JPH0662846A - Stabilization of enzyme for analytical reagent and enzyme for solution-state analytical reagent - Google Patents

Stabilization of enzyme for analytical reagent and enzyme for solution-state analytical reagent

Info

Publication number
JPH0662846A
JPH0662846A JP23650092A JP23650092A JPH0662846A JP H0662846 A JPH0662846 A JP H0662846A JP 23650092 A JP23650092 A JP 23650092A JP 23650092 A JP23650092 A JP 23650092A JP H0662846 A JPH0662846 A JP H0662846A
Authority
JP
Japan
Prior art keywords
enzyme
stabilized
solution
reagent
analytical reagent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23650092A
Other languages
Japanese (ja)
Inventor
Yasuyuki Matsumoto
泰幸 松本
Noriyuki Tsubota
宣之 坪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eiken Chemical Co Ltd
Original Assignee
Eiken Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eiken Chemical Co Ltd filed Critical Eiken Chemical Co Ltd
Priority to JP23650092A priority Critical patent/JPH0662846A/en
Publication of JPH0662846A publication Critical patent/JPH0662846A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an enzyme for an analytical reagent sufficiently stable in a solution state. CONSTITUTION:An enzyme for an analytical reagent selected from peroxidase (POD), uricase, cholesterol oxidase (COD), ascorbic acid oxidase (AsOD) and lipoprotein lipase (LPL) is chemically bonded to a water-soluble carrier selected from bovine serum albumin, dextran and polyethylene glycol so as to be improved in stability in a solution state. Consequently, the analytical reagent can be provided in a solution state.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は分析試薬用酵素の安定化
技術に関するものである。健康管理や疾病の診断におい
ては、血液成分の分析をはじめとする様々な試験が実施
される。血液成分の分析には酵素を利用した方法が多い
が、酵素の中には不安定なものもあり分析の信頼性を高
めるために酵素の安定化は重要な課題である。また凍結
乾燥された形で流通することの多い分析試薬を溶液状態
で供給するためにも、酵素の安定化は避けて通ることの
できない課題である。
TECHNICAL FIELD The present invention relates to a technique for stabilizing an enzyme for an analytical reagent. In health care and diagnosis of diseases, various tests including analysis of blood components are carried out. There are many methods using enzymes for the analysis of blood components, but some enzymes are unstable, and stabilization of the enzymes is an important issue in order to improve the reliability of the analysis. Further, stabilization of the enzyme is an unavoidable problem in order to supply the analysis reagent, which is often lyophilized in the form of distribution, in a solution state.

【0002】[0002]

【従来技術の問題点】酵素のような活性蛋白の保存に
は、凍結乾燥が最も一般的な方法である。分析試薬用酵
素においても例外ではなく、酵素、補酵素、緩衝成分、
発色成分等の分析に必要な成分を予め混合し凍結乾燥し
て供給されている。この凍結乾燥組成物は使用時に定め
られた量の水で溶解することにより、分析用の試薬溶液
とすることができる。分析用酵素試薬の凍結乾燥にあた
っては、ショ糖、マンニトール、ガラクトース、アルブ
ミン等の高分子化合物、あるいは酵素の基質や反応生成
物を共存させておくことによる安定化技術が知られてい
る。これらの物質の利用により、凍結乾燥状態での安定
化はある程度期待できる。
Problems of the prior art Freeze-drying is the most common method for storing active proteins such as enzymes. Enzymes for analysis reagents are no exception, enzymes, coenzymes, buffer components,
The components necessary for analysis such as color-developing components are mixed in advance and freeze-dried before being supplied. This lyophilized composition can be made into a reagent solution for analysis by dissolving it in a predetermined amount of water at the time of use. In freeze-drying the enzyme reagent for analysis, a stabilization technique is known in which a high molecular compound such as sucrose, mannitol, galactose, albumin, or a substrate or reaction product of an enzyme is allowed to coexist. By using these substances, stabilization in the freeze-dried state can be expected to some extent.

【0003】しかし最近になって、溶液状態での酵素試
薬の供給が望まれるようになった。凍結乾燥された試薬
は利用時に水で溶解する手間が必要な上、溶解後の安定
性について不安が残ることがその理由である。水による
溶解にあたっては、固形化した成分を完全に溶解させな
ければ試薬の性能が確保されない。一方激しくかくはん
すれば酵素蛋白が起泡により失活したり、あるいは界面
活性剤によって生じた液面の泡が試薬の定量採取を妨害
することもある。また溶解後の安定性が保証されない場
合には、いったん溶解した試薬は短時間で使い切るよう
にしなければならず経済的に不利である。
Recently, however, it has been desired to supply the enzyme reagent in a solution state. The reason for this is that the freeze-dried reagent requires time and effort to dissolve in water, and there is concern about the stability after dissolution. When dissolved in water, the performance of the reagent cannot be ensured unless the solidified components are completely dissolved. On the other hand, if the mixture is vigorously stirred, the enzyme protein may be inactivated by foaming, or the foam on the liquid surface generated by the surfactant may interfere with the quantitative sampling of the reagent. Further, if the stability after dissolution is not guaranteed, the once dissolved reagent must be used up in a short time, which is economically disadvantageous.

【0004】このような事情から溶液状態での分析用酵
素試薬の供給が望まれているが、多くの酵素については
十分な安定化技術が確立されていない。中でも、多くの
分析試薬で発色系として採用されている過酸化水素発色
系を構成するペルオキシダーゼ(以下PODと省略す
る)、尿酸の測定に必要なウリカーゼ、コレステロール
の測定に用いるコレステロールオキシダーゼ(以下CO
Dと省略する)、アスコルビン酸の測定や消去に用いる
アスコルビン酸オキシダーゼ(以下AsODと省略す
る)、トリグリセライドの測定に用いるリポプロテイン
リパーゼ(以下LPLと省略する)は使用量が比較的多
い。したがって特に経済的な面で安定化による効果が大
きいが、溶液状態での安定性については未だに改善の余
地が残されているのが現状である。
Under these circumstances, it is desired to supply an enzyme reagent for analysis in a solution state, but a sufficient stabilization technique has not been established for many enzymes. Among them, peroxidase (hereinafter abbreviated as POD), which constitutes a hydrogen peroxide coloring system adopted as a coloring system in many analytical reagents, uricase necessary for measuring uric acid, and cholesterol oxidase used for measuring cholesterol (hereinafter CO
The amount of ascorbate oxidase (hereinafter abbreviated as AsOD) used for measurement and elimination of ascorbic acid and the lipoprotein lipase (hereinafter abbreviated as LPL) used for measurement of triglyceride are relatively large. Therefore, the effect of stabilization is particularly great in terms of economics, but there is still room for improvement in stability in a solution state.

【0005】水溶性担体との結合による酵素の安定化に
ついては、ポリウレタンをグルコシダーゼに結合させて
安定化した例(特公平3−36511号公報)等が知ら
れているが、その他の分析試薬用酵素についての報告は
無い。また一般にポリエチレングリコール(以下PEG
と省略する)のような水溶性担体は、酵素製剤の生体内
における抗原性の低減や半減期の延長に利用できること
が知られているが、分析試薬用酵素の溶液状態での保存
安定化に対する有効性については報告が無い。
Regarding the stabilization of the enzyme by binding to a water-soluble carrier, an example in which polyurethane is bound to glucosidase for stabilization (Japanese Patent Publication No. 3-36511) is known, but for other analytical reagents. There are no reports on enzymes. In general, polyethylene glycol (hereinafter PEG
It is known that a water-soluble carrier such as () is used for reducing the antigenicity of the enzyme preparation in vivo and prolonging its half-life. There are no reports of effectiveness.

【0006】[0006]

【発明が解決しようとする課題】本発明は、分析試薬用
酵素の中でも比較的使用頻度の高い5種の酵素につい
て、溶液状態での十分な安定性を付与する技術の提供を
課題とするものである。本発明において安定化の対象と
なる5種の酵素とは、POD、ウリカーゼ、COD、A
sOD、そしてLPLである。これらの分析試薬用酵素
を、溶液状態で流通可能とする安定化技術の提供が本発
明の課題である。
DISCLOSURE OF THE INVENTION It is an object of the present invention to provide a technique for imparting sufficient stability in a solution state to five kinds of enzymes which are relatively frequently used among enzymes for analytical reagents. Is. In the present invention, the five types of enzymes to be stabilized include POD, uricase, COD, and A.
sOD and LPL. It is an object of the present invention to provide a stabilization technique that makes it possible to distribute these enzymes for analytical reagents in a solution state.

【0007】[0007]

【課題を解決するための手段】本発明は、POD、ウリ
カーゼ、COD、AsOD、そしてLPLから選択され
る酵素を、ウシ血清アルブミン(以下BSAと省略す
る)、デキストラン、PEGから選択される水溶性担体
と化学結合させることを特徴とする溶液状態における分
析試薬用酵素の安定化法、ならびにこの方法によって安
定化された溶液状の分析試薬用酵素である。
According to the present invention, an enzyme selected from POD, uricase, COD, AsOD and LPL is a water-soluble enzyme selected from bovine serum albumin (hereinafter abbreviated as BSA), dextran and PEG. A method for stabilizing an enzyme for an analytical reagent in a solution state, which is characterized by being chemically bonded to a carrier, and a solution-like enzyme for an analytical reagent stabilized by this method.

【0008】本発明において安定化の対象となるPO
D、ウリカーゼ、COD、AsOD、そしてLPLとし
ては、現在凍結乾燥品として流通している一般の分析試
薬に利用されているものをそのまま利用することができ
る。PODとしては西洋ワサビ由来のもの、ウリカーゼ
としてはキャンディダ(Candida)等の微生物由来のも
の、CODとしてはノカルディア(Nocardia)等の微生
物由来のもの、AsODとしてカボチャやキュウリ等の
植物由来のもの、そしてLPLとしてはクロモバクテリ
ウム(Chromobacterium)等の微生物由来のものがよく
知られている。これらの酵素に対してBSA、デキスト
ラン、PEGから選択される水溶性担体を化学的に結合
させることにより本発明の安定化作用を得ることができ
る。
PO to be stabilized in the present invention
As D, uricase, COD, AsOD, and LPL, those used for general analytical reagents currently distributed as freeze-dried products can be used as they are. POD is derived from horseradish, uricase is derived from microorganisms such as Candida, COD is derived from microorganisms such as Nocardia, and AsOD is derived from plants such as squash and cucumber. As LPL, those derived from microorganisms such as Chromobacterium are well known. The stabilizing effect of the present invention can be obtained by chemically bonding a water-soluble carrier selected from BSA, dextran and PEG to these enzymes.

【0009】このとき水溶性担体との結合によって酵素
の活性が妨害されないように注意する必要が有る。好ま
しい結合方法としては、例えばグルタルアルデヒドで酵
素を活性化したのちに水溶性担体と反応させる方法、あ
るいは過ヨウ素酸等で水溶性担体を活性化して酵素を結
合させる方法等を挙げることができる。このような結合
方法を利用すれば、酵素の活性が失われることなく安定
化を図ることが可能である。またグルタルアルデヒドに
よって酵素の失活が心配されるときには、水溶性担体を
グルタルアルデヒドで活性化する方法を採用してもよ
い。
At this time, it is necessary to take care so that the activity of the enzyme is not hindered by the binding with the water-soluble carrier. Preferred binding methods include, for example, a method of activating the enzyme with glutaraldehyde and then reacting it with a water-soluble carrier, or a method of activating the water-soluble carrier with periodate or the like to bind the enzyme. By using such a binding method, it is possible to stabilize the enzyme without losing its activity. When glutaraldehyde is likely to inactivate the enzyme, a method of activating the water-soluble carrier with glutaraldehyde may be adopted.

【0010】水溶性担体との結合によって安定化された
分析試薬用酵素は、他の酵素、補酵素、発色剤等のその
他の試薬成分とともに適当な緩衝液に溶解して分析試薬
とすることができる。本発明の安定化分析試薬用酵素の
応用例を次に示す。 安定化POD:全ての過酸化水素発色系 安定化ウリカーゼ:尿酸の測定系 安定化COD:コレステロールの測定系 安定化AsOD:アスコルビン酸の測定や消去 安定化LPL:トリグリセライドの測定 本発明の安定化分析試薬用酵素には、更にその他の公知
の安定化剤を添加しておくこともできる。このような公
知の安定化剤としては界面活性剤、有機溶媒、キレート
剤等が知られている。
The enzyme for an analytical reagent stabilized by binding to a water-soluble carrier may be dissolved in a suitable buffer together with other enzyme components such as other enzymes, coenzymes, color formers, etc. to prepare an analytical reagent. it can. The following is an application example of the enzyme for a stabilized analytical reagent of the present invention. Stabilized POD: All hydrogen peroxide coloring system Stabilized uricase: Uric acid measurement system Stabilized COD: Cholesterol measurement system Stabilized AsOD: Ascorbic acid measurement and elimination Stabilized LPL: Triglyceride measurement Stabilization analysis of the present invention Other known stabilizers may be added to the reagent enzyme. Surfactants, organic solvents, chelating agents and the like are known as such known stabilizers.

【0011】[0011]

【作用】本発明におけるBSA、デキストラン、および
PEGは、POD、ウリカーゼ、COD、AsOD、L
PLとの結合によってこれらの酵素を溶液状態で安定化
する作用を持つ。安定化の原理は不明であるが、水溶性
担体との結合が酵素蛋白の水素および疎水結合を保護し
て構造変化を防止し、安定化作用が増強されることによ
るものと推測される。
The BSA, dextran and PEG used in the present invention are POD, uricase, COD, AsOD and L.
It has the effect of stabilizing these enzymes in solution by binding to PL. Although the principle of stabilization is unknown, it is presumed that the binding to the water-soluble carrier protects the hydrogen and hydrophobic bonds of the enzyme protein to prevent structural changes and enhances the stabilizing action.

【0012】これらの水溶性担体は、単に蛋白と共存さ
せるだけでも蛋白の立体構造の保護作用により安定化剤
として機能する。しかし単に共存させただけでは水溶液
としたときに両者が効果的に接近する機会が非常に制限
され、結果として充分な安定化作用は得られない。一
方、本発明では、水溶性担体を酵素と化学的に結合させ
ることによって単なる共存では実現できない大きな安定
化効果を生んでいる。もちろん本発明における水溶性担
体が、単に共存させた場合と同様の作用を示しているで
あろうことは否定できない。しかし酵素−水溶性担体間
の化学的な結合による安定化という新しい作用を利用し
た本発明は、酵素と水溶性担体との単なる配合による安
定化技術とは明瞭に区別される。つづいて実施例に基づ
き本発明を更に詳細に説明する。
[0012] These water-soluble carriers function as stabilizers by the action of protecting the three-dimensional structure of the protein even when they are simply allowed to coexist with the protein. However, the simple coexistence greatly limits the opportunity for the two to effectively approach each other when made into an aqueous solution, and as a result, a sufficient stabilizing action cannot be obtained. On the other hand, in the present invention, by chemically binding the water-soluble carrier to the enzyme, a large stabilizing effect that cannot be realized by simple coexistence is produced. Of course, it cannot be denied that the water-soluble carrier in the present invention will exhibit the same action as when it is simply allowed to coexist. However, the present invention utilizing the new effect of stabilization by chemical bond between the enzyme and the water-soluble carrier is clearly distinguished from the stabilization technique by simply mixing the enzyme and the water-soluble carrier. Next, the present invention will be described in more detail based on examples.

【0013】[0013]

【実施例】【Example】

1−1.安定化PODの製造 BSAと結合させることによって安定化したPODを製
造した。POD(西洋ワサビ由来、東洋紡績社製)10
mgを1.25%のグルタルアルデヒドを含む0.1Mリン
酸緩衝液(pH6.8、以下PBSと省略する)0.2
mlに溶解し、室温で18時間反応させた。反応後、0.
15MのNaClで平衡化したセファデックスG−10
0カラムに吸着させ、同じNaCl溶液で溶出して蛋白
各分を分取して活性化PODを得た。1mlの0.15M
NaClに5mgのBSAを溶解したものに活性化POD
1mlを混合し、1M炭酸緩衝液(pH9.5)0.1ml
を加えて4℃で24時間混合を続けた。更に0.2Mリ
ジン0.1mlを加えて4℃で2時間混合し、最終的に得
られた反応液を4℃で生理食塩水に対して透析し、安定
化POD溶液約2.5mlを得た。
1-1. Preparation of Stabilized POD Stabilized POD was prepared by coupling with BSA. POD (derived from horseradish, manufactured by Toyobo) 10
0.1 M phosphate buffer (pH 6.8, hereinafter abbreviated as PBS) containing 1.25% glutaraldehyde 0.2 mg
It was dissolved in ml and reacted at room temperature for 18 hours. After the reaction, 0.
Sephadex G-10 equilibrated with 15 M NaCl
It was adsorbed on the No. 0 column and eluted with the same NaCl solution to separate each protein fraction to obtain an activated POD. 1 ml 0.15M
Activated POD in 5 mg BSA dissolved in NaCl
Mix 1 ml, 0.1 ml of 1M carbonate buffer (pH 9.5)
Was added and mixing was continued at 4 ° C. for 24 hours. Further, 0.1 ml of 0.2 M lysine was added and mixed at 4 ° C for 2 hours, and the finally obtained reaction solution was dialyzed against physiological saline at 4 ° C to obtain about 2.5 ml of a stabilized POD solution. It was

【0014】1−2.安定化作用の確認 1で得た安定化PODと処理前のPODの安定性を比較
した。次の組成を持つ過酸化水素測定用試薬を調製し、
2〜10℃で保存してPOD活性の経時的な変化を観察
した。活性は、12mMの過酸化水素0.05mlと3.0
mlの過酸化水素測定用試薬を37℃、10分間反応さ
せ、反応終了後に505nmにおける吸光度を測定して決
定した。結果は図1に示すとおりである。本発明により
安定化されたPODは、2〜10℃で保存した場合6カ
月以上にわたって十分な活性を維持することが確認され
た。一方、処理前のPODでは、翌月には既に調製時の
活性の半分以下となり、3カ月後にはほとんどの活性を
失っていた。 過酸化水素測定用試薬: 安定化POD 1ml (または処理前のPOD 4mg) 4−アミノアンチピリン 10mg フェノール 40mg 0.1MのPBSで溶解し全量を100mlとする
1-2. Confirmation of Stabilizing Action The stability of the stabilized POD obtained in 1 and the POD before the treatment were compared. Prepare a reagent for measuring hydrogen peroxide having the following composition,
The sample was stored at 2 to 10 ° C and the change in POD activity with time was observed. The activity is 3.0 ml with 0.05 ml of 12 mM hydrogen peroxide.
It was determined by reacting ml of a reagent for measuring hydrogen peroxide at 37 ° C. for 10 minutes, and measuring the absorbance at 505 nm after the reaction was completed. The results are shown in Fig. 1. It was confirmed that the POD stabilized by the present invention retains sufficient activity for 6 months or more when stored at 2 to 10 ° C. On the other hand, in the POD before treatment, the activity was already less than half of the activity at the time of preparation in the next month, and most of the activity was lost after 3 months. Reagent for measuring hydrogen peroxide: Stabilized POD 1 ml (or POD 4 mg before treatment) 4-aminoantipyrine 10 mg Phenol 40 mg Dissolve with 0.1 M PBS to make the total volume 100 ml.

【0015】2−1.安定化ウリカーゼの製造 デキストランと結合させることによって安定化したウリ
カーゼを製造した。デキストラン50mgを0.06Mの
NaIO4溶液1.0mlと室温で30分間反応させた。
その後0.16Mエチレングリコール1.0mlを添加し
室温で1時間放置して反応を停止し、0.01M炭酸ナ
トリウム緩衝液(pH9.5)に対して4℃で1夜透析
した。透析後の反応液に5mgのウリカーゼ(Candida由
来、東洋紡績社製)を添加して室温で2時間反応させ、
更に5mgの水素化ホウ素ナトリウムを加えて4℃で12
時間反応させた後、生理食塩水に対して4℃で14時間
透析して安定化ウリカーゼ約2.4mlを得た。
2-1. Preparation of Stabilized Uricase A uricase stabilized by coupling with dextran was prepared. 50 mg of dextran were reacted with 1.0 ml of 0.06 M NaIO 4 solution for 30 minutes at room temperature.
Thereafter, 1.0 ml of 0.16 M ethylene glycol was added, the reaction was stopped by standing at room temperature for 1 hour, and the mixture was dialyzed against 0.01 M sodium carbonate buffer (pH 9.5) at 4 ° C. overnight. To the reaction solution after dialysis, 5 mg of uricase (derived from Candida, manufactured by Toyobo Co., Ltd.) was added and reacted at room temperature for 2 hours,
Add 5 mg of sodium borohydride and add 12 at 4 ° C.
After reacting for a period of time, it was dialyzed against physiological saline at 4 ° C. for 14 hours to obtain about 2.4 ml of stabilized uricase.

【0016】2−2.安定化作用の確認 2−1で得た安定化ウリカーゼと処理前のウリカーゼの
安定性を比較した。次の組成を持つ尿酸測定用試薬を調
製し、2〜10℃で保存してウリカーゼ活性の経時的な
変化を観察した。活性は、2mMの尿酸0.05mlと3.
0mlの尿酸測定用試薬を37℃、10分間反応させ、5
55nmにおける吸光度を測定して決定した。本発明によ
り安定化されたウリカーゼは、2〜10℃で保存した場
合6カ月以上にわたって十分な活性を維持することが確
認された。 尿酸測定用試薬: 安定化ウリカーゼ 1ml (または処理前のウリカーゼ 2mg) 安定化POD(実施例1) 1ml 4−アミノアンチピリン 10mg EMST 140mg 0.1MのPBS(pH6.5)で溶解し全量を100m
lとする EMSTはN−エチル−N−(β−メチルスルホンアミ
ドエチル)m−トルイジンナトリウムの略
2-2. Confirmation of stabilizing effect The stability of the stabilized uricase obtained in 2-1 was compared with that of the uricase before treatment. A reagent for measuring uric acid having the following composition was prepared and stored at 2 to 10 ° C, and changes in uricase activity with time were observed. The activities were 2.mM uric acid 0.05 ml and 3.
React with 0 ml of reagent for measuring uric acid at 37 ℃ for 10 minutes, and
It was determined by measuring the absorbance at 55 nm. It was confirmed that the uricase stabilized by the present invention maintains a sufficient activity for 6 months or more when stored at 2 to 10 ° C. Uric acid measurement reagent: Stabilized uricase 1 ml (or uricase 2 mg before treatment) Stabilized POD (Example 1) 1 ml 4-aminoantipyrine 10 mg EMST 140 mg Dissolved in 0.1 M PBS (pH 6.5) to a total volume of 100 m
EMST is an abbreviation for N-ethyl-N- (β-methylsulfonamidoethyl) m-toluidine sodium

【0017】3−1.安定化CODの製造 PEGと結合させることによって安定化したCODを製
造した。PEG6000(和光純薬工業社製)2.0g
をジオキサン10mlに溶解し、更に1,1’−カルボニ
ルジイミダゾール1gを加えて混合し、37℃で90分
間反応させた。反応後0.15MNaClで1夜透析
し、これを凍結乾燥して約2gの活性化PEGを得た。
得られた活性化PEGの150mgとCOD(Nocardia由
来、ベーリンガー・マンハイム社製)20mgを、0.1
MのPBS(pH7.0)2mlに溶解して4℃で20時
間反応させた。反応後、0.15MのNaClで平衡化
したセファデックスG−200カラムに吸着させ、同じ
NaCl溶液で溶出して蛋白各分を分取し安定化COD
約2.4mlを得た。
3-1. Preparation of Stabilized COD A COD stabilized by conjugation with PEG was prepared. PEG6000 (Wako Pure Chemical Industries, Ltd.) 2.0g
Was dissolved in 10 ml of dioxane, 1 g of 1,1′-carbonyldiimidazole was further added and mixed, and the mixture was reacted at 37 ° C. for 90 minutes. After the reaction, the mixture was dialyzed against 0.15 M NaCl overnight and freeze-dried to obtain about 2 g of activated PEG.
150 mg of the obtained activated PEG and 20 mg of COD (derived from Nocardia, manufactured by Boehringer Mannheim) were added to 0.1
It was dissolved in 2 ml of M PBS (pH 7.0) and reacted at 4 ° C. for 20 hours. After the reaction, it was adsorbed on a Sephadex G-200 column equilibrated with 0.15 M NaCl, and eluted with the same NaCl solution to separate each protein fraction to stabilize COD.
About 2.4 ml was obtained.

【0018】3−2.安定化作用の確認 3−1で得た安定化CODと単にCODをPEGと共存
させた場合の安定性を比較した。次の組成を持つコレス
テロール測定用試薬を調製し、37℃で保存してCOD
活性の経時的な変化を観察した。活性はコレステロール
300mg/dl(イソプロパノール溶液)0.05mlにコ
レステロール測定用試薬3.0mlを加え、37℃で反応
させてタイムコース(555nm)を取った。結果は図2
に示すとおりである。単にデキストランと共存させた場
合には調製後2週間で極端な活性の低下が観察される
が、本発明で安定化したCODでは同じ期間でほとんど
活性の変化が見られない。 コレステロール測定用試薬: 安定化COD 1ml (または未処理のCOD8mg+PEG60mg) 安定化POD(実施例1) 1ml 4−アミノアンチピリン 10mg TOOS 40mg 0.1MのPBS(pH6.0)で溶解し全量を100m
lとする TOOSはN−エチル−N−(2−ヒドロキシ−3−ス
ルホプロピル)−m−トルイジンナトリウムの略
3-2. Confirmation of Stabilizing Action The stability of the stabilized COD obtained in 3-1 and the stability when COD was simply allowed to coexist with PEG were compared. Prepare a cholesterol measuring reagent with the following composition and store it at 37 ° C for COD.
The change in activity over time was observed. For the activity, 3.0 ml of a reagent for measuring cholesterol was added to 0.05 ml of cholesterol 300 mg / dl (isopropanol solution), and the mixture was reacted at 37 ° C. to take a time course (555 nm). The result is shown in Figure 2.
As shown in. When coexisting with dextran, an extreme decrease in activity is observed 2 weeks after preparation, but COD stabilized by the present invention shows almost no change in activity in the same period. Cholesterol measurement reagent: Stabilized COD 1 ml (or untreated COD 8 mg + PEG 60 mg) Stabilized POD (Example 1) 1 ml 4-aminoantipyrine 10 mg TOOS 40 mg Dissolve with 0.1 M PBS (pH 6.0) and total 100 m
TOOS is an abbreviation for N-ethyl-N- (2-hydroxy-3-sulfopropyl) -m-toluidine sodium

【0019】4−1.安定化AsODの製造 BSAと結合させることによって安定化したAsODを
製造した。AsOD(カボチャ由来、ベーリンガー・マ
ンハイム社製)20mgを1.0%のグルタルアルデヒド
を含む0.1MのPBS(pH7.0)0.5mlに溶解
し、室温で18時間放置した。反応後、0.15MのN
aClで平衡化したセファデックスG−200カラムに
吸着させ、同じNaCl溶液で溶出して蛋白各分を分取
して活性化AsODを得た。1mlの0.15MNaCl
に20mgのBSAを溶解したものに活性化AsOD1ml
を混合し、1M炭酸緩衝液(pH9.5)0.1mlを加
えて4℃で24時間反応させた。更に0.2Mのリジン
0.1mlを加えて4℃で2時間混合し、最終的に得られ
た反応液を4℃でPBS(pH6.5)に対して透析
し、安定化AsOD約2.5mlを得た。
4-1. Preparation of Stabilized AsOD Stabilized AsOD was prepared by binding with BSA. 20 mg of AsOD (derived from pumpkin, manufactured by Boehringer Mannheim) was dissolved in 0.5 ml of 0.1 M PBS (pH 7.0) containing 1.0% glutaraldehyde and left at room temperature for 18 hours. After the reaction, 0.15M N
It was adsorbed on a Sephadex G-200 column equilibrated with aCl, and eluted with the same NaCl solution to separate each protein fraction to obtain activated AsOD. 1 ml of 0.15M NaCl
Activated AsOD 1 ml in which 20 mg of BSA was dissolved in
Were mixed, 0.1 ml of 1M carbonate buffer (pH 9.5) was added, and the mixture was reacted at 4 ° C. for 24 hours. Further, 0.1 ml of 0.2 M lysine was added and mixed at 4 ° C. for 2 hours, and the finally obtained reaction solution was dialyzed against PBS (pH 6.5) at 4 ° C. to stabilize AsOD of about 2. 5 ml was obtained.

【0020】4−2.安定化作用の確認 4−1で調製した安定化AsODの安定性を、単にBS
Aと共存させた場合と比較した。次の組成を持つAsO
D含有溶液を調製し、4−1で得た安定化AsODとと
もに37℃で保存してその安定性を比較した。活性は、
4−1で得た安定化AsODまたはAsOD含有溶液
0.1mlに100mg/dlのアスコルビン酸溶液0.1ml
を添加し、37℃、5分間反応させ、240nmにおける
アスコルビン酸の吸収変化から決定した。結果は図3に
示すとおりである。安定化AsODでは1週間以上にわ
たってアスコルビン酸の消去能が維持されたのに対し
て、単にBSAと混合した場合には溶解した翌日には活
性の大部分が失われていた。 AsOD含有溶液: AsOD 8mg BSA 8mg 0.1MのPBS(pH6.5)で全量を1.0mlとす
4-2. Confirmation of Stabilizing Action The stability of the stabilized AsOD prepared in 4-1 was measured by simply using BS.
It was compared with the case of coexisting with A. AsO with the following composition
A D-containing solution was prepared and stored at 37 ° C. together with the stabilized AsOD obtained in 4-1 to compare its stability. Activity is
0.1 ml of 100 mg / dl ascorbic acid solution in 0.1 ml of the stabilized AsOD or AsOD-containing solution obtained in 4-1.
Was added, the mixture was reacted at 37 ° C. for 5 minutes, and determined from the change in absorption of ascorbic acid at 240 nm. The results are shown in FIG. Stabilized AsOD retained its ability to eliminate ascorbic acid for over a week, whereas when simply mixed with BSA, most of the activity was lost the day after dissolution. AsOD-containing solution: AsOD 8 mg BSA 8 mg 0.1 M PBS (pH 6.5) to make the total volume 1.0 ml.

【0021】5−1.安定化LPLの製造 デキストランと結合させることによって安定化したLP
Lを製造した。2−1のウリカーゼに代えてLPL(Ch
romobacterium由来、旭化成社製)45mgを用いて安定
化LPL約2.6mlを得た。こうして得られた安定化L
PLは、未処理のものや単にデキストランと共存させた
LPLと比べ、溶液状態での安定性が優れている。
5-1. Production of stabilized LPL LP stabilized by binding with dextran
L was produced. LPL (Ch
45 mg of romobacterium-derived Asahi Kasei) was used to obtain about 2.6 ml of stabilized LPL. Stabilized L thus obtained
PL has excellent stability in a solution state as compared with untreated PL or LPL simply coexisting with dextran.

【0022】[0022]

【発明の効果】本発明によれば、POD、ウリカーゼ、
COD、AsOD、LPLを、溶液状態において高度に
安定化することができる。本発明で安定化された分析試
薬用酵素は2〜10℃という輸送に不便の無い温度にお
いても、6カ月以上にわたって実用的な活性を維持す
る。このように、本発明は分析試薬の溶液状態での供給
に大きく貢献するものである。また本発明で安定化の対
象とした酵素は、多くの酵素試薬の中でも比較的消費量
の大きいものである。したがって経済的な観点から見て
も本発明の効果は大きい。
According to the present invention, POD, uricase,
COD, AsOD, LPL can be highly stabilized in solution. The enzyme for an analytical reagent stabilized in the present invention maintains a practical activity for 6 months or more even at a temperature of 2 to 10 ° C. which is convenient for transportation. As described above, the present invention greatly contributes to the supply of the analytical reagent in a solution state. The enzyme targeted for stabilization in the present invention consumes a relatively large amount among many enzyme reagents. Therefore, the effect of the present invention is great from an economical point of view.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明によって安定化されたPOD
と、処理前のPODの安定性を比較した結果を示すグラ
フである。図中、縦軸は試薬調製直後のPOD活性を1
00とした値を、横軸は時間(月)を示す。
FIG. 1 is a POD stabilized by the present invention.
2 is a graph showing the result of comparing the stability of POD before treatment. In the figure, the vertical axis represents POD activity immediately after preparation of the reagent, which is 1
The value of 00 is set, and the horizontal axis indicates time (month).

【図2】図2は、本発明によって安定化されたCOD
と、未処理のCODを単にPEGと共存させたときの安
定性を比較した結果を示すグラフである。図中、縦軸は
555nmにおける吸光度の変化量を、横軸は反応時間
(分)を示す。
FIG. 2 is a COD stabilized by the present invention.
2 is a graph showing the results of comparing the stability when untreated COD is simply allowed to coexist with PEG. In the figure, the vertical axis represents the amount of change in absorbance at 555 nm, and the horizontal axis represents the reaction time (minutes).

【図3】図3は、本発明によって安定化されたAsOD
と、未処理のAsODを単にBSAと共存させたときの
安定性を比較した結果を示すグラフである。図中、縦軸
は試薬調製直後のAsOD活性(アスコルビン酸消去
能)を100とした値を、横軸は保存期間(日)を示
す。
FIG. 3 is AsOD stabilized by the present invention.
2 is a graph showing the results of comparing the stability when untreated AsOD was simply allowed to coexist with BSA. In the figure, the vertical axis shows the value with the AsOD activity (ascorbic acid scavenging ability) immediately after reagent preparation as 100, and the horizontal axis shows the storage period (days).

Claims (2)

【整理番号】 P−000260 【特許請求の範囲】[Reference Number] P-000260 [Claims] 【請求項1】ペルオキシダーゼ、ウリカーゼ、コレステ
ロールオキシダーゼ、アスコルビン酸オキシダーゼ、リ
ポプロテインリパーゼから選択される酵素を、ウシ血清
アルブミン、デキストラン、ポリエチレングリコールか
ら選択される水溶性担体と化学結合させることを特徴と
する溶液状態における分析試薬用酵素の安定化法
1. An enzyme selected from peroxidase, uricase, cholesterol oxidase, ascorbate oxidase and lipoprotein lipase is chemically bonded to a water-soluble carrier selected from bovine serum albumin, dextran and polyethylene glycol. Method for stabilizing enzyme for analytical reagents in solution
【請求項2】ペルオキシダーゼ、ウリカーゼ、コレステ
ロールオキシダーゼ、アスコルビン酸オキシダーゼ、リ
ポプロテインリパーゼから選択される酵素を、ウシ血清
アルブミン、デキストラン、ポリエチレングリコールか
ら選択される水溶性担体と化学結合させたことを特徴と
する安定化された溶液状の分析試薬用酵素
2. An enzyme selected from peroxidase, uricase, cholesterol oxidase, ascorbate oxidase and lipoprotein lipase is chemically bonded to a water-soluble carrier selected from bovine serum albumin, dextran and polyethylene glycol. Stabilized solution enzyme for analytical reagents
JP23650092A 1992-08-12 1992-08-12 Stabilization of enzyme for analytical reagent and enzyme for solution-state analytical reagent Pending JPH0662846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23650092A JPH0662846A (en) 1992-08-12 1992-08-12 Stabilization of enzyme for analytical reagent and enzyme for solution-state analytical reagent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23650092A JPH0662846A (en) 1992-08-12 1992-08-12 Stabilization of enzyme for analytical reagent and enzyme for solution-state analytical reagent

Publications (1)

Publication Number Publication Date
JPH0662846A true JPH0662846A (en) 1994-03-08

Family

ID=17001655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23650092A Pending JPH0662846A (en) 1992-08-12 1992-08-12 Stabilization of enzyme for analytical reagent and enzyme for solution-state analytical reagent

Country Status (1)

Country Link
JP (1) JPH0662846A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000017299A (en) * 1998-07-01 2000-01-18 San Contact Lens:Kk Proteolytic enzyme-containing cleaning fluid and method for stabilizing proteolytic enzyme in enzymatic cleaning fluid
JP2010148526A (en) * 2010-04-05 2010-07-08 Denka Seiken Co Ltd Quantative method for cholesterol in low density lipoprotein
WO2013161676A1 (en) 2012-04-27 2013-10-31 協和メデックス株式会社 Method for stabilizing cholesterol oxidase
WO2013176225A1 (en) 2012-05-25 2013-11-28 協和メデックス株式会社 Method for stabilizing ascorbic acid oxidase
CN105412942A (en) * 2015-12-23 2016-03-23 沈阳三生制药有限责任公司 Pegylated recombined candida utilis urate oxidase freeze-drying injection

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000017299A (en) * 1998-07-01 2000-01-18 San Contact Lens:Kk Proteolytic enzyme-containing cleaning fluid and method for stabilizing proteolytic enzyme in enzymatic cleaning fluid
JP2010148526A (en) * 2010-04-05 2010-07-08 Denka Seiken Co Ltd Quantative method for cholesterol in low density lipoprotein
WO2013161676A1 (en) 2012-04-27 2013-10-31 協和メデックス株式会社 Method for stabilizing cholesterol oxidase
KR20150013452A (en) 2012-04-27 2015-02-05 교와 메덱스 가부시키가이샤 Method for stabilizing cholesterol oxidase
US9683228B2 (en) 2012-04-27 2017-06-20 Kyowa Medex Co., Ltd. Method for stabilizing cholesterol oxidase
WO2013176225A1 (en) 2012-05-25 2013-11-28 協和メデックス株式会社 Method for stabilizing ascorbic acid oxidase
KR20150014927A (en) 2012-05-25 2015-02-09 교와 메덱스 가부시키가이샤 Method for stabilizing ascorbic acid oxidase
JPWO2013176225A1 (en) * 2012-05-25 2016-01-14 協和メデックス株式会社 Method for stabilizing ascorbate oxidase
US9546363B2 (en) 2012-05-25 2017-01-17 Kyowa Medex Co., Ltd. Method for stabilizing ascorbic acid oxidase
CN105412942A (en) * 2015-12-23 2016-03-23 沈阳三生制药有限责任公司 Pegylated recombined candida utilis urate oxidase freeze-drying injection
CN105412942B (en) * 2015-12-23 2019-02-26 沈阳三生制药有限责任公司 The recombination candida utili urate oxidase freeze dried injection of Pegylation

Similar Documents

Publication Publication Date Title
EP1335931B1 (en) Derivatisation of proteins in aqueous solution
Melchior Jr et al. Ethoxyformylation of proteins. Reaction of ethoxyformic anhydride with. alpha.-chymotrypsin, pepsin, and pancreatic ribonuclease at pH 4
Kamisaki et al. Reduction in immunogenicity and clearance rate of Escherichia coli L-asparaginase by modification with monomethoxypolyethylene glycol.
Plapp et al. Activity of bovine pancreatic deoxyribonuclease A with modified amino groups
Reithel 1 Ureases
US4970156A (en) Immobilization of active protein by cross-linking to inactive protein
US5348852A (en) Diagnostic and therapeutic compositions
EP0523130B2 (en) Enzyme stabilisation
Sherrard et al. In vitro stability of nitrate reductase from wheat leaves: I. Stability of highly purified enzyme and its component activities
US4950609A (en) Stabilized sarcosine oxidase preparation
CA1086615A (en) Stabilised urease
Hidaka et al. Evidence of a hydrazine-reactive group at the active site of the nonheme portion of horseradish peroxidase
Wallace et al. Studies on the carbohydrate moiety of dopamine β-hydroxylase: interaction of the enzyme with concanavalin A
JPH0662846A (en) Stabilization of enzyme for analytical reagent and enzyme for solution-state analytical reagent
JP3125428B2 (en) Modification enzyme
Yoshimoto et al. Polyethylene glycol derivative-modified cholesterol oxidase soluble and active in benzene
Okuda et al. Physiological function and kinetic mechanism of human liver alcohol dehydrogenase as 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha, 26-tetrol dehydrogenase.
Takemori et al. Apo‐and Reconstituted Holoenzymes of Metapyrocatechase from Pseudomonas putida
Rowley et al. The mechanism of action of aldolases: V. Inactivation by fluoro-and chlorodinitrobenzene
DuVal et al. Some kinetic characteristics of immobilized protomers and native dimers of mitochondrial malate dehydrogenase: an examination of the enzyme mechanism
Givol Inactivation of glyceraldehyde-3-phosphate dehydrogenase by a bifunctional reagent
Varalakshmi et al. Altered physicochemical characteristics of polyethylene glycol linked beet stem oxalate oxidase
JPH07102133B2 (en) Method for stabilizing ascorbate oxidase and stabilized enzyme composition
Vetter et al. Avidin can be forced to adopt catalytic activity
EP0426552B1 (en) Composition of stabilized peroxidase, for use as immuno-enzymatic assays