus Cellulomonas, etc., and the component B is a compound containing at least a pair of adjacent OH groups in the constituent unit, oxidizable with an oxidizing agent and capable of forming an aldehyde group reactive with amino group in the enzyme, especially preferably dextran, etc. The formation of the covalent bond is preferably carried out e.g. by oxidizing the component B to form an aldehyde of the component B, reacting the aldehyde with the component A in a buffer solution at pH5-10 and 15-40 deg.C, adding a reducing agent to the system and reacting at 5-40 deg.C.

Description

【発明の詳細な説明】 [発明の利用分野] 本発明は、グリセロールキナーゼが水溶液状態で長期間
安定に酵素活性を維持できる安定化方法、及び安定化さ
れたグリセロールキナーゼ、並びに該安定化されたグリ
セロールキナーゼを用いたグリセリン又は/及びグリセ
リン誘導体の定量方法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention provides a stabilization method for glycerol kinase that can stably maintain enzymatic activity for a long period of time in an aqueous solution state, a stabilized glycerol kinase, and the stabilized glycerol kinase. The present invention relates to a method for quantifying glycerin or/and glycerin derivatives using glycerol kinase.

[発明の背景] グリセロールキナーゼ(以下、GKと略称する。[Background of the invention] Glycerol kinase (hereinafter abbreviated as GK).

)は下記式に示す反応を触媒する酵素である。) is an enzyme that catalyzes the reaction shown in the following formula.

グリセリン+ATP一邸≧→ グリセロール−3−リン酸+ADP ATP:アデノシン5′一三リン酸。Glycerin + ATP ≧→ Glycerol-3-phosphate + ADP ATP: Adenosine 5' monotriphosphate.

ADP:アデノシン5′一二リン酸。ADP: Adenosine 5'monodiphosphate.

この触媒反応を利用した各種測定法が臨床化学,生化学
,食品化学,食品工業等の分野で広く実施されている。
Various measurement methods using this catalytic reaction are widely practiced in fields such as clinical chemistry, biochemistry, food chemistry, and food industry.

例えば、生体試料中のトリグリセライドを定量する際に
共役酵素としてGKを使用する方法がある。この方法は
、温和な条件で精度良くトリグリセライドを定量し得る
ため広く利用されている。しかしながら、この酵素の水
溶液中での安定性は低く、調製した酵素溶液の使用可能
な期間が短い為、効率よく使用するには、必要量を用時
調製する必要がある等使用上の制約があった。
For example, there is a method in which GK is used as a conjugate enzyme when quantifying triglycerides in biological samples. This method is widely used because triglycerides can be determined with high accuracy under mild conditions. However, the stability of this enzyme in aqueous solution is low, and the usable period of the prepared enzyme solution is short, so in order to use it efficiently, it is necessary to prepare the required amount at the time of use. there were.

それ故、水溶液中でのGKの安定化をはかるため、硫安
,エチレングリコール,グリセロール,ATP等を安定
化剤として添加する方法がこれまでに試みられているが
、ト分な安定化効果が得られているとは言い難く、更な
る改良が望まれていた。
Therefore, in order to stabilize GK in an aqueous solution, methods of adding ammonium sulfate, ethylene glycol, glycerol, ATP, etc. as stabilizing agents have been attempted, but they have not been able to achieve a sufficient stabilizing effect. It cannot be said that this has been achieved, and further improvements are desired.

また、水溶液中での安定イ′1ミが良く、しかも生体試
料中の1・リグリセライドを定量するのに適した性質を
有するGKを柿々の微生物等からスクリーニングして、
■−.記した如き問題を解決せんとする方法も検討され
ている。しかしながら、この方法は多大な費用と時間を
要するばかりでなく、この方法により目的に適うG K
を確実に見出せると言う保証はどこにもなく、あまり実
用的な方法とは言えない。
In addition, we screened persimmon microorganisms for GK that has good stability in aqueous solutions and has properties suitable for quantifying 1-liglyceride in biological samples.
■-. Methods are also being considered to try to solve the problems described above. However, this method not only requires a great deal of cost and time, but also provides a
There is no guarantee that you will be able to find this, so it is not a very practical method.

一方、一般に酵素を安定化する方法としては、例えば酵
素溶液中にシュクロース,マルトース等の糖類、アノレ
プ′ミン,スキムミノレク等の蛋白質、Ca”塩g M
 g 2+m等の塩類、2−メルカブ1・エタノール等
の還元剤等を添加する方法、酵素を適当なI114体へ
国定化する方法、遺伝子1二学の不法により酵素のアミ
ノ酸配列を改変する方法等が知られているが、特定の酵
素について上記のうちのどの方法がよいというような一
般的な法則がある訳ではなく、個々の酵素について試行
錯誤的に支定化方法を選択しているのか実状である、、 これら安定化方法のうち、担体への固定化による方法は
、范近よく川いられている方法であり、比較的安定化効
果の高い方法どして知られている(四トイツ特許第2,
9]9,622シ;・明細j1〜等)。しかしながら、
この方法にしても、酵素の活性中心、或は基質結合部位
等の酵素活{1一発現に係わるアミノ酸残基が修飾され
ると酵素活性が発現しなくなる等の問題点があるので、
仮令最適な条件を選択すべく、結合力法や結合剤、架橋
剤等について種々検討を行ったとしても、必ずしも、ど
の酵素にも適用できるというものではなく、その点では
他の方法と全く同じである。
On the other hand, in general, methods for stabilizing enzymes include adding sugars such as sucrose and maltose, proteins such as anolepmin and skimminolec, and Ca' salts to the enzyme solution.
A method of adding salts such as g2+m, a reducing agent such as 2-merkab1 and ethanol, a method of nationalizing the enzyme to an appropriate I114 form, a method of modifying the amino acid sequence of the enzyme by illegal genetic engineering, etc. However, there is no general rule that says which of the above methods is best for a particular enzyme, and the method of stabilization for each enzyme is selected through trial and error. In reality, among these stabilization methods, the method of immobilization on a carrier is a method that is often used by Fanchika, and is known as a method with a relatively high stabilizing effect (Shimoto et al. Teuts Patent No. 2,
9] 9,622 shi;・Details j1~ etc.). however,
Even with this method, there are problems such as the enzymatic activity not being expressed if the amino acid residues involved in the expression of the enzymatic activity, such as the active center of the enzyme or the substrate binding site, are modified.
Even if we conduct various studies on binding force methods, binding agents, cross-linking agents, etc. in order to select the optimal conditions, it is not necessarily applicable to every enzyme, and in that respect it is exactly the same as other methods. It is.

[発明の[j的] 本発明は、係る状況に鑑みなされたもので、水溶液中で
GKの活性を長時IIQ維持せしめることのできるGK
の安定化方法、及びこの方法により安定化されたG K
を用いたグリセリン又は/及びグリセリン誘導体の定量
方法を提供することを1“i的とする。
[J-Object of the Invention] The present invention has been made in view of the above-mentioned circumstances, and provides a GK that can maintain the activity of GK at IIQ in an aqueous solution for a long period of time.
A method for stabilizing G K stabilized by this method
It is an object of the present invention to provide a method for quantifying glycerin or/and glycerin derivatives using the present invention.

[発明の構成] 本発明は、GKを水溶性多糖類に共有結合させることを
特徴とするG Kの安定化方法、及び水溶性多糖類に共
有結合させたGK.兼びにGKの酵素活性を利用してグ
リセリン又は/及びグリセリン誘導体を定量する方法に
於いて、G Kとして水溶性多糖類に共有結合させたG
Kを用いることを特徴とするグリセリン又は/及びグリ
セリン誘導体の定量方法の発明である。
[Configuration of the Invention] The present invention provides a method for stabilizing GK, which is characterized by covalently bonding GK to a water-soluble polysaccharide, and a method for stabilizing GK, which is characterized by covalently bonding GK to a water-soluble polysaccharide. In addition, in a method for quantifying glycerin or/and glycerin derivatives using the enzyme activity of GK, GK covalently bonded to a water-soluble polysaccharide is used as GK.
This invention is a method for quantifying glycerin or/and glycerin derivatives, characterized in that K is used.

即ち、本発明者らは、水溶液中に於いてGKの活性を長
期間維持できる方法を開発すべく鋭意研究の結果、GK
を水溶性多糖類に共有結合させることにより、水溶性を
維持したまま長期間安定化できること、更にこのように
して安定化されたGKは、グリセリン又は/及びグリセ
リン誘導体の測定に於ける共役酵素として有効に利用し
得ることを見出し本発明を完戊するに至った。
That is, the present inventors have conducted extensive research to develop a method that can maintain the activity of GK in an aqueous solution for a long period of time.
By covalently bonding GK to a water-soluble polysaccharide, it can be stabilized for a long period of time while maintaining water solubility, and furthermore, GK stabilized in this way can be used as a conjugate enzyme in the measurement of glycerin or/and glycerin derivatives. The present inventors have found that the present invention can be effectively utilized and have completed the present invention.

本発明に用いられる水溶性多糖類どしては、構戊単イI
′1.中に少なくとも1紹の隣接する水酸基を有し、過
ヨウ素酸塩、メタ過ヨウ素酸塩等の酸化剤により酸化さ
れて、酵素分子中のアミノ基と反応しうるアルデヒド基
を生じるものであれば、天然物であっても合戊されたも
のであってもよく、特に限定されないが、例えばデキス
1・ラン,デキストラン硫酸,デキストリン,プルラン
,可溶性デンブン,コンドロイチン硫酸,ラミナン,リ
ケナン,メチルセルロース等か好ましく挙げられる。
The water-soluble polysaccharides used in the present invention include:
'1. If it has at least one adjacent hydroxyl group in it and is oxidized by an oxidizing agent such as periodate or metaperiodate to produce an aldehyde group that can react with the amino group in the enzyme molecule. may be a natural product or a synthesized product, and is not particularly limited, but preferably includes, for example, dex-1-lan, dextran sulfate, dextrin, pullulan, soluble starch, chondroitin sulfate, laminan, lichenan, methylcellulose, etc. Can be mentioned.

また、これら水溶性の多糖類の分子量としては、水溶性
を示す範囲であれば特に限定されることなく挙げられる
が、l.,000〜800 , 000の範囲が好まし
く挙げられる。
Furthermore, the molecular weight of these water-soluble polysaccharides is not particularly limited as long as they are water-soluble, but l. ,000 to 800,000 is preferably mentioned.

本発明に用いられるGKとしては、その山来は特に限定
されないが、例えばセルロモナス(Cel].u1 o
 m o n a s )属、エシェリシア コリ(E
.CoLi)属、アース口バクター(Art;hrob
acl;er)属、ストレブトミセス(strepto
myces)属等に由来するものが好ましく挙げられる
The GK used in the present invention is not particularly limited in its variety, but for example, Cellulomonas (Cel).u1 o
mon a s ) genus, Escherichia coli (E
.. CoLi) genus, Earthmouth Bacter (Art; hlob)
acl;er) genus, Strebtomyces (strepto
Preferred examples include those derived from the genus Myces.

本発明に係わるGKと水溶性多糖類との共有結合物の製
造方法としては、先ず水溶性多糖類1重量部に0.2〜
1重量部の酸化剤を加え、暗所にてO′C〜室温で、数
時間乃至数日間反応させて、水溶性多糖類を酸化する。
As a method for producing a covalently bonded product of GK and a water-soluble polysaccharide according to the present invention, first, 1 part by weight of a water-soluble polysaccharide is added to
Add 1 part by weight of an oxidizing agent and react in a dark place at O'C to room temperature for several hours to several days to oxidize the water-soluble polysaccharide.

次に過剰の酸化剤を、用いた酸化剤l重量部に対して通
常1〜2重量部の還元剤で分解し、更に反応液を水又は
適当な緩衝液中でで透析するか若しくはゲル濾過により
精製して、水溶性多糖類のアルデヒド体(以下、PSA
と略称する。)を得る。
Next, the excess oxidizing agent is decomposed with a reducing agent, usually 1 to 2 parts by weight per 1 part by weight of the oxidizing agent used, and the reaction solution is further dialyzed in water or an appropriate buffer solution, or subjected to gel filtration. The water-soluble polysaccharide aldehyde (hereinafter referred to as PSA) is purified by
It is abbreviated as. ).

次いで、このPS−AとGKとをpH5〜[0の緩衝液
中、重量比土〜30:1で反応させる。尚、この際の反
応温度は15〜40゜Cの範囲であることが望ましい。
Next, this PS-A and GK are reacted in a buffer solution with a pH of 5 to 0 at a weight ratio of 30:1. Incidentally, the reaction temperature at this time is preferably in the range of 15 to 40°C.

即ち、15℃より低い温度で反応を行った場合には、な
かなか反応が終了しないか若しくは全く反応が進行しな
いと言う現象が生じ、しかも水溶性多糖類に固定化され
たGKの安定性がどちらかと言えば悪くなり、また、4
0℃を超える温度で反応を行った場合には、反応終了後
のGKの回収率が低くなり製造コストが高くなってしま
う等の問題が生じるからである。
In other words, if the reaction is carried out at a temperature lower than 15°C, the reaction may take a long time to complete or not proceed at all, and the stability of GK immobilized on the water-soluble polysaccharide may be affected. If anything, it gets worse, and 4
This is because, if the reaction is carried out at a temperature exceeding 0° C., problems such as a low recovery rate of GK after the reaction and an increase in production cost will occur.

更にこれに還元剤(例えば、ピリジンボラン,シアン水
素化ホウ素ナトリウム等)を、反応液中の濃度が1〜5
 W/V%となるように添加し、5〜40℃で、数時間
乃至数日間、反応させる。
Furthermore, a reducing agent (e.g., pyridine borane, sodium cyanoborate, etc.) is added to this so that the concentration in the reaction solution is 1 to 5.
It is added so that it becomes W/V%, and it is made to react at 5-40 degreeC for several hours thru|or several days.

尚、これらの反応の際に、グリセロール、EDTA、蛋
白質等のGKの安定化剤を共存させておけば、反応終了
後のGK活性の失活がより少なくなるので好ましい。
It is preferable to coexist with a GK stabilizer such as glycerol, EDTA, protein, etc. during these reactions, since deactivation of GK activity after the reaction is less likely to occur.

上記の反応により得られた溶液を水又は適当な緩衝液に
対して透析することにより目的とするGKと水溶性多糖
類との共有結合物、即ち、GKとPS−Aとの共有結合
物(GK/PS−A共有結合物)が得られる。かくして
得られたGK/PSA共有結合物は安定化されたGKと
して充分使用可能であるが、GKの安定性をより向」ニ
させるには、残存するアルデヒド基を不活化することが
望ましい。即ち、上記還元後の反応液に、先に用いたも
のと異なる適当な還元剤を、反応液中の濃度が1〜5 
W/V%となるように添加し、O〜40℃で2〜20時
間、更に還元反応させるか、或は、同反応液に、更にア
ミノ基を有する化合物を0.1〜0.5M/1濃度とな
るように添加し、先に用いたものと同様の還元剤を反応
液中の濃度が1〜5 W/V%となるように添加し、再
度5〜40℃で数時間乃至数日間反応させることが望ま
しく、その後に、水又は適当な緩衝液に対して透析する
等により精製すれば、より安定なGK/PS−A共有結
合物を得ることができる。
The solution obtained by the above reaction is dialyzed against water or an appropriate buffer to form the desired covalently bound product of GK and water-soluble polysaccharide, that is, a covalently bound product of GK and PS-A ( GK/PS-A covalent bond) is obtained. The GK/PSA covalent bond thus obtained can be fully used as stabilized GK, but in order to further improve the stability of GK, it is desirable to inactivate the remaining aldehyde groups. That is, an appropriate reducing agent different from the one used previously is added to the reaction solution after reduction so that the concentration in the reaction solution is 1 to 5.
W/V%, and further reduce reaction at 0 to 40°C for 2 to 20 hours, or to the same reaction solution, add 0.1 to 0.5 M of a compound having an amino group. A reducing agent similar to that used previously was added so that the concentration in the reaction solution was 1 to 5 W/V%, and the mixture was heated again at 5 to 40°C for several hours to several hours. It is desirable to react for several days, and then purify by dialysis against water or an appropriate buffer to obtain a more stable GK/PS-A covalent bond.

PS−Aを製造する際に用いられる酸化剤としては、例
えばオルト過ヨウ素1g2塩,ニメソ過ヨウ素酸塩,メ
ソ過ヨウ素酸塩,ニオルト過ヨウ素酸塩,メタ過ヨウ素
酸塩等の各種過ヨウ素酸塩類(アルカリ金属塩等)が好
ましく挙げられ、過剰の酸化剤を処理するのに用いられ
る還元剤としては、例えば亜硫酸水素ナトリウム,チオ
硫酸ナトリウム,ハイドロサルファイト等が好ましく挙
げられる。
Examples of the oxidizing agent used in producing PS-A include various types of periodate such as orthoperiodine 1g2 salt, nimesoperiodate, mesoperiodate, niorthoperiodate, and metaperiodate. Preferable examples include acid salts (alkali metal salts, etc.), and examples of reducing agents used to treat excess oxidizing agent include sodium bisulfite, sodium thiosulfate, hydrosulfite, and the like.

PS−AとGKとを反応させる際、或は各反応終了時に
反応液を透析する際に用いられる緩衝液の緩衝剤として
は、GKを失活させないもので還元剤と反応しないもの
であれば特に問題なく用いることができるが、例えばリ
ン酸塩,グッドの緩衝剤等が好ましく挙げられる。
The buffer used for the buffer used when reacting PS-A and GK or when dialyzing the reaction solution at the end of each reaction may be one that does not deactivate GK and does not react with the reducing agent. Although they can be used without particular problems, preferred examples include phosphates and Good's buffers.

また、PS−AとGKとを反応させる際に用いられる還
元剤としては、例えばビリジンボラン,シアノ水素化ホ
ウ素ナトリウム等が好ましく挙げられる。
Further, as the reducing agent used when PS-A and GK are reacted, for example, pyridine borane, sodium cyanoborohydride, etc. are preferably mentioned.

PS−AとGKとを反応させる際に添加しておくことが
望ましい蛋白質は、原料となるGKの凍結乾燥粉末中に
賦型剤として含有させておいてもよい。このような目的
に用いられる好ましい蛋白質としては、アルブミン,グ
ロプリン,カゼイン,ゼラチン等の蛋白質が挙げられ、
GKの凍結乾燥粉末中の含量は特に限定されないが、好
ましくは10〜90%、より好ましくは30〜50%が
望ましい。
A protein that is preferably added when reacting PS-A and GK may be included as an excipient in the lyophilized powder of GK that serves as a raw material. Preferred proteins used for this purpose include proteins such as albumin, globulin, casein, gelatin, etc.
The content of GK in the lyophilized powder is not particularly limited, but is preferably 10 to 90%, more preferably 30 to 50%.

GKとPS−Aとを共有結合させた後に残存するアルデ
ヒド基を不活化する為に用いる還元剤としては、例えば
水素化ホウ素ナトリウム,ジメチルアミンボラン等が好
ましく挙げられる。
Preferred examples of the reducing agent used to inactivate the aldehyde group remaining after covalently bonding GK and PS-A include sodium borohydride and dimethylamine borane.

また、G KどPS−Aとを共有結合させた後に残存す
るアルデヒド基を不活化する為に用いるアミノ基をわ゛
する化合物としては、特に限定されないが、例えばグリ
シン,エタノールアミン,グリシンエチルエステル等が
好ましく挙げられ、このときに添加する還元剤としては
、例えばピリジンボラン,シアノ水素化ホウ素ナトリウ
ム等が夕rましく挙げられる。
In addition, compounds that destroy the amino group used to inactivate the aldehyde group remaining after covalent bonding with GK and PS-A are not particularly limited, but include glycine, ethanolamine, glycine ethyl ester, etc. Examples of the reducing agent added at this time include pyridine borane and sodium cyanoborohydride.

このようにして得られた、GK./PS−A共有結合物
は、安定性に優れているため水溶液の状態で長期間の保
存が可能であるが、これを凍結乾燥して粉末として保存
しておくことも当然可能である。
The GK. obtained in this way. The /PS-A covalent bond has excellent stability and can be stored for a long period of time in the form of an aqueous solution, but it is also naturally possible to freeze-dry it and store it as a powder.

本発明に係わるGK/PS−A共有結合物は、水溶液の
状態で長期間安定であり、しかも基質との親和性及び基
質に対する特異性については原利となったGKのそれと
ほぼ同等であるので、臨床化学,生化学,食品化学,食
品工業等の分野で広11 く使用が可能である。特に臨床化学の分!IIfで1・
ングリセライl−測定用試液中に添加される共役酵素と
して使用すれは、その測定用試液は長期間安定となって
,従来品に比べて著しく右利となる1,GKは、前記し
た如く水酸基を3つ持つグリセリンを基質とする酵素で
あるので、これを水酸基を多く含む多糖類と結合させた
場合には、その基質特異r1゛やノ,(質との反応速度
か変化する虞れが十分に考えられた。ところか、本発明
に係る水溶性多糖類に共有結合させたGKは、その基質
特異性やノA質との反応速度は水溶性多糖類と結合させ
る前のGKのそれと殆ど変らす、しかも水溶液中での安
定性が顕著に増加するという極めて有益な性質を兼ね備
えたものとなると言一うことは全く意外なことであった
The GK/PS-A covalent bond product according to the present invention is stable for a long period of time in an aqueous solution state, and moreover, its affinity with the substrate and specificity for the substrate are almost equivalent to those of the original GK. It can be widely used in fields such as clinical chemistry, biochemistry, food chemistry, and food industry. Especially for clinical chemistry! 1 in IIf
When used as a conjugate enzyme added to a reagent solution for measurement of GK, the reagent solution for measurement becomes stable for a long period of time, and has a significant advantage over conventional products. Since this is an enzyme that uses glycerin as a substrate, which has three types of glycerin, when it is combined with a polysaccharide containing many hydroxyl groups, there is a strong possibility that the reaction rate with its substrate specificity r1゛ and (quality) will change. However, GK covalently bonded to the water-soluble polysaccharide according to the present invention has almost the same substrate specificity and reaction rate with the A substance as that of GK before bonding to the water-soluble polysaccharide. It was completely unexpected that it would have the extremely beneficial properties of changing the chemical composition and significantly increasing its stability in aqueous solution.

以下に実施例により、本発明を更に詳細に述べるが、本
発明はこれらにより何ら限定されるものではない。
The present invention will be described in more detail with reference to Examples below, but the present invention is not limited thereto.

[実施例] 実施例1−. 1 2 デキストラン(以下Dcxと略称する。分子量;100
,000−200,000. ) ノIOW/Vl溶液
20mlを5℃に冷却し、これにメタ過ヨウ素酸ナトリ
ウム2gを少量づつ撹拌下に添加した。これを、暗所に
て5゜C、24時ffjJ撹拌反応させた。反応終了後
、過剰のメタ過ヨウ素酸ナトリウムを40W/V%1I
■硫酸水素ナトリウム水溶液7m.Iを加えて分解し、
この反応液を室温で、イオン交換水に対して透析し、D
exのアルデヒド誘導体溶液45m〕を得た。得られた
Dexのアルデヒド誘導体溶液0.6mlに、GK(セ
ルロモナス属由来、3411/mg) ]5mgを溶解
した0.2M N,Nビス(2−ヒドロキシエチル)−
2−アミノエタンスルホン酸(BES)緩衝液(pll
7.5)1 .0mlを加え、これにビリジンボラン2
0μ1を添加して30″Cで18時間、攪拌下に反応さ
せた。その後、この反応液に2Mグリシン水溶液0.3
mlとビリジンホラン20μ]を加え、更に30″Cで
8時II11攪拌トに反応させた。反応終了後、反応液
を]OmMリン酸緩衝液(pl17.0)に対して透析
し、G K / D cx共有結合物(GKと丁)ex
との共右結合物)を含む溶液3.5mlを得た(酵素活
性回収率: 34.9%)。
[Example] Example 1-. 1 2 Dextran (hereinafter abbreviated as Dcx. Molecular weight: 100
,000-200,000. ) 20 ml of the IOW/Vl solution was cooled to 5° C., and 2 g of sodium metaperiodate was added in small portions with stirring. This was reacted in the dark at 5°C with stirring for 24 hours. After the reaction is complete, remove excess sodium metaperiodate at 40W/V%1I.
■Sodium hydrogen sulfate aqueous solution 7m. Add I and decompose,
This reaction solution was dialyzed against ion-exchanged water at room temperature, and D
45 m of an aldehyde derivative solution of ex] was obtained. 0.2 M N,N bis(2-hydroxyethyl)- in which 5 mg of GK (derived from Cellulomonas sp., 3411/mg) was dissolved in 0.6 ml of the obtained Dex aldehyde derivative solution.
2-aminoethanesulfonic acid (BES) buffer (pll
7.5)1. Add 0 ml of pyridine borane 2
0 μl was added and reacted at 30″C for 18 hours with stirring. Then, 0.3 μl of a 2M aqueous glycine solution was added to the reaction solution.
ml and 20μ of pyridine holane] were added, and the reaction was further stirred at 30"C for 8 hours. After the reaction was completed, the reaction solution was dialyzed against ]OmM phosphate buffer (pl 17.0), and G K / D cx covalent bond (GK and Ding) ex
3.5 ml of a solution containing a co-conjugate with the enzyme was obtained (enzyme activity recovery rate: 34.9%).

実施例2. 実施例1に於いて、セルロモナス属由来のGKの代りに
、エシエリシアコリ属由来のG K ].5mg(]4
.3U/mg)を用い、それ以外は実施例1と全く同様
にして反応及び後処理を行い、GK / D ex共有
結合物を含む溶液3.7mlを得た(酵素活性回収率=
7.0%),, 実施例3. 実施例1に於いて、セルロモナス属由来のGKの代りに
、ストレブトミセス属由来のG K ].5mg(]6
.3LI/mg)を用い、それ以外は実施例1と全く同
様にして反応及び後処理を行い、G K / D ex
共有結合物を含む溶液4.0mlを得た(酵素活性回収
率=74.7%)。
Example 2. In Example 1, GK derived from the genus Escherichiacoli was replaced with GK derived from the genus Cellulomonas ]. 5mg(]4
.. The reaction and post-treatment were carried out in exactly the same manner as in Example 1, except for the above, to obtain 3.7 ml of a solution containing the GK/D ex covalent bond (enzyme activity recovery rate =
7.0%), Example 3. In Example 1, GK derived from the genus Strebtomyces was replaced with GK derived from the genus Cellulomonas]. 5mg (]6
.. G K / D ex
4.0 ml of a solution containing a covalently bound substance was obtained (enzyme activity recovery rate = 74.7%).

実施例4. 実施例1に於いて、セルロモナス属出来のGKの代りに
、アースロバクター属由来のGK1.5mg(25.3
U/mg)を用い、それ以外は実施例lと全く同様同様
にして反応及ひ後処理を行い、G K / I)e x
共有結合物を含む溶液4.9mlを得た(酵素活性回収
率: 27.6%)。
Example 4. In Example 1, 1.5 mg (25.3 mg) of GK derived from the genus Arthrobacter was used instead of GK derived from the genus Cellulomonas.
G K / I) e x
4.9 ml of a solution containing a covalently bound substance was obtained (enzyme activity recovery rate: 27.6%).

実施例5. 実施例1に於いて、DexのIOW/V%水溶液の代り
に、可溶性デンプン(以下、SSと略称する。)のIO
W/V%水溶液を用い、それ以外は実施例1と全く同様
にして反応及び後処理を行い、GK/SS共有結合物(
GKとSSとの共有結合物)を含む溶液5.]mFを得
た(酵素活性回収率: 58.3%)。
Example 5. In Example 1, IO of soluble starch (hereinafter abbreviated as SS) was used instead of the IOW/V% aqueous solution of Dex.
Using a W/V% aqueous solution, the reaction and post-treatment were carried out in the same manner as in Example 1, except for the reaction and post-treatment, to obtain a GK/SS covalent bond (
5. A solution containing a covalent bond of GK and SS. ] mF was obtained (enzyme activity recovery rate: 58.3%).

実施例6. 実施例1に於いて、Dexの1.0W/V%水溶液の代
りに、デキストリン(以下Dinと略称する。)の10
W/V%水溶液を用い、それ以外は実施例工と全く同様
にして反応及び後処理を行い、G K / D j n
共有結合物(GKとDinとの共有結合物)を含む溶液
4.8mlを得た(酵素活性回収率: 62.9%)。
Example 6. In Example 1, instead of the 1.0 W/V% aqueous solution of Dex, 10% of dextrin (hereinafter abbreviated as Din) was used.
Using a W/V% aqueous solution, the reaction and post-treatment were carried out in the same manner as in the example process, and G K / D j n
4.8 ml of a solution containing a covalent bond (a covalent bond between GK and Din) was obtained (enzyme activity recovery rate: 62.9%).

実施例7. 実施例1に於いて、Dexの10 W / V%水溶液
の代りに、プルラン(以下、Pu]と略称する。)のI
OW/V%水溶液を用い、それ以外は実施例1と全く同
様」− 5 にして反応及び後処理を行い、G K / P ul共
有結合物(GKとPuJとの共有結合物)を含む溶液5
.2mlを得た(酵素活性回収率: 59.6%)。
Example 7. In Example 1, instead of the 10 W/V% aqueous solution of Dex, I of pullulan (hereinafter abbreviated as Pu) was used.
Using an OW/V% aqueous solution, the reaction and post-treatment were carried out in the same manner as in Example 1 except for the reaction, and a solution containing a GK/Pul covalent bond (a covalent bond of GK and PuJ) was prepared. 5
.. 2 ml was obtained (enzyme activity recovery rate: 59.6%).

実施例8. 分子量分布が1.7.000、60,000〜90,0
00、100,000〜200,000、200,00
0−300,000の各Dex 2 gを各々25m]
のイオン交換水に溶解したものを5℃に冷却し、各々に
メタ過ヨウ素酸ナトリウム1.6gを少量づつ撹拌下に
添加した。これらを、暗所にて5°C、19時間撹拌反
応させた。反応終了後、過剰のメタ過ヨウ素酸ナトリウ
ムを40W/V%亜硫酸水素ナトリウム水溶液4.5m
lを加えて分解し、これら反応液を室温で、イオン交換
水に対して透析し、各種分子量分布のDexのアルデヒ
ド誘導体溶液1.50m]を夫々得た。得られた各De
xのアルデヒド誘導体溶液1.5m1に、GK(セルロ
モナス属由来、300/mg) 20mgを溶解した0
.2M BES緩衝液(5mM EDTA含有。pl1
7.5)3.5mlを加え、更にピリジンボラン50μ
1を夫々添加して30℃で20時間、#l押下に反応さ
せた。
Example 8. Molecular weight distribution is 1.7,000, 60,000-90,0
00, 100,000-200,000, 200,00
0-300,000 Dex 2 g each for 25 m]
The solution dissolved in ion-exchanged water was cooled to 5° C., and 1.6 g of sodium metaperiodate was added little by little to each solution while stirring. These were stirred and reacted in the dark at 5°C for 19 hours. After the reaction, excess sodium metaperiodate was dissolved in 4.5 m of 40 W/V% sodium bisulfite aqueous solution.
These reaction solutions were dialyzed against ion-exchanged water at room temperature to obtain 1.50 m of Dex aldehyde derivative solutions with various molecular weight distributions. Each De obtained
20 mg of GK (derived from Cellulomonas sp., 300/mg) was dissolved in 1.5 ml of aldehyde derivative solution of x.
.. 2M BES buffer (containing 5mM EDTA. pl1
7.5) Add 3.5ml and then add 50μ of pyridine borane.
1 was added and reacted at 30° C. for 20 hours under pressure #1.

その後、各反応液に2Mクリシンエチルエステル溶1 
6 液0.5mlとピリジンボラン50μ1を加え、更に2
8℃で20時間攪拌下に反応させた。反応終了後、各反
応液を10mMリン酸緩衝液(p}!7.0、2 mM
 EDTA含有。
Then, add 1 ml of 2M chrysin ethyl ester solution to each reaction solution.
6 Add 0.5 ml of solution and 50 μl of pyridine borane, and add 2
The reaction was carried out at 8°C for 20 hours with stirring. After completion of the reaction, each reaction solution was diluted with 10mM phosphate buffer (p}!7.0, 2mM
Contains EDTA.

)に対して透析し、G K / D ex具有結合物を
含む溶液を夫々8.4ml.8.4ml. 8.0ml
及び7.9ml得た(各酵素活性回収率:9.1%、6
2.9%、64.4%及び61.6%)。
), and 8.4 ml of each solution containing the G K /D ex-containing conjugate was dialyzed. 8.4ml. 8.0ml
and 7.9 ml was obtained (recovery rate of each enzyme activity: 9.1%, 6
2.9%, 64.4% and 61.6%).

実施例9.トリグリセライドの測定 (測定試液) A液: 0.05Mピペラジン−N,N’−ビス(2−
エタンスルホン酸) (PIPES)緩衝液(pH6.
5)に、N一エチルーN一(2−ヒドロキシ−3−スル
ホプ口ピル)−3.5−ジメトキシアニリンNa塩(D
AOS、同仁化学研究所C株)製)0.235mg/m
l. ATP 1.7mg#nl−. リポプロテイン
リパーゼ(東洋醸造(株)製)82.5U/ml、アス
コルビン酸オキシダーゼ(ベーリンガ一一マンハイム社
製)0.80/mlとなるように溶解したものに、実施
例1で得られたG K / D ex共有結合物をGK
活性が3.5U/mlとなるように添加してA液とした
Example 9. Measurement of triglyceride (measurement sample solution) Solution A: 0.05M piperazine-N,N'-bis(2-
ethanesulfonic acid) (PIPES) buffer (pH 6.
5), N-ethyl-N-(2-hydroxy-3-sulfopyr)-3,5-dimethoxyaniline Na salt (D
AOS, manufactured by Dojindo Kagaku Kenkyusho C Co., Ltd.) 0.235 mg/m
l. ATP 1.7mg#nl-. The G obtained in Example 1 was dissolved in 82.5 U/ml of lipoprotein lipase (manufactured by Toyo Jozo Co., Ltd.) and 0.80 U/ml of ascorbic acid oxidase (manufactured by Boehringer Mannheim). GK/D ex covalent conjugate
It was added so that the activity was 3.5 U/ml to obtain a solution A.

B液: 0.05)IPIPEs緩衝液(pH6.5)
に、4−ア主ノアンチピリン0.55mg/rrl]、
グリ七〇リン酸オキシダーゼ(東洋醸造(株)製)22
.811/ml−.パーオキシダーゼ(東洋紡(株)製
、タイプIT)5.40/mlとなるように溶解したも
のをB液とした。
Solution B: 0.05) IPIPEs buffer (pH 6.5)
0.55 mg/rrl],
Gly70phosphate oxidase (manufactured by Toyo Jozo Co., Ltd.) 22
.. 811/ml-. Peroxidase (manufactured by Toyobo Co., Ltd., type IT) was dissolved to a concentration of 5.40/ml and used as Solution B.

(試料) 新鮮血清8検体及びトリグリセライド300mg/dl
を含む標準血清を試料とした。
(Samples) 8 fresh serum samples and triglyceride 300mg/dl
The sample was a standard serum containing .

(操作法) 試料20μ1にA液をL5ml加え、37°Cで3分間
予備加温し、次いでこれにB液0.75mlを加えて良
く混合し、37゜Cで4.5分間加温した後、600n
mの吸光度を測定した。
(Procedure) 5 ml of solution A was added to 20 μl of the sample and prewarmed at 37°C for 3 minutes. Next, 0.75 ml of solution B was added to this, mixed well, and heated at 37°C for 4.5 minutes. After 600n
The absorbance of m was measured.

尚、試料の代りにイオン交換水を用いて同様の操作を行
い試薬盲検値(EBB.)を測定した。
Incidentally, the same operation was performed using ion-exchanged water instead of the sample, and the reagent blind value (EBB.) was measured.

測定結果を次式に代入して、新鮮血清8検体のトリグリ
セライド値(TG)を求めた。
The triglyceride values (TG) of 8 fresh serum samples were determined by substituting the measurement results into the following equation.

TG(mg/dl)= (Es−EBI)÷(Estd
 − EBI) X 300Es:新鮮血清により得ら
れた吸光度。
TG (mg/dl) = (Es-EBI) ÷ (Estd
- EBI) X 300Es: absorbance obtained with fresh serum.

Estd :標準血清により得られた吸光度。Estd: Absorbance obtained with standard serum.

(結果) 測定結果を表1に示す。(result) The measurement results are shown in Table 1.

実施例1.0.  1−リグリセライドの測定実施例9
に於いて、測定試液のA液に実施例]て得られたG K
 / D e x具右結合物を添加する代りに実施例3
で得られたG K / D e x共有結合物をGK活
性が3,5U/mlとなるように添加し、それ以外は実
施例9と全く同様にして測定を行い、実施例9で試料と
して用いたと同し新鮮廂清8検体のトリグリセライド値
(丁G)を求めた。
Example 1.0. 1-Liglyceride measurement example 9
In this case, the G K obtained in Example] was added to solution A of the measurement reagent solution
Example 3 instead of adding the right conjugate
The GK/Dex covalent bond obtained in Example 9 was added so that the GK activity was 3.5 U/ml, and the measurement was carried out in the same manner as in Example 9. The triglyceride values (G) of 8 freshly cleaned samples used were determined.

(結果) 測定結果を表1に併せて示す。(result) The measurement results are also shown in Table 1.

比較例1−.トリグリセライドの8!リ定実施例9で試
料とした新鮮血清8検体の各トリグリセライドイ直を、
市販のトリグリセライド測定用試薬(トリグリセライド
E−テストワコー、和光純薬工業(株)製)を用いて、
その標準操作法により求めた。
Comparative example 1-. 8 of triglycerides! Each triglyceride sample of the 8 fresh serum samples used in Reconstitution Example 9 was
Using a commercially available triglyceride measurement reagent (Triglyceride E-Test Wako, manufactured by Wako Pure Chemical Industries, Ltd.),
It was determined using the standard operating method.

測定結果を表1に併せて示す。The measurement results are also shown in Table 1.

1 9 表1− 表1−の結果から明らかな如く、本発明の方法により安
定化されたG Kを共役酵素として用いたトリグリセラ
イド測定用試薬により得られた結果は、市販のトリグリ
セライト測定用試薬により得られた結果と良く一致した
19 As is clear from the results in Table 1, the results obtained with the reagent for triglyceride measurement using GK stabilized by the method of the present invention as a conjugate enzyme are better than those obtained with the commercially available reagent for triglyceride measurement. The results were in good agreement with those obtained by.

2 0 実験例1.熱安定性試験−1 (試料) 表2に示す組戒の各GK溶液(2oIIl阿衝液、p 
I+ 7 . 0、ill/m].)を試料とした。
2 0 Experimental example 1. Thermal stability test-1 (Sample) Each GK solution of Kumikai shown in Table 2 (2oIIl Asho liquid, p
I+7. 0, ill/m]. ) was used as a sample.

表2 リン酸緩 未処理GK:セルロモナス属由来。Table 2 phosphoric acid Untreated GK: derived from Cellulomonas.

(操作法) 各試料を、55℃で所定時間放置した後のGKの残存活
性率を求めた。
(Procedure) After each sample was left at 55° C. for a predetermined period of time, the residual activity rate of GK was determined.

尚、GKの活性測定はーメソッド オブ エンザイマテ
インク アナリシス(Method of Enzym
aLie Ana.lysjs) , Vol. II
 , 2]6−217頁に記載の方法に従って行った。
In addition, the activity measurement of GK is carried out using the Method of Enzyme Analysis.
aLie Ana. lysjs), Vol. II
, 2] on pages 6-217.

即ち、グリセリンを基質として反応温度z5゜C. 2
00mMグ’)シンIa衝液(pi{9.8、24%抱
水ヒドラジン;208mg/m]及びMgC1 2・6
++20;0.4mg/m]含有。)中で、1分111
1 +こ1μmoleのN A D I+を遊離させる
酵素量を1− .!Ji位(U)とした。
That is, using glycerin as a substrate at a reaction temperature of 5°C. 2
00mM G') SynIa buffer (pi{9.8, 24% hydrazine hydrate; 208mg/m] and MgC1 2.6
++20; 0.4 mg/m]. ) in 1 minute 111
1 + The amount of enzyme that releases 1 μmole of NAD I+ is 1 -. ! It was ranked Ji (U).

(結果) 得られた熱安定性曲線を第4図に示す。尚、熱安定性曲
線は横軸の各時間(分)に対して得られたGKの残存活
性率の対数値を縦軸に沿ってプロットした点を結んだも
のであり、図中、一o−は試料」−により得られた結果
を、一●一は試料2により得られた結果を、一△−は試
料3により得られた結果を、一口−は試料4により得ら
れた結果を夫々示す。また、GKの残存活性率の対数値
は以下の式により求めた。
(Results) The obtained thermal stability curve is shown in FIG. In addition, the thermal stability curve is obtained by connecting the points obtained by plotting the logarithm of the residual activity rate of GK obtained for each time (minute) on the horizontal axis along the vertical axis. - indicates the results obtained with Sample 2, 1●1 indicates the results obtained with Sample 2, 1△- indicates the results obtained with Sample 3, and Sip- indicates the results obtained with Sample 4. show. Further, the logarithm value of the residual activity rate of GK was determined by the following formula.

残存活性率対数値= 1.n ( A t./ A.o
)Ao:試料調製直後のGK活性値(U/ml.)。
Residual activity rate log value = 1. n (A t. / A.o
) Ao: GK activity value (U/ml.) immediately after sample preparation.

At:55゜Cで所定時間放置後のGK活性値(U/m
コ)。
At: GK activity value (U/m
Ko).

第1図の結果から明らかな如く、本発明の安定化GKは
、未処理のG K或は未処理のGKにDexを1%或は
10%添加したものに比べて著しく安定であることが判
る。
As is clear from the results shown in Figure 1, the stabilized GK of the present invention is significantly more stable than untreated GK or untreated GK with 1% or 10% Dex added. I understand.

実験例2.熱安定性試験−2 (試料) 実施例2で得られたG K / D e x共有結合物
及びエシェリシアコリ属由来の未処理GKを、夫々20
mM リン酸緩衝液(PII7.0)にI U/mlと
なるように溶解したものを試料とした。
Experimental example 2. Thermal Stability Test-2 (Sample) The GK/Dex covalent bond obtained in Example 2 and the untreated GK derived from the genus Escherichiacoli were each tested at 20%
A sample was prepared by dissolving it in mM phosphate buffer (PII7.0) at a concentration of IU/ml.

(操作法) 実験例lと同じ。(Operation method) Same as Experimental Example 1.

(結果) 得られた熱安定性曲線を第2 S − (1)に示す。(result) The obtained thermal stability curve is shown in 2nd S-(1).

尚、熱安定性曲線は横軸の各時間(分)に対して得られ
たGKの残存活性率の対数値を縦軸に沿ってプロットし
た点を結んだものであり、図中、〇一はG K / D
 ex共有結合物を含む試料により得られた結果を,−
●一は未処理GKを含む試料により得られた結果を夫々
示す。
The thermal stability curve is a graph that connects the points obtained by plotting the logarithm of the residual activity of GK obtained for each time (minutes) on the horizontal axis along the vertical axis. is GK/D
The results obtained with the sample containing the ex covalent compound are expressed as -
●1 shows the results obtained with samples containing untreated GK.

実験例3.熱安定性試験−3 (試料) 2 3 実施例3で得られたG K / D ex共有結合物及
びストレプトミセス属由来の未処理GKを、夫々20m
M リン酸緩衝液(p++7.0)に1 11/m]と
なるように溶解したものを試料とした。
Experimental example 3. Thermal Stability Test-3 (Sample) 2 3 The GK/D ex covalent bond obtained in Example 3 and the untreated GK derived from Streptomyces were each incubated at 20 m
The sample was dissolved in M phosphate buffer (p++7.0) to a concentration of 111/m].

(操作法) 実験例1と同じ。(Operation method) Same as Experimental Example 1.

(結果) 得られた熱安定性曲線を第2図−(2)に示す。(result) The obtained thermal stability curve is shown in FIG. 2-(2).

尚、熱安定性曲線は横軸の各時間(分)に対して得られ
たGKの残存活性率の対数値を縦軸に沿ってプロットし
た点を結んだものであり、図中、○−はG K / D
 ex共有結合物を含む試料により得られた結果を、一
●−は未処理GKを含む試料により得られた結果を夫々
示す。
The thermal stability curve is a graph that connects the points obtained by plotting the logarithm of the residual activity of GK obtained for each time (minutes) on the horizontal axis along the vertical axis. is GK/D
The results obtained with the sample containing the ex covalent bond are shown, and 1●- shows the results obtained with the sample containing untreated GK, respectively.

実験例4.熱安定性試験−4 (試料) 実施例4で得られたG K / D e x共有結合物
及びアース口バクター属由来の未処理GKを、夫々20
mM リン酸緩衝液(pl+7.0)に工U/mlとな
るように溶解したものを試料とした。
Experimental example 4. Thermal Stability Test-4 (Sample) The GK/Dex covalent bond obtained in Example 4 and the untreated GK derived from Earthmouth Bacter genus were each
The sample was prepared by dissolving it in mM phosphate buffer (pl+7.0) at a concentration of 1/ml.

2 4 (操作法) 実験例工と同じ。2 4 (Operation method) Same as the experimental example.

(結果) 得られた熱安定性曲線を第2図−(3)に示す。(result) The obtained thermal stability curve is shown in FIG. 2-(3).

尚、熱安定性曲線は横軸の各時間(分)に対して得られ
たGKの残存活性率の対数値を縦軸に沿ってプロットし
た点を結んだものであり、図中、〇一はG K / D
 e x共有結合物を含む試料により得られた結果を、
一●−は未処理GKを含む試料により得られた結果を夫
々示す。
The thermal stability curve is a graph that connects the points obtained by plotting the logarithm of the residual activity of GK obtained for each time (minutes) on the horizontal axis along the vertical axis. is GK/D
The results obtained with the sample containing the e x covalent conjugate,
1●- indicates the results obtained with samples containing untreated GK, respectively.

第2図一(1)〜(3)の結果から明らかな如く、本発
明の安定化GKは、未処理のGKに比べて著しく安定で
あることが判る。
As is clear from the results shown in FIG. 2, (1) to (3), the stabilized GK of the present invention is significantly more stable than untreated GK.

実験例5.熱安定性試験−5 (試料) 実施例8で得られた各種G K / D ex共有結合
物及びセルロモナス属由来の未処理GKを、夫々20I
IIM リン酸緩衝液(p[+7.0)にI U/ml
となるように溶解したものを試料とした。
Experimental example 5. Thermal Stability Test-5 (Sample) Various GK/D ex covalent compounds obtained in Example 8 and untreated GK derived from the genus Cellulomonas were each treated with 20I
IU/ml in IIM phosphate buffer (p[+7.0)
The sample was prepared by dissolving it so that

(操作法) 実験例1と同じ。(Operation method) Same as Experimental Example 1.

(結果) 得られた熱安定性曲線を第3図に示す。尚、熱安定性曲
線は横軸の各時間(分)に対して得られたGKの残存活
性率の対数値を縦軸に沿ってプロットした点を結んだも
のであり、図中、一〇−は分子量分布が1.7,000
のDexを用いて調製したGK/Dex共有結合物を含
む試料により得られた結果を、一△−は分子量分布が6
0,000−90,000のDexを用いて調製したG
 K / D ex共有結合物を含む試料により得られ
た結果を、一口−は分子量分布が100,000−20
0,000のDexを用いて調製したGK/Dex共有
結合物を含む試料により得られた結果を、●一は分子量
分布が200,000−300,000のDexを用い
て調製したG K / D ex共有結合物を含む試料
により得られた結果を、また、−一一一は未処理GKを
含む試料により得られた結果を夫々示す。
(Results) The obtained thermal stability curve is shown in FIG. The thermal stability curve is a graph that connects the points obtained by plotting the logarithm of the residual activity of GK obtained for each time (minutes) on the horizontal axis along the vertical axis. - has a molecular weight distribution of 1.7,000
The results obtained with the sample containing the GK/Dex covalent bond prepared using Dex of
G prepared using Dex of 0,000-90,000
The results obtained with the sample containing the K/D ex covalent conjugate were compared to those with a molecular weight distribution of 100,000-20
The results obtained with the sample containing the GK/Dex covalent compound prepared using Dex of 0,000 were compared with the results obtained with the sample containing the GK/D covalent compound prepared using Dex with a molecular weight distribution of 200,000-300,000. -111 indicates the results obtained with the sample containing the ex covalent bond, and -111 indicates the result obtained with the sample containing untreated GK.

第3図の結果から明らかな如く、分子量分布が17,0
00−300,000の種々のDexを用いて調製した
本発明の安定化GKは、何れも未処理のGKに比べて著
しく安定であることが判る。
As is clear from the results in Figure 3, the molecular weight distribution is 17,0
It can be seen that the stabilized GK of the present invention prepared using various Dex from 00 to 300,000 are significantly more stable than the untreated GK.

実験例6,熱安定性試@−6 (試料) 実施例5〜7で胃・られた各種GK/水溶性多糖類共有
結合物及びセルロモナス属由来の末処理GKを一夫々2
0mM リン酸緩衝液( 1)117 .0 )に1−
U/m−1となるように溶解したものを試判とした。
Experimental Example 6, Thermal Stability Test @-6 (Sample) Two volumes of each of the various GK/water-soluble polysaccharide covalently bonded products prepared in Examples 5 to 7 and the terminally treated GK derived from Cellulomonas sp.
0mM phosphate buffer (1) 117. 0) to 1-
A test sample was obtained by dissolving the solution at a ratio of U/m-1.

(操作法) 実験例]−と同じ。(Operation method) Experimental example] Same as -.

(結果) 得られた熱安定作曲線を第4図に示す。尚、熱安定性曲
線は横軸の各時間(分)に対して得られたGKの残存活
性率の対数値を縦軸に沿ってブロッ1・シた点を結んだ
ものであり、図中、一■−は実施例5で調製したGK/
SS共有紹6物を含む試料により得られた結果を、一△
−は実施例6でwM製したG K / D Jn共イf
結合物を含む試料により得られた結果を、−◎一は実施
例7で調製したGK / P u ]共有結合物を含む
試料により得られた結果を、また、−−−一は未処理G
Kを含む試料により9 7 得られた結果を夫々示す。
(Results) The obtained thermal stability operating curve is shown in Fig. 4. The thermal stability curve is obtained by connecting the points where the logarithm of the residual activity of GK obtained for each time (minute) on the horizontal axis is plotted along the vertical axis. , 1 - is GK/ prepared in Example 5
The results obtained with the sample containing the SS shared introduction 6 substances were
- indicates GK/D Jn manufactured by wM in Example 6.
The results obtained with the sample containing the conjugate, -◎1 the GK/P u prepared in Example 7] the results obtained with the sample containing the covalent conjugate, and the results obtained with the untreated G
The results obtained with 97 samples containing K are shown.

第4図の結果から明らかな如く、種々の水溶性多糖類を
用いてm製した本発明の安定化GKは、何れも未処理の
GKに比κで著しく玄定であることが判る1, 実験例7.保存安定性試験 (試判) 実施例1で得られたG K / l)c x共右結合物
及びセルロモナス属山来の未処理GKを、夫々20mM
リン酸緩衝液(ptl7.0)に1−U/mlどなるよ
うに溶解したものを試利とした。
As is clear from the results in Figure 4, the stabilized GK of the present invention prepared using various water-soluble polysaccharides is significantly superior to untreated GK in terms of κ1, Experimental example 7. Storage stability test (trial) The GK/l)c x co-conjugate obtained in Example 1 and the untreated GK of Cellulomonas spp.
A sample was prepared by dissolving 1-U/ml in phosphate buffer (ptl 7.0).

(操作法) 試料を4゜C又は30℃で所定[1数保存し、CE K
の残存活性率を測定した。尚、GKの活性測定は実験例
1と同様の操作法により行った。また、GKの残存活性
率は以下の式により求めた。
(Procedure) Store the sample at 4°C or 30°C at a specified temperature,
The residual activity rate was measured. The GK activity was measured using the same procedure as in Experimental Example 1. In addition, the residual activity rate of GK was determined by the following formula.

残存活性率=(Bし÷Bo)×100 13o:試料調製直後のG K活性イi(( (11/
ml )。
Residual activity rate = (B ÷ Bo) × 100 13o: GK activity i (( (11/
ml).

Bt:所定[−1数保イj後のGK活件価(]1/ml
)。
Bt: Predetermined GK activity value after -1 number of points (] 1/ml
).

(結果) 得られた保存安定性曲線を第5図に示す。尚、保存安定
性曲線は横軸の各保存1−1数に対してネ5}られたG
Kの残存活性率を縦軸に沿ってブロソ1・シた点を結ん
だものであり、図中、一ローはGK./Dex共有結合
物を含む試料を4℃で保存した場合に得られた結果を、
一一−は末処理G Kを含む試判を4℃で保存した場合
に得られた結果を、一〇一はG K / Dcx共有結
合物を含む試判を30゜Cで保存した場合に得られた結
果を、また、一●−は末処裡GKを含む試料を30″C
で保存した場合に得られた結果を夫々示す。
(Results) The obtained storage stability curve is shown in FIG. In addition, the storage stability curve is calculated by G
The residual activity rate of K is connected along the vertical axis with 1 point, and in the figure, 1 row is GK. The results obtained when a sample containing a /Dex covalent bond was stored at 4°C were
11- shows the results obtained when the sample containing the untreated GK was stored at 4℃, and 101 shows the result obtained when the sample containing the GK/Dcx covalent bond was stored at 30℃. The obtained results are also summarized as follows.
The results obtained when the files were stored are shown below.

第5図の結果から明らかな如く、4℃或は30″Cで保
存した場合でも、本発明の安定化G Kは、末処裡のG
Kに比べて著しく安定であることが判る,実験例8+p
I−{安定性試験−1− (試料) セルロモナス属出来の未処理G K及び実施例1で得た
G K / I”) ex共有結合物を各々211/m
lとなるように所定puの緩衝液に溶解し試判とした。
As is clear from the results in Figure 5, even when stored at 4°C or 30''C, the stabilized G
Experimental example 8+p is found to be significantly more stable than K.
I-{Stability test-1- (Sample) Untreated GK of Cellulomonas sp. and GK/I'') ex covalent bond obtained in Example 1 were each tested at 211/m
It was dissolved in a buffer solution of a predetermined pu to give a test sample.

尚、pl14.0−6.0では5(lmMffI酸−作
゛酸ナ1〜リウム緩衝液を用い、pl16.0〜9.0
では5 0 m Mリン酸緩衝液を用い、pl+9.0
−].1..0では50mM炭酸カリウムー炭酸水素ナ
トリウム緩衝液を用いた。
In addition, at pl14.0-6.0, 5 (lmMffI acid-forming sodium 1-lium buffer solution was used, and at pl16.0-9.0
Then, using 50mM phosphate buffer, pl+9.0
-]. 1. .. 0, a 50 mM potassium carbonate-sodium bicarbonate buffer was used.

(操作法) 各試料を、30℃で20時間放置した後のGKの残存活
性率を求めた。
(Procedure) After each sample was left at 30° C. for 20 hours, the residual activity rate of GK was determined.

尚、GKの活性測定は、実験例1と同様に行った。また
、GKの残存活性率は以下の式により求めた。
The GK activity was measured in the same manner as in Experimental Example 1. In addition, the residual activity rate of GK was determined by the following formula.

残存活性率= (Cし÷Co) X].OOco=試料
調製直後のG K活性値(IJ/ml−)。
Residual activity rate = (C/Co) X]. OOco = G K activity value (IJ/ml-) immediately after sample preparation.

CL:所定のpH溶液中で30゜C、20時間放置後の
G K活性値(IJ/m:L)。
CL: G K activity value (IJ/m:L) after standing at 30°C for 20 hours in a predetermined pH solution.

(結果) 得られたp I{安定性曲線を第61’J−(].)に
示す。
(Results) The obtained pI{stability curve is shown in No. 61'J-(].).

尚、pH安定性曲線は、横軸の各p Hに対して得られ
た残存活性率を縦軸に治−〕でプロットした点を結んだ
ものであり、図中、一●−はG K / Dcx共有結
合物を含む試料により得られた結果を、一〇は未処理G
Kを含む試別により得られた結果な夫々示す。
In addition, the pH stability curve is a result of connecting the points obtained by plotting the residual activity rate obtained for each pH on the horizontal axis with the change in the vertical axis. In the figure, 1●- indicates G K / The results obtained with the sample containing the Dcx covalent conjugate, 10 is the untreated G
The results obtained from the assay containing K are shown below.

実験例9.pH安定性試験−2 (試料) エシエリシアコリ属由来の未処理GK及び実施例2で得
たGK/Dex共有結合物を各々2 U/mlとなるよ
うに所定poの緩衝液に溶解し試料とした。
Experimental example 9. pH Stability Test-2 (Sample) Untreated GK derived from the genus E. coli and the GK/Dex covalent bond obtained in Example 2 were each dissolved in a predetermined po buffer solution to a concentration of 2 U/ml and used as a sample. .

尚、PH4.0−6.0では50mM酢酸一酢酸ナ1・
リウム緩衝液を用い、p H 8 . 0〜9.0では
50mMリン酸緩衝液を用い、p H 9 . 0〜1
1.0では50mM炭酸カリウムー炭酸水素ナトリウム
緩衝液を用いた。
In addition, at pH 4.0-6.0, 50mM sodium acetate monoacetate
pH 8. 0 to 9.0 using 50 mM phosphate buffer and pH 9.0 to 9.0. 0-1
1.0, a 50 mM potassium carbonate-sodium bicarbonate buffer was used.

(操作法) 実験例8と同じ。(Operation method) Same as Experimental Example 8.

(結果) 得られたpH安定性曲線を第65D−(2)に示す。(result) The obtained pH stability curve is shown in No. 65D-(2).

尚、pH安定性曲線は、横軸の各pHに対して得られた
残存活性率を縦軸に沿ってプロントした点を結んだもの
であり、図中、一●−はG K / Dex共有結合物
を含む試料により得られた結果を、一〇一は末処理GK
を含む試料により得られた結果を夫々示す。
In addition, the pH stability curve connects the points obtained by plotting the residual activity rate obtained for each pH on the horizontal axis along the vertical axis. The results obtained with the sample containing the conjugate are
The results obtained with samples containing .

31 実験例10.p.H安定性試験−3 (試料) ストレプト主セス属由来の未処理GK及び実施例3で得
たG K / D ax共有結合物を各々2 U/ml
となるように所定pHの緩衝液に溶解し試料とした。
31 Experimental example 10. p. H Stability Test-3 (Sample) 2 U/ml each of untreated GK derived from Streptococcus genus and the G K / D ax covalent compound obtained in Example 3.
It was dissolved in a buffer solution of a predetermined pH so as to be used as a sample.

尚、pH4.0〜6.0では50mM酢酸一酢酸ナトリ
ウム緩衝液を用い、pH6.0〜9.0では50mMリ
ン酸緩衝液を用い、pH9.0 〜1.1.0では50
mM炭酸カリウムー炭酸水素ナトリウム緩衝液を用いた
In addition, for pH 4.0 to 6.0, use 50 mM sodium acetate monoacetate buffer, for pH 6.0 to 9.0, use 50 mM phosphate buffer, and for pH 9.0 to 1.1.0, use 50 mM sodium acetate buffer.
An mM potassium carbonate-sodium bicarbonate buffer was used.

(操作法) 実験例8と同じ。(Operation method) Same as Experimental Example 8.

(結果) 得られたpH安定性曲線を第6図一(3)に示す。(result) The obtained pH stability curve is shown in FIG. 6 (3).

尚、pH安定性曲線は、横軸の各poに対して得られた
残存活性率を縦軸に沿ってプロットした点を結んだもの
であり、図中、一●一はG K / Dex共有結合物
を含む試料により得られた結果を、一〇一は未処理GK
を含む試料により得られた結果を夫々示す。
In addition, the pH stability curve connects the points obtained by plotting the residual activity rate obtained for each po on the horizontal axis along the vertical axis, and in the figure, 1●1 indicates G K / Dex sharing. 101 is the untreated GK
The results obtained with samples containing .

実験例1]..PH安定性試験−4 3 2 (試料→ アース口バクター属由来の未処理GK及び実施例4で得
たG K / D ex共有結合物を各々2 U/ml
となるように所定pHの緩衝液に溶解し試料とした。
Experimental example 1]. .. PH Stability Test-4 3 2 (Sample → Untreated GK derived from Earthmouth Bacterium and GK/Dex covalent bond obtained in Example 4 at 2 U/ml each
It was dissolved in a buffer solution of a predetermined pH so as to be used as a sample.

尚、pH4.0−6.0では50mM酢酸一酢酸ナトリ
ウム緩衝液を用い、pH6.0〜9.0では50mMリ
ン酸緩衝液を用い、p H 9 . 0〜11.0では
50mN炭酸カリウムー炭酸水素ナトリウム緩衝液を用
いた。
In addition, at pH 4.0-6.0, 50 mM sodium acetate monoacetate buffer was used, at pH 6.0-9.0, 50 mM phosphate buffer was used, and at pH 9. 0 to 11.0, a 50 mN potassium carbonate-sodium hydrogen carbonate buffer was used.

(操作法) 実験例8と同じ。(Operation method) Same as Experimental Example 8.

(結果) 得られたpH安定性曲線を第6図一(4)に示す。(result) The obtained pH stability curve is shown in FIG. 6 (4).

尚、pH安定性曲線は、横軸の各pHに対して得られた
残存活性率を縦軸に沿ってプロットした点を結んだもの
であり、図中、一●−はG K / Dex共有結合物
を含む試料により得られた結果を、一〇は未処理GKを
含む試料により得られた結果を夫々示す。
In addition, the pH stability curve connects the points obtained by plotting the residual activity rate obtained for each pH on the horizontal axis along the vertical axis, and in the figure, 1 - indicates G K / Dex sharing 10 indicates the results obtained with the sample containing the conjugate, and 10 indicates the result obtained with the sample containing untreated GK.

第6図一(1)〜(4)から明らかな如く、未処理のG
Kに比較して、G K / D e x共有結合物のp
H安定領域は明らかに広く、安定化されていることが判
る。
As is clear from Figure 6 1 (1) to (4), the untreated G
p of the G K / De x covalent conjugate compared to K
It can be seen that the H stability region is clearly wide and stabilized.

実験例].2.Km値の測定 (試料) セルロモナス属由来の未処理GK及び実施例工で得たG
 K / D ex共有結合物を試料とした。
Experimental example]. 2. Measurement of Km value (sample) Untreated GK derived from Cellulomonas genus and G obtained from the example plant
A K/D ex covalent bond was used as a sample.

(操作法) メソッド オブ エンザイマテインク アナリシス(M
ethod of Enzymatic Analys
is) r Vol.II +216〜217頁に記載
のGK活性測定用試薬を用い、常法によりKm値を求め
た(反応温度25℃)。
(Operation method) Method of enzyme analysis (M
method of enzymatic analysis
is) r Vol. Using the reagent for measuring GK activity described in II +216-217, the Km value was determined by a conventional method (reaction temperature: 25°C).

(結果) 得られた結果を表3に示す。(result) The results obtained are shown in Table 3.

以下余白 表3 表3の結果から明らかな如く、本発明の方法により安定
化されたGKのKm値は、未処理のそれとほぼ同等であ
ることが判る。
Table 3 (margin below) As is clear from the results in Table 3, the Km value of the GK stabilized by the method of the present invention is almost the same as that of the untreated GK.

実験例13.至適pHの検討 (試料) セルロモナス属由来の未処理GK及び実施例1で得たG
 K / I) cx共右結合物を試料とした。
Experimental example 13. Study of optimal pH (sample) Untreated GK derived from Cellulomonas and G obtained in Example 1
K/I) cx co-right bound product was used as a sample.

(操作法) メソッド オブ エンザイマティック アナリシス(M
et)iod of Enzymat.ic Anal
ysis) , Vol.rl ,216〜217頁に
記載のGK活性測定用試薬を用い、3 5 常法により奄適p T−{曲線を求めた(反応温度25
”C)(結果) 得られた至適p I−I曲線を第71′%Jに示す。尚
、至適p H曲線は、横軸の各pl+に刻して得られた
相苅活性率を縦軸に沿ってブロン1・シた点を結んだも
のであり、図中、一〇一はGK / Dex共有結合物
を含む試料により得られた結果を、−●一は未処理GK
を含む試料により得られた結果を夫々示す。
(Operation method) Method of Enzymatic Analysis (M
et) iod of Enzymat. ic anal
ysis), Vol. Using the reagent for measuring GK activity described in J.R.L., pages 216-217, a 35 pT-{curve was determined by a conventional method (reaction temperature 25
``C) (Results) The obtained optimal p II-I curve is shown in the 71'% J.The optimal pH curve is calculated by dividing the phase activation rate obtained by cutting at each pl+ on the horizontal axis. In the figure, 101 indicates the results obtained with the sample containing the GK/Dex covalent bond, and -●1 indicates the results obtained with the untreated GK.
The results obtained with samples containing .

また、相対活性率は、各P Hで得られたG K活作値
のうち最大のものを100%とした時の、各PI−Iで
得られたGK活性値の換算イIαである。
In addition, the relative activity rate is the converted Iα of the GK activity value obtained for each PI-I, when the maximum of the GK activity values obtained for each PH is taken as 100%.

第7図の結果から明らかな如く、本発明の方法により安
定化されたGKの至適PI{は、未処理のそれとほぼ同
じであることが判る。
As is clear from the results in FIG. 7, the optimal PI of the GK stabilized by the method of the present invention is almost the same as that of the untreated GK.

[発明の効果] 以上述べた如く、本発明は、水溶液中でGKの活性を長
時間紐:持せしめることのできるGKの安定化方法、及
び安定化されたG K、flf2びに該安定化されたG
Kを用いたグリセリン又は/及ひグリ3 6 セリン誘導体の定量方法を提供するものであり、斯業に
貢献するところ大なる発明である。
[Effects of the Invention] As described above, the present invention provides a method for stabilizing GK that can maintain the activity of GK in an aqueous solution for a long time, and stabilized GK, flf2, and the stabilized GK. G
This invention provides a method for quantifying glycerin and/or glycerin-36 serine derivatives using K, and is a great invention that contributes to this industry.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実験例]で得られた熱安定性曲線を示す。 第2図は、実験例2〜4で得られた熱安定性曲線を示す
。 第3図は、実験例5で得られた熱安定性曲線を示す。 第4図は、実験例6で得られた熱安定性曲線を示す。 第5図は、実験例7で得られた保存安定性曲線を示す。 第6図は、実験例8〜11で得られたpH安定性曲線を
示す。 第7図は、実験例]3で得られた至適pH曲線を示す。
FIG. 1 shows the thermal stability curve obtained in Experimental Example]. FIG. 2 shows the thermal stability curves obtained in Experimental Examples 2-4. FIG. 3 shows the thermal stability curve obtained in Experimental Example 5. FIG. 4 shows the thermal stability curve obtained in Experimental Example 6. FIG. 5 shows the storage stability curve obtained in Experimental Example 7. FIG. 6 shows the pH stability curves obtained in Experimental Examples 8-11. FIG. 7 shows the optimum pH curve obtained in Experimental Example 3.

Claims (3)

【特許請求の範囲】[Claims] (1)グリセロールキナーゼを水溶性多糖類に共有結合
させることを特徴とするグリセロールキナーゼの安定化
方法。
(1) A method for stabilizing glycerol kinase, which comprises covalently bonding glycerol kinase to a water-soluble polysaccharide.
(2)水溶性多糖類に共有結合させたグリセロールキナ
ーゼ。
(2) Glycerol kinase covalently bound to a water-soluble polysaccharide.
(3)グリセロールキナーゼの酵素活性を利用してグリ
セリン又は/及びグリセリン誘導体を定量する方法に於
いて、グリセロールキナーゼとして水溶性多糖類に共有
結合させたグリセロールキナーゼを用いることを特徴と
するグリセリン又は/及びグリセリン誘導体の定量方法
(3) A method for quantifying glycerin or/and a glycerin derivative using the enzymatic activity of glycerol kinase, characterized in that glycerol kinase covalently bonded to a water-soluble polysaccharide is used as the glycerol kinase. and a method for quantifying glycerin derivatives.
JP19487389A 1989-07-27 1989-07-27 Stabilization of enzyme Pending JPH0358783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19487389A JPH0358783A (en) 1989-07-27 1989-07-27 Stabilization of enzyme

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19487389A JPH0358783A (en) 1989-07-27 1989-07-27 Stabilization of enzyme

Publications (1)

Publication Number Publication Date
JPH0358783A true JPH0358783A (en) 1991-03-13

Family

ID=16331729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19487389A Pending JPH0358783A (en) 1989-07-27 1989-07-27 Stabilization of enzyme

Country Status (1)

Country Link
JP (1) JPH0358783A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5834273A (en) * 1991-03-28 1998-11-10 Wako Pure Chemical Industries, Ltd. Heat-stable and water soluble modified enzymes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5834273A (en) * 1991-03-28 1998-11-10 Wako Pure Chemical Industries, Ltd. Heat-stable and water soluble modified enzymes

Similar Documents

Publication Publication Date Title
Nilsson et al. p‐Toluenesulfonyl chloride as an activating agent of agarose for the preparation of immobilized affinity ligands and proteins
Thorner et al. Catalytic and allosteric properties of glycerol kinase from Escherichia coli
Griebel et al. Metabolism of poly-β-hydroxybutyrate: effect of mild alkaline extraction on native poly-β-hydroxybutyrate granules
Larsson et al. Preparation of a NAD (H)‐polymer matrix showing coenzymic function of the bound pyridine nucleotide
Wolfenden et al. Influence of substituent ribose on transition state affinity in reactions catalyzed by adenosine deaminase
Sinev et al. Correlation between enzyme activity and hinge‐bending domain displacement in 3‐phosphoglycerate kinase
JPS61249389A (en) Stabilized salcocine oxidase composition
Hiromi et al. Fluorometric studies on the binding of gluconolactone, glucose, and glucosides to the subsites of glucoamylase
Lewis et al. Rabbit liver guanine deaminase: chemical, physical, and kinetic properties
York et al. A KINETIC STUDY OF THE DEAMINATION OF SOME ADENOSINE ANALOGUES: SUBSTRATE SPECIFICITY OF ADENOSINE DEAMINASE
De Gussem et al. Purification and properties of an induced β-d-glucosidase from Stachybotrys atra
JP3125428B2 (en) Modification enzyme
Fernández et al. Chemical conjugation of trypsin with monoamine derivatives of cyclodextrins: Catalytic and stability properties
Shimizu et al. Purification and properties of pantothenate kinase from Brevibacterium ammoniagenes IFO 12071
JPH0358783A (en) Stabilization of enzyme
Chow et al. 4-Methylumbelliferyl 2-acetamido-2-deoxy-α-d-glucopyranoside, a fluorogenic substrate for N-acetyl-α-D-glucos-aminidase
Ray et al. [47] CTP: CMP-3-deoxy-d-manno-octulosonate cytidylyltransferase (CMP-KDO synthetase)
Salsas et al. Kinetic studies on muscle glycogen synthase.
Waheed et al. Covalent modification as the cause of the anomalous kinetics of aryl sulfatase A
Vogt et al. Binding of iron to the 5th component of human complement directs oxygen radical-mediated conversion to specific sites and causes nonenzymic activation
Wilk et al. Dissociation of native octameric brain glutamine synthetase to a tetramer by treatment with N-acetylimidazole
CN114426958B (en) Glycosyltransferase-bimetallic organic framework composite catalytic material, preparation method thereof and application thereof in disaccharide and polysaccharide synthesis
Chung Nicotinamide adenine dinucleotide kinase from Azotobacter vinelandii cells. Reversible inactivation of the enzyme
JP2628310B2 (en) Enzyme stabilization method
JPH01117786A (en) Stabilized enzymatic agent