JP2628310B2 - Enzyme stabilization method - Google Patents

Enzyme stabilization method

Info

Publication number
JP2628310B2
JP2628310B2 JP62216738A JP21673887A JP2628310B2 JP 2628310 B2 JP2628310 B2 JP 2628310B2 JP 62216738 A JP62216738 A JP 62216738A JP 21673887 A JP21673887 A JP 21673887A JP 2628310 B2 JP2628310 B2 JP 2628310B2
Authority
JP
Japan
Prior art keywords
solution
enzyme
dex
reaction
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62216738A
Other languages
Japanese (ja)
Other versions
JPS6460380A (en
Inventor
脩治 松浦
脩臣 津田
良明 河岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Wako Pure Chemical Corp
Original Assignee
Wako Pure Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wako Pure Chemical Industries Ltd filed Critical Wako Pure Chemical Industries Ltd
Priority to JP62216738A priority Critical patent/JP2628310B2/en
Publication of JPS6460380A publication Critical patent/JPS6460380A/en
Application granted granted Critical
Publication of JP2628310B2 publication Critical patent/JP2628310B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)

Description

【発明の詳細な説明】 [発明の利用分野] 本発明は、α−グルコシダーゼが水溶液状態で長期間
安定に酵素活性を維持できる、安定化方法に関する。
Description: FIELD OF THE INVENTION The present invention relates to a stabilization method in which α-glucosidase can maintain enzyme activity stably in an aqueous solution state for a long period of time.

[発明の背景] α−グルコシダーゼ(以下、AGと略称する。)は糖鎖
の非還元末端α1,4グルコシド結合を加水分解し、α−
グルコースを生成する反応を触媒する酵素である。この
触媒反応を利用して臨床化学,生化学,食品化学,食品
工業等の分野で広く使用されている。その使用例の一つ
として、例えば、生体試料中のα−アミラーゼ活性を測
定する際の共役酵素としての使用が挙げられるが、この
酵素の水溶液中での安定性は低く、調製した酵素溶液の
使用可能な期間が短い為、効率よく使用するには、必要
量を用時調製する必要がある等使用上の制約があった。
BACKGROUND OF THE INVENTION α-Glucosidase (hereinafter abbreviated as AG) hydrolyzes the α1,4 glucosidic bond at the non-reducing terminal of a sugar chain to form α-glucosidase.
It is an enzyme that catalyzes the reaction that produces glucose. Utilizing this catalytic reaction, it is widely used in fields such as clinical chemistry, biochemistry, food chemistry, and the food industry. One example of its use is, for example, the use of a conjugated enzyme when measuring α-amylase activity in a biological sample.However, the stability of this enzyme in an aqueous solution is low, and Since the usable period is short, there is a limitation in use such that it is necessary to prepare a necessary amount at the time of use for efficient use.

その為、水溶液中でのAGの安定化をはかるため、グル
タチオン,グリセロース,グルタミン酸ソーダ,アルブ
ミン等を添加する方法がこれまでに試みられているが、
十分な安定化効果が得られているとは言い難く、更なる
改良が望まれていた。
Therefore, in order to stabilize AG in an aqueous solution, a method of adding glutathione, glycerose, sodium glutamate, albumin, and the like has been attempted so far.
It is hard to say that a sufficient stabilizing effect has been obtained, and further improvement has been desired.

一方、一般に酵素を安定化する方法としては、例えば
酵素溶液中にシュクロース,マルトース等の糖類、アル
ブミン,スキムミルク等の蛋白質、Ca2+塩,Mg2+塩等の
塩類、2−メルカプトエタノール等の還元剤等を添加す
る方法、酵素を適当な担体へ固定化する方法、遺伝子工
学の手法により酵素のアミノ酸配列を改変する方法等が
知られているが、特定の酵素について上記のうちのどの
方法がよいというような一般的な法則がある訳ではな
く、個々の酵素について試行錯誤的に安定化方法を選択
しているのが現状である。
On the other hand, generally, methods for stabilizing an enzyme include, for example, sugars such as sucrose and maltose, proteins such as albumin and skim milk, salts such as Ca 2+ salt and Mg 2+ salt, 2-mercaptoethanol and the like in an enzyme solution. A method of adding a reducing agent, etc., a method of immobilizing an enzyme on a suitable carrier, a method of modifying the amino acid sequence of the enzyme by genetic engineering techniques, and the like are known. There is no general rule that the method is good, and at present the stabilization method is selected by trial and error for each enzyme.

これら安定化方法のうち、担体への固定化による方法
は、最近よく用いられている方法であり、比較的安定化
効果の高い方法として知られている。しかしながら、こ
の方法にしても、酵素の活性中心、或は基質結合部位等
の酵素活性発現に係わるアミノ酸残基が修飾されると酵
素活性が発現しなくなる等の問題点があるので、仮令最
適な条件を選択すべく、結合方法や結合剤、架橋剤等に
ついて種々検討を行ったとしても、必ずしも、どの酵素
にも適用できるというものではなく、その点では他の方
法と全く同じである。
Among these stabilization methods, the method based on immobilization to a carrier is a method frequently used recently, and is known as a method having a relatively high stabilizing effect. However, even in this method, there is a problem that the enzyme activity is not expressed when an amino acid residue related to the expression of the enzyme activity such as the active center of the enzyme or the substrate binding site is modified. Even if various studies are conducted on the binding method, binder, cross-linking agent, etc. in order to select the conditions, it is not necessarily applicable to any enzyme, and in that respect it is exactly the same as the other methods.

[発明の目的] 本発明は、かかる状況に鑑みなされたもので、水溶液
中でAGの活性を長時間維持せしめることのできるAGの安
定化方法を提供することを目的とする。
[Object of the Invention] The present invention has been made in view of such circumstances, and an object of the present invention is to provide a method for stabilizing AG that can maintain the activity of AG in an aqueous solution for a long time.

[発明の構成] 本発明の目的を達成する為に、本発明は次の構成より
なる。
[Configuration of the Invention] In order to achieve the object of the present invention, the present invention has the following configuration.

「α−グルコシダーゼを水溶性多糖類(但し、コンドロ
イチンを除く。)に共有結合させることを特徴とする水
溶液中に於けるα−グルコシダーゼの水溶液状態での安
定化方法。」 即ち、本発明者らは、水溶液中に於いてAGの活性を長
期間維持できる方法を開発すべく鋭意研究の結果、AGを
水溶性多糖類に共有結合させることにより、水溶性を維
持したまま長期間安定化できることを見出し本発明を完
成するに至った。
"A method for stabilizing α-glucosidase in an aqueous solution, wherein α-glucosidase is covalently bonded to a water-soluble polysaccharide (excluding chondroitin)." Has intensively studied to develop a method that can maintain the activity of AG in aqueous solution for a long period of time.As a result, by covalently bonding AG to a water-soluble polysaccharide, it was confirmed that AG could be stabilized for a long time while maintaining water solubility. The present invention has been completed.

本発明に用いられる水溶性多糖類としては、過ヨウ素
酸塩、メタ過ヨウ素酸塩等の酸化剤により酸化されて、
酵素分子中のアミノ基と反応しうるアルデヒド基を生じ
るもので、その分子量が5,000〜500,000のものであれば
よく、特に限定されるものではないが、例えばデキスト
ラン,デキストラン硫酸,プルラン,可溶性デンプン等
の分子量が5,000〜500,000のものが好ましく挙げられ
る。
As the water-soluble polysaccharide used in the present invention, periodate, oxidized by an oxidizing agent such as metaperiodate,
It generates an aldehyde group capable of reacting with an amino group in an enzyme molecule and has a molecular weight of 5,000 to 500,000, and is not particularly limited. Examples thereof include dextran, dextran sulfate, pullulan, and soluble starch. Preferably have a molecular weight of 5,000 to 500,000.

本発明に用いられるAGとしては、その由来は特に限定
されないが、酵母由来のものが好ましく用いられる。
The origin of the AG used in the present invention is not particularly limited, but those derived from yeast are preferably used.

本発明に係わるAGと水溶性多糖類との共有結合物の製
造方法としては、まず水溶性多糖類1重量部に対して0.
05〜1重量部に酸化剤を加えて、暗所にて5℃〜室温
で、1〜24時間、撹拌下に反応を行い、水溶性多糖類を
酸化する。次に過剰の酸化剤を、用いた酸化剤1重量部
に対して通常1〜2重量部の還元剤で分解し、さらに反
応液を水又は適当な緩衝液で透析して、水溶性多糖類の
アルデヒド体(以下、PS−Aと略称する。)を得る。
As a method for producing a covalent bond of AG and a water-soluble polysaccharide according to the present invention, first, 0.1 part by weight of the water-soluble polysaccharide is used.
An oxidizing agent is added to 05 to 1 part by weight, and the reaction is carried out in a dark place at 5 ° C. to room temperature for 1 to 24 hours with stirring to oxidize the water-soluble polysaccharide. Next, the excess oxidizing agent is decomposed with 1 to 2 parts by weight of a reducing agent to 1 part by weight of the oxidizing agent used, and the reaction solution is dialyzed against water or a suitable buffer to obtain a water-soluble polysaccharide. (Hereinafter, abbreviated as PS-A).

このPS−AとAGとをpH6〜8の緩衝液中、重量比1〜3
0:1で反応させ、更にこれに還元剤(例えば、ピリジン
ボラン,シアノ水素化ホウ素ナトリウム等)を、PS−A
1重量部に対して0.1〜1重量部加えて、0〜40℃
で、6〜24時間、撹拌反応させる。AGは通常凍結乾燥品
が用いられるが、凍結乾燥粉末中に賦形剤として適当な
蛋白質を含有させておくと反応終了後の酵素活性の失活
が少なくより好ましい。
This PS-A and AG are mixed in a buffer of pH 6 to 8 by weight ratio of 1 to 3
0: 1, and further added with a reducing agent (eg, pyridine borane, sodium cyanoborohydride, etc.) and PS-A
0.1 to 1 part by weight per 1 part by weight, 0 to 40 ° C
For 6 to 24 hours. A freeze-dried product is usually used as AG, but it is more preferable to contain an appropriate protein as an excipient in a freeze-dried powder, since the inactivation of the enzyme activity after the reaction is completed is small.

この反応液を水又は適当な緩衝液に対して透析するこ
とにより目的とするAGと水溶性多糖類との共有結合物、
即ち、AGとPS−Aとの共有結合物(AG/PS−A共有結合
物)が得られる。かくして得られたAG/PS−A共有結合
物は安定化されたAGとして充分使用可能であるが、AGの
安定性をより向上させるには、残存するアルデヒド基を
不活化することが望ましい。即ち、上記還元後の反応液
に、先に用いたものと異なる適当な還元剤をPS−A 1
重量部に対して0.1〜0.5重量部加えて、0〜40℃で2〜
20時間、更に還元反応させるか、或は、同反応液に、更
にアミノ基を有する化合物を0.1〜0.5M/l濃度となるよ
うに添加し、先に用いたものと同様の還元剤をPS−A
1重量部に対して0.1〜1重量部加えて、再度0〜40℃
で2〜20時間、撹拌下に反応させることが望ましく、そ
の後に、水又は適当な緩衝液に対して透析することによ
り、より安定なAG/PS−A共有結合物を得ることができ
る。
This reaction solution is dialyzed against water or an appropriate buffer to form a covalent bond between the desired AG and the water-soluble polysaccharide,
That is, a covalent bond between AG and PS-A (AG / PS-A covalent bond) is obtained. The thus obtained AG / PS-A covalent bond can be sufficiently used as a stabilized AG, but it is desirable to inactivate the remaining aldehyde group in order to further improve the stability of AG. That is, a suitable reducing agent different from the previously used one is added to the reaction solution after the reduction by PS-A1.
0.1 to 0.5 parts by weight with respect to parts by weight,
For 20 hours, a reduction reaction is further performed, or a compound having an amino group is further added to the reaction solution to a concentration of 0.1 to 0.5 M / l, and a reducing agent similar to the previously used reducing agent is added to PS. -A
Add 0.1 to 1 part by weight to 1 part by weight, and again 0 to 40 ° C
For 2 to 20 hours under agitation, followed by dialysis against water or an appropriate buffer to obtain a more stable AG / PS-A covalent conjugate.

PS−Aを製造する際に用いられる酸化剤としては、例
えばオルト過ヨウ素酸,二メソ過ヨウ素酸,メソ過ヨウ
素酸,二オルト過ヨウ素酸,メタ過ヨウ素酸等のアルカ
リ金属塩等が好ましく挙げられ、過剰の酸化剤を処理す
るのに用いられる還元剤としては、例えば亜硫酸水素ナ
トリウム,チオ硫酸ナトリウム,ハイドロサルファイト
等が好ましく挙げられる。
As the oxidizing agent used in producing PS-A, for example, alkali metal salts such as orthoperiodic acid, dimesioperiodic acid, mesoperiodic acid, diorthoperiodic acid, and metaperiodic acid are preferable. Preferred examples of the reducing agent used for treating the excess oxidizing agent include sodium bisulfite, sodium thiosulfate, and hydrosulfite.

PS−AとAGとを反応させる際、或は各反応終了時に反
応液を透析する際に用いられる緩衝液の緩衝剤として
は、AGを失活させないもので還元剤と反応しないもので
あれば特に問題なく用いることができるが、例えばリン
酸塩,グッドの緩衝剤等が好ましく挙げられる。
When the PS-A and AG are reacted, or when the reaction solution is dialyzed at the end of each reaction, the buffer of the buffer used is one that does not deactivate AG and does not react with the reducing agent. Although it can be used without any particular problem, for example, phosphates, Good's buffer and the like are preferable.

また、PS−AとAGとを反応させる際に用いられる還元
剤としては、例えばピリジンボラン,シアノ水素化ホウ
素ナトリウム等が好ましく挙げられる。
Preferable examples of the reducing agent used for reacting PS-A with AG include pyridine borane, sodium cyanoborohydride and the like.

PS−AとAGとを反応させる際に、AGの凍結乾燥粉末中
に含有させるべき好ましい賦形剤としては、アルブミ
ン,グロブリン,カゼイン,ゼラチン等の蛋白質が挙げ
られ、その凍結乾燥粉末中の含量は特に限定されない
が、好ましくは10〜90%、より好ましくは30〜50%が望
ましい。
When PS-A is reacted with AG, preferable excipients to be contained in the lyophilized powder of AG include proteins such as albumin, globulin, casein, and gelatin. Is not particularly limited, but is preferably 10 to 90%, more preferably 30 to 50%.

AGとPS−Aとを共有結合させた後に残存するアルデヒ
ド基を不活化する為に用いる還元剤としては、例えば水
素化ホウ素ナトリウム,ジメチルアミンボラン等が好ま
しく挙げられる。
Preferred examples of the reducing agent used to inactivate the aldehyde group remaining after the covalent bond between AG and PS-A include, for example, sodium borohydride, dimethylamine borane and the like.

また、AGとPS−Aとを共有結合させた後に残存するア
ルデヒド基を不活化する為に用いるアミノ基を有する化
合物としては、特に限定されないが、例えばグリシン,
エタノールアミン,グリシンエチルエステル等が好まし
く挙げられ、このときに添加する還元剤としては、例え
ばピリジンボラン,シアノ水素化ホウ素ナトリウム等が
好ましく挙げられる。
Further, the compound having an amino group used to inactivate the aldehyde group remaining after the covalent bond between AG and PS-A is not particularly limited. For example, glycine,
Preferable examples include ethanolamine and glycine ethyl ester. As the reducing agent added at this time, for example, pyridine borane, sodium cyanoborohydride, and the like are preferable.

このようにして得られた、AG/PS−A共有結合物は、
安定性に優れているため水溶液の状態で長期間の保存が
可能であるが、これを凍結乾燥して粉末として保存して
おくことも当然可能である。
The AG / PS-A covalent conjugate thus obtained is
Because of its excellent stability, it can be stored for a long time in the state of an aqueous solution, but it is naturally also possible to freeze-dry and store it as a powder.

本発明に係わるAG/PS−A共有結合物は、水溶液の状
態で長期間安定であるので、臨床化学,生化学,食品化
学,食品工業等の分野で広く使用が可能であり、特に臨
床化学の分野でα−アミラーゼ測定用試液中に添加され
る共役酵素として使用すれば、その測定用試液は長期間
安定となって、従来品に比べて著しく有利となる。
Since the AG / PS-A covalent conjugate according to the present invention is stable for a long time in the state of an aqueous solution, it can be widely used in the fields of clinical chemistry, biochemistry, food chemistry, food industry and the like. When used as a conjugated enzyme added to an α-amylase measurement test solution in the field of, the measurement test solution becomes stable for a long period of time, which is extremely advantageous as compared with the conventional product.

以下に実施例により、本発明を更に詳細に述べるが、
本発明はこれらにより何ら限定されるものではない。
Hereinafter, the present invention will be described in more detail by way of Examples.
The present invention is not limited by these.

[実施例] 実施例1. デキストラン(分子量;100,000〜200,000、以下Dexと
略称する。)25gを蒸留水250mlに溶解させ過ヨウ素酸ナ
トリウム11gを撹拌下に添加溶解し、暗所にて4℃,15時
間反応させた。反応終了後、過剰の過ヨウ素酸ナトリウ
ムを40W/V%亜硫酸水素ナトリウム水溶液約40mlを加え
て分解し、この反応液を室温で、水に対して透析した。
得られたDexのアルデヒド誘導体溶液に、AG(酵母由
来、アルブミン30%含有、100U/mg)5gを溶解した0.1M
リン酸緩衝液(pH7.0)200ml、更にピリジンボラン10g
を添加し、20℃で24時間、撹拌下に反応させた。その
後、この反応液に1Mグリシン水溶液250mlとピリジンボ
ラン10gを加え、37℃で5時間撹拌下に反応させた。反
応終了後、反応液を水に対して透析し、次いで凍結乾燥
して、AG/Dex共有結合物(AGとDexとの共有結合物)の
凍結乾燥粉末31.2g(約8U/mg)が得られた(酵素活性回
収率:50%)。
[Examples] Example 1. 25 g of dextran (molecular weight; 100,000 to 200,000, hereinafter abbreviated as Dex) is dissolved in 250 ml of distilled water, 11 g of sodium periodate is added and dissolved with stirring, and the mixture is dissolved in a dark place at 4 ° C. For 15 hours. After completion of the reaction, excess sodium periodate was decomposed by adding about 40 ml of a 40 W / V% aqueous sodium bisulfite solution, and the reaction solution was dialyzed against water at room temperature.
0.1 g of 5 g of AG (derived from yeast, containing 30% albumin, 100 U / mg) dissolved in the obtained aldehyde derivative solution of Dex
Phosphate buffer (pH7.0) 200ml, pyridineborane 10g
Was added and reacted at 20 ° C. for 24 hours with stirring. Thereafter, 250 ml of a 1 M glycine aqueous solution and 10 g of pyridineborane were added to the reaction solution, and the mixture was reacted at 37 ° C. for 5 hours with stirring. After completion of the reaction, the reaction solution was dialyzed against water and then freeze-dried to obtain 31.2 g (about 8 U / mg) of a freeze-dried powder of an AG / Dex covalent bond (a covalent bond of AG and Dex). (Enzyme activity recovery rate: 50%).

実施例2. 実施例1と同様の方法で得られたDexのアルデヒド誘
導体溶液に、AG(酵母由来、アルブミンは含有せず、70
U/mg)7gを溶解した0.1Mリン酸緩衝液(pH7.0)250mlを
加え、これにシアノ水素化ホウ素ナトリウム8gを添加し
て、37℃で20時間、撹拌下に反応させた。次いで、この
反応液に水素化ホウ素ナトリウム2gを加え、更に30℃で
3時間、撹拌反応させた。反応終了後、反応液を水に対
して透析し、AG/Dex共有結合物の水溶液が得られた(酵
素活性回収率:35%)。
Example 2 AG (derived from yeast, containing no albumin, containing 70%) was added to the aldehyde derivative solution of Dex obtained in the same manner as in Example 1.
U / mg) was dissolved in 0.1 ml of a phosphate buffer (pH 7.0) (250 ml), and sodium cyanoborohydride (8 g) was added thereto. The mixture was reacted at 37 ° C for 20 hours with stirring. Next, 2 g of sodium borohydride was added to the reaction solution, and the mixture was further stirred and reacted at 30 ° C. for 3 hours. After completion of the reaction, the reaction solution was dialyzed against water to obtain an aqueous solution of an AG / Dex covalently bonded product (enzyme activity recovery rate: 35%).

実施例3. AGとして、酵母由来、アルブミン20%含有、110U/mg
のAG 7gを用いた以外は、実施例2と同様の試薬を用
い、同様の操作法により操作を行い、AG/Dex共有結合物
溶液を得た(酵素活性回収率:45%)。
Example 3. As AG, derived from yeast, containing 20% albumin, 110 U / mg
Using the same reagents as in Example 2 except that 7 g of AG was used, the same procedure was followed to obtain an AG / Dex covalently bound solution (enzyme activity recovery rate: 45%).

実施例4. AGとして、酵母由来、アルブミン40%含有、95U/mgの
AG 7gを用いた以外は、実施例2と同様の試薬を用い、
同様の操作法により操作を行い、AG/Dex共有結合物溶液
を得た(酵素活性回収率:50%)。
Example 4. As AG, yeast-derived, containing 40% albumin, 95 U / mg
Using the same reagent as in Example 2 except that 7 g of AG was used,
The same operation was performed to obtain an AG / Dex covalently bound solution (enzyme activity recovery rate: 50%).

実施例5. プルラン(分子量;50,000〜100,000、以下Pulと略称
する。)1gを蒸留水10mlに溶解させ過ヨウ素酸ナトリウ
ム0.5gを添加溶解し、暗所にて10℃で15時間、撹拌下に
反応させた。反応終了後、過剰の過ヨウ素酸ナトリウム
を30W/V%亜硫酸水素ナトリウム水溶液約2mlを加えて分
解し、この反応液を室温で、0.1M BES[N,N−ビス(2
−ヒドロキシエチル)−2−アミノエタンスルホン酸]
−NaOH緩衝液(pH7.2)に対して透析した。得られたPul
のアルデヒド誘導体溶液に、AG(酵母由来、アルブミン
40%含有、95U/mg)250mgを溶解し、更にピリジンボラ
ン0.5gを添加し、4℃で24時間、撹拌下に反応させた。
その後、この反応液に1Mグリシンエチルエステル水溶液
10mlとピリジンボラン0.3gを加え、37℃で5時間、撹拌
下に反応させた。反応終了後、反応液を水に対して透析
し、AG/Pul共有結合物(AGとPulとの共有結合物)溶液
が得られた(酵素活性回収率:40%)。
Example 5 1 g of pullulan (molecular weight: 50,000 to 100,000, hereinafter abbreviated as Pul) was dissolved in 10 ml of distilled water, 0.5 g of sodium periodate was added and dissolved, and the mixture was stirred at 10 ° C. for 15 hours in a dark place. Was reacted. After completion of the reaction, the excess sodium periodate was decomposed by adding about 2 ml of a 30 W / V% aqueous sodium bisulfite solution, and the reaction solution was reacted at room temperature with 0.1 M BES [N, N-bis (2
-Hydroxyethyl) -2-aminoethanesulfonic acid]
-Dialyzed against NaOH buffer (pH 7.2). Pul obtained
AG (yeast-derived, albumin)
250 mg of 40% (95 U / mg) was dissolved, 0.5 g of pyridineborane was further added, and the mixture was reacted at 4 ° C. for 24 hours with stirring.
Then, add 1M glycine ethyl ester aqueous solution to the reaction solution.
10 ml and pyridine borane (0.3 g) were added and reacted at 37 ° C. for 5 hours with stirring. After completion of the reaction, the reaction solution was dialyzed against water to obtain an AG / Pul covalently bonded product (a covalently bonded product of AG and Pul) (enzyme activity recovery rate: 40%).

比較例 実施例1と同様の方法で得られたDexのアルデヒド誘
導体溶液に、AG(酵母由来、アルブミン20%含有、110U
/mg)7gを溶解した0.1Mリン酸緩衝液(pH7.0)250mlを
添加し、37℃で20時間、撹拌下に反応させた。反応終了
後、反応液に水に対して透析し、AGとDexとの結合物(A
G/Dex結合物)溶液が得られた(酵素活性回収率:45
%)。
Comparative Example A solution of Dex aldehyde derivative obtained in the same manner as in Example 1 was added with AG (derived from yeast, containing 20% albumin, 110 U
(mg / mg) dissolved in 0.1 g phosphate buffer (pH 7.0) (250 ml) and reacted at 37 ° C. for 20 hours with stirring. After completion of the reaction, the reaction solution was dialyzed against water, and the conjugate of AG and Dex (A
(G / Dex conjugate) solution was obtained (enzyme activity recovery rate: 45)
%).

実験例1.熱安定性の検討−1 (試料) 表1に示す組成の各AG溶液(0.1M BES−NaOH緩衝液、
pH7.7、20U/ml)を試料とした。
Experimental Example 1. Examination of thermal stability-1 (sample) Each AG solution having the composition shown in Table 1 (0.1 M BES-NaOH buffer,
pH 7.7, 20 U / ml) was used as a sample.

(操作法) 各試料を、37℃で10日間放置した後のAGの残存活性率
を求めた。
(Operation method) After each sample was allowed to stand at 37 ° C for 10 days, the residual activity ratio of AG was determined.

尚、AGの活性測定は、p−ニトロフェニル−α−グル
コシドを基質として反応温度37℃、100mMリン酸緩衝液
(pH7.0)中で、1分間に1μmoleのp−ニトロフェノ
ールを遊離させる酵素量を1単位(U)とした。
The activity of AG was measured using p-nitrophenyl-α-glucoside as a substrate and an enzyme that releases 1 μmole of p-nitrophenol per minute in a 100 mM phosphate buffer (pH 7.0) at a reaction temperature of 37 ° C. The amount was 1 unit (U).

(結果) 結果を表2に示す。(Results) The results are shown in Table 2.

表2の結果から明らかな如く、本発明の安定化AGは未
処理のAG或は未処理のAGにDex或はPulを2%添加したも
のに比べて著しく安定であることが判る。
As is clear from the results shown in Table 2, the stabilized AG of the present invention is significantly more stable than untreated AG or untreated AG added with 2% of Dex or Pul.

実験例2.熱安定性の検討−2 (試料) 表3に示す組成の各AG溶液(0.1M BES−NaOH緩衝液、
pH7.7、60U/ml)を試料とした。
Experimental Example 2. Examination of thermal stability-2 (sample) Each AG solution having the composition shown in Table 3 (0.1 M BES-NaOH buffer,
(pH 7.7, 60 U / ml) was used as a sample.

(操作法) 各試料を、60℃で10分間加温した後のAGの残存活性率
を求めた。
(Operation method) The residual activity ratio of AG after heating each sample at 60 ° C for 10 minutes was determined.

尚、AGの活性測定は、実験例1と同様に行った。 The activity of AG was measured in the same manner as in Experimental Example 1.

(結果) 結果を表4に示す。(Results) The results are shown in Table 4.

表4の結果から明らかな如く、本発明の安定化AGは未
処理のAG,未処理のAGにDexを2%添加したもの及びAGと
Dexを単に化学結合しただけのもの(結合した後に還元
処理を行わなかったもの)に比べて著しく安定であるこ
とが判る。
As is clear from the results in Table 4, the stabilized AG of the present invention was untreated AG, untreated AG with 2% of Dex added thereto, and
It can be seen that Dex is remarkably more stable than the one obtained by simply chemically bonding Dex (ie, one obtained by performing no reduction treatment after bonding).

また、試料No.8,9,10の残存活性率から、AGを固定化
する際には、アルブミンが共存しているほうが、しかも
その濃度が高い方が、より熱安定性が向上することも判
る。
Also, based on the residual activity rates of Sample Nos. 8, 9, and 10, when immobilizing AG, heat stability may be improved if albumin coexists, and the higher the concentration, the higher the concentration. I understand.

実験例3.pH安定性の検討 (試料) 未処理のAG及び実施例1で得たAG/Dex共有結合物を各
々20U/mlとなるように所定pHの緩衝液に溶解し試料とし
た。
Experimental Example 3. Examination of pH Stability (Sample) Untreated AG and the AG / Dex covalent conjugate obtained in Example 1 were each dissolved in a buffer solution of a predetermined pH so as to be 20 U / ml to prepare a sample.

尚、pH4.0〜6.0では50mM酢酸−酢酸ナトリウム緩衝液
を用い、pH5.5〜8.5は50mMリン酸緩衝液を用いた。
In the case of pH 4.0 to 6.0, a 50 mM acetic acid-sodium acetate buffer was used, and in the case of pH 5.5 to 8.5, a 50 mM phosphate buffer was used.

(操作法) 各試料を、37℃で20時間放置した後のAGの残存活性率
を求めた。
(Operation method) After each sample was allowed to stand at 37 ° C for 20 hours, the residual activity ratio of AG was determined.

尚、AGの活性測定は、実験例1と同様に行った。 The activity of AG was measured in the same manner as in Experimental Example 1.

(結果) 実施例1で得たAG/Dex共有結合物により得られた結果
を第1図に、未処理のAGにより得られた結果を第2図に
示す。これらの図は、横軸の各pHに対して得られた残存
活性率を縦軸に沿ってプロットした点を結んだものであ
り、−●−は50mM酢酸−酢酸ナトリウム緩衝液により得
られた結果を、−○−は50mMリン酸緩衝液により得られ
た結果を夫々示す。
(Results) The results obtained with the AG / Dex covalent bond obtained in Example 1 are shown in FIG. 1, and the results obtained with the untreated AG are shown in FIG. These figures are obtained by connecting the points obtained by plotting the residual activity ratio obtained for each pH on the horizontal axis along the vertical axis, where-●-was obtained with a 50 mM acetic acid-sodium acetate buffer solution. In the results, -O- indicates the results obtained with the 50 mM phosphate buffer.

第1図及び第2図から明らかな如く、未処理のAGに比
較して、AG/Dex共有結合物のpH安定領域は明らかに広
く、安定化されていることが判る。
As is clear from FIGS. 1 and 2, the pH stable region of the AG / Dex covalently bonded product is clearly wider and stabilized as compared with untreated AG.

実験例4. 実施例1で得られた本発明のAG/Dex共有結合物を下記
の条件によりゲル濾過クロマトグラフィに付した。
Experimental Example 4. The AG / Dex covalent conjugate of the present invention obtained in Example 1 was subjected to gel filtration chromatography under the following conditions.

カラム;2.5φ×100cm。Column; 2.5 φ × 100 cm.

充填剤;Sephacryl S−300(ファルマシア社製品名)。Filler: Sephacryl S-300 (Pharmacia product name).

溶離液;0.1M BES−NaOH緩衝液(pH7.7、0.1MNaCl含有) 分画量;10ml/試験管。Eluent: 0.1 M BES-NaOH buffer (pH 7.7, containing 0.1 M NaCl) Fractionation volume: 10 ml / test tube.

結果を第3図に示す。なお、ここに於いて、横軸はフ
ラクションナンバー(Fr.No.)を示し、−●−は各Fr.N
o.に於ける吸光度(O.D.280nm)を結んだものであり、
−○−は各Fr.No.に於けるAG活性(U/ml)を結んだもの
である。また、↓は未処理のAGを同じ条件でゲル濾過ク
ロマトグラフィに付した場合の溶出点を示す。
The results are shown in FIG. Here, the horizontal axis indicates the fraction number (Fr. No.), and-●-indicates each Fr.N.
o. The absorbance (OD280nm) at o.
-○-shows the results obtained by linking the AG activity (U / ml) in each Fr. No. ↓ indicates the elution point when untreated AG was subjected to gel filtration chromatography under the same conditions.

尚、AGの活性測定は、実験例1と同様に行った。 The activity of AG was measured in the same manner as in Experimental Example 1.

この結果から明らかな如く、本発明の安定化AGは、未
処理のAGに比べて明らかに高分子化していることが判
る。
As is clear from these results, it is clear that the stabilized AG of the present invention is clearly polymerized as compared with the untreated AG.

[発明の効果] 以上述べた如く、本発明は、水溶液中でAGの活性を長
時間維持せしめることのできるAGの安定化方法を提供す
るものであり、斯業に貢献するところ大なる発明であ
る。
[Effects of the Invention] As described above, the present invention is to provide a method for stabilizing AG that can maintain the activity of AG in an aqueous solution for a long period of time. is there.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、実験例3で得られた、本発明に係わるα−グ
ルコシダーゼ/デキストラン共有結合物のpH安定曲線を
示し、横軸の各pHに対して得られた残存活性率を縦軸に
沿ってプロットした点を結んだものであり、−●−は50
mM酢酸−酢酸ナトリウム緩衝液により得られた結果を、
−○−は50mMリン酸緩衝液により得られた結果を夫々示
す。 第2図は、実験例3で得られた、未処理のα−グルコシ
ダーゼのpH安定曲線を示し、横軸の各pHに対して得られ
た残存活性率を縦軸に沿ってプロットした点を結んだも
のであり、−●−は50mM酢酸−酢酸ナトリウム緩衝液に
より得られた結果を、−○−は50mMリン酸緩衝液により
得られた結果を夫々示す。 第3図は、実験例4で得られたゲル濾過クロマトグラフ
ィの溶出結果を示し、横軸はフラクションナンバー(F
r.No.)を示し、−●−は各Fr.No.に於ける吸光度(O.
D.280nm)を結んだものであり、−○−は各Fr.No.に於
けるAG活性(U/ml)を結んだものである。また、↓は未
処理のAGを同じ条件でゲル濾過クロマトグラフィに付し
た場合の溶出点を示す。
FIG. 1 shows a pH stability curve of the α-glucosidase / dextran covalent conjugate according to the present invention obtained in Experimental Example 3, and the residual activity ratio obtained for each pH on the horizontal axis is shown on the vertical axis. The points plotted along are connected, and-●-is 50
The results obtained with the mM acetate-sodium acetate buffer were
-O- indicates the results obtained with the 50 mM phosphate buffer, respectively. FIG. 2 shows the pH stability curve of the untreated α-glucosidase obtained in Experimental Example 3, where the residual activity ratio obtained for each pH on the horizontal axis was plotted along the vertical axis. The results obtained with a 50 mM acetic acid-sodium acetate buffer, and the results obtained with a 50 mM phosphate buffer, are shown. FIG. 3 shows the elution results of gel filtration chromatography obtained in Experimental Example 4, where the horizontal axis represents the fraction number (F
r.No.), and-●-indicates the absorbance (O.
D.280 nm) and-○-is the result of tying the AG activity (U / ml) in each Fr. No. ↓ indicates the elution point when untreated AG was subjected to gel filtration chromatography under the same conditions.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−255435(JP,A) 特開 昭61−249389(JP,A) 特開 昭59−22901(JP,A) 特開 昭59−21626(JP,A) ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-62-255435 (JP, A) JP-A-61-249389 (JP, A) JP-A-59-22901 (JP, A) JP-A-59-22901 21626 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】α−グルコシダーゼを水溶性多糖類(但
し、コンドロイチンを除く。)に共有結合させることを
特徴とする水溶液中に於けるα−グルコシダーゼの安定
化方法。
[1] A method for stabilizing [alpha] -glucosidase in an aqueous solution, wherein [alpha] -glucosidase is covalently bonded to a water-soluble polysaccharide (excluding chondroitin).
【請求項2】α−グルコシダーゼが酵母由来である特許
請求の範囲第1項に記載の安定化方法。
2. The method according to claim 1, wherein the α-glucosidase is derived from yeast.
JP62216738A 1987-08-31 1987-08-31 Enzyme stabilization method Expired - Lifetime JP2628310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62216738A JP2628310B2 (en) 1987-08-31 1987-08-31 Enzyme stabilization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62216738A JP2628310B2 (en) 1987-08-31 1987-08-31 Enzyme stabilization method

Publications (2)

Publication Number Publication Date
JPS6460380A JPS6460380A (en) 1989-03-07
JP2628310B2 true JP2628310B2 (en) 1997-07-09

Family

ID=16693156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62216738A Expired - Lifetime JP2628310B2 (en) 1987-08-31 1987-08-31 Enzyme stabilization method

Country Status (1)

Country Link
JP (1) JP2628310B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2031109C (en) * 1990-07-27 1992-01-28 Susan J. Danielson Ligand analogs for immunoassays derived from dicarboxylic acid oxidation products
JP4812807B2 (en) * 2007-06-27 2011-11-09 三洋化成工業株式会社 Protein-containing aqueous solution stabilizer and method for stabilizing protein-containing aqueous solution

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5922901A (en) * 1982-07-28 1984-02-06 Green Cross Corp:The Urokinase-starch composite, its manufacture, and thrombolytic agent
JPS5921626A (en) * 1982-07-28 1984-02-03 Green Cross Corp:The Urokinase-chondroitin sulfate adduct, its preparation and thrombolytic agent
US4585754A (en) * 1984-01-09 1986-04-29 Valcor Scientific, Ltd. Stabilization of proteins and peptides by chemical binding with chondroitin
DE3515586A1 (en) * 1985-04-30 1986-11-06 Boehringer Mannheim Gmbh, 6800 Mannheim STABILIZED SARCOSINOXIDASE PREPARATION

Also Published As

Publication number Publication date
JPS6460380A (en) 1989-03-07

Similar Documents

Publication Publication Date Title
Marshall Manipulation of the properties of enzymes by covalent attachment of carbohydrate
US3645852A (en) Method of binding water-soluble proteins and water-soluble peptides to water-insoluble polymers using cyanogen halide
EP1335931B1 (en) Derivatisation of proteins in aqueous solution
Ogle et al. Properties of an insoluble form of trypsin
JP2896580B2 (en) Amylose-lysozyme hybrid, activated sugar and its production
JPS5841836B2 (en) Soluble liver uricase, its production method and method for measuring uric acid
Lenders et al. Thermal stabilization of amylolytic enzymes by covalent coupling to soluble polysaccharides
JPS61249389A (en) Stabilized salcocine oxidase composition
JPH0791313B2 (en) Saccharide-modified water-soluble protein-complex
JPS6355918B2 (en)
EP0271289A2 (en) Method for immobilization of enzyme and immobilized enzymes
US3853708A (en) Coupling biologically active substances to oxirane-containing polymers
Wallace et al. Studies on the carbohydrate moiety of dopamine β-hydroxylase: interaction of the enzyme with concanavalin A
JP3125428B2 (en) Modification enzyme
JP2628310B2 (en) Enzyme stabilization method
NEMAT‐GORGANI et al. Non‐ionic adsorptive immobilization of proteins to palmityl‐substituted Sepharose 4B
Lilly [4] Enzymes immobilized to cellulose
Langer et al. Interaction of Nucleotides with Liver Uridine Diphosphate-glucose-4′-epimerase
Stults et al. Immobilization of proteins on partially hydrolyzed agarose beads
Cabral et al. Investigation of the binding mechanism of glucoamylase to alkylamine derivatives of titanium (IV)-activated porous inorganic supports
Freeman et al. Isonitrile derivatives of polysaccharides as supports for the covalent fixation of proteins and other ligands
SU1137760A1 (en) Heparin-immobilized urokinase
JP2863263B2 (en) Novel hetero-branched cyclodextrin in which a galactosyl group is transfer-linked to the side chain part of a branched cyclodextrin by β-bond, and method for producing the same
JPH01207245A (en) Pharmacological structure
JPH0662846A (en) Stabilization of enzyme for analytical reagent and enzyme for solution-state analytical reagent