JPH0358366B2 - - Google Patents

Info

Publication number
JPH0358366B2
JPH0358366B2 JP58127783A JP12778383A JPH0358366B2 JP H0358366 B2 JPH0358366 B2 JP H0358366B2 JP 58127783 A JP58127783 A JP 58127783A JP 12778383 A JP12778383 A JP 12778383A JP H0358366 B2 JPH0358366 B2 JP H0358366B2
Authority
JP
Japan
Prior art keywords
molecular weight
reaction
membrane
pva
purification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58127783A
Other languages
Japanese (ja)
Other versions
JPS6020135A (en
Inventor
Kunihiko Sasajima
Susumu Yamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP12778383A priority Critical patent/JPS6020135A/en
Publication of JPS6020135A publication Critical patent/JPS6020135A/en
Publication of JPH0358366B2 publication Critical patent/JPH0358366B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Examining Or Testing Airtightness (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】 本発明は限外過膜、逆浸透膜等の分離用半透
膜および該半透膜より構成されるモジユール及び
それらのモジユールを構成部分とする分離、濃
縮、精製等のプロセスの分子量画性測定用ならび
に漏洩検査用物質として有用な呈色水溶性高分子
物質に関する。
Detailed Description of the Invention The present invention relates to separation semipermeable membranes such as ultrafiltration membranes and reverse osmosis membranes, modules composed of the semipermeable membranes, and separation, concentration, purification, etc. using these modules as constituent parts. This invention relates to a colored water-soluble polymer substance that is useful as a material for measuring molecular weight characteristics and leakage inspection in processes.

本発明の目的は限外過膜等の分離用半透膜お
よび該半透膜より構成されるモジユールおよびプ
ロセスの分子量分画性測定用ならびに漏洩検査用
物質として分析が容易で、精度が高く、肉眼判別
も可能な、さらに半透明膜またはモジユールの漏
洩部分が明確に判別可能で性能測定後も残留がな
い物質であつて、その製法および精製が容易で且
つ安価な物質を提供することにある。
The purpose of the present invention is to provide a separation semipermeable membrane such as an ultrafiltration membrane, a module composed of the semipermeable membrane, and a material for measuring the molecular weight fractionation of processes and for leakage inspection, which is easy to analyze, has high accuracy, and The object of the present invention is to provide a substance that can be identified with the naked eye, allows the leakage part of a translucent membrane or module to be clearly identified, does not remain after performance measurement, is easy to manufacture and purify, and is inexpensive. .

以下に本発明の詳細な説明を行なう。 A detailed explanation of the present invention will be given below.

限外過膜、逆浸透膜のような分離用半透膜お
よび該半透膜より構成されるモジユールの各種検
査用物質としては従来アルブミン、チトクローム
Cなどの蛋白質やデキストランその他の水溶性高
分子が分子量分画性の測定用にまた各種の染料が
逆浸透膜の漏洩検査用に用いられているが、欠陥
部がなく正常な状態でも染料のような低分子量物
質が透過する限外過膜および塩の排除率の低い
逆浸透膜の漏洩検査用物質については安価で適切
なものがなかつた。また分子量分画性の測定に、
蛋白質を用いる場合、蛋白質分子の拡がりの大き
さは、その溶液の状態に依存するところが大き
く、実際の膜の使用条件に合致した値を得ること
が困難である。特に使用する蛋白質に分子質量分
布がある場合系統的なデーターが得られない。蛋
白質を分別し分子量分布がシヤープなものを使用
したとしても安定な水溶液の状態は蛋白質の種類
によつて異なつており、膜の測定条件も異なつて
いるため系統的に妥当性のあるデーターが得られ
ない。さらに精製された蛋白質は高価で且つ腐敗
し易く性能測定後の洗浄に長時間を要するなどモ
ジユール検査用物質としては適当でない。また分
子量の異なる一連のものが得られる水溶性高分子
としてはデキストランやポリビニルアルコール
(以下PVAと称する)等があるが、これらは一般
的な測定機器で濃度を測定するには種々の問題が
ある。
Separation semipermeable membranes such as ultrafiltration membranes and reverse osmosis membranes, as well as various test substances for modules made up of such semipermeable membranes, have conventionally used proteins such as albumin and cytochrome C, and water-soluble polymers such as dextran. Various dyes are used for measuring molecular weight fractionation and for leakage testing of reverse osmosis membranes. There were no inexpensive and suitable materials for leak testing of reverse osmosis membranes, which have a low salt rejection rate. Also, for measuring molecular weight fractionation,
When using proteins, the extent of the spread of protein molecules largely depends on the state of the solution, and it is difficult to obtain a value that meets the actual conditions of use of the membrane. Particularly if the protein used has a molecular mass distribution, systematic data cannot be obtained. Even if proteins are separated and a protein with a sharp molecular weight distribution is used, the state of a stable aqueous solution differs depending on the type of protein, and the membrane measurement conditions also differ, making it difficult to obtain systematically valid data. I can't do it. Further, purified proteins are expensive, easily putrefied, and require a long time to be washed after performance measurement, making them unsuitable as materials for modular testing. In addition, water-soluble polymers that can be obtained in a series of different molecular weights include dextran and polyvinyl alcohol (hereinafter referred to as PVA), but there are various problems in measuring the concentration of these with common measuring instruments. .

例えば高分子には可視光線や紫外線等の吸収が
ないため分光光度計では測定不可能であり、また
液体クロマトグラフの場合には検出に示差屈折計
を用いれば測定可能であるが高分子水溶液と水と
の屈折率差が小さいため検出限界濃度が比較的高
く100〜500ppmである。検出限界濃度の低い機器
としてはTOC(全有機炭素計)があるが非常に高
価である。しかるに、これらの物質を用いて膜の
分画性を測定する場合膜表面に形成されるゲル層
の影響が少なくなるように即ち原液濃度を低くす
る必要があり、必然的に透過水濃度も低くなり透
過率(または排除率)の測定精度を上げることが
難しくなつている。さらに、種々の分子量分布を
有する一連のデキストランおよび同誘導体はいづ
れも高価であるため一般に小型の限外過膜の分
画性測定はできても実用されている一般的なモジ
ユールの分画性測定を行なう場合やプロセスのチ
エツクには多量の試薬を必要とるため極めて不経
済なものとなつていた。これは後述する漏洩検査
用物質についても同様である。比較的安価な
PVAの場合でも分子量の異なる一連のものを入
手することはできるが測定機器による検出限界に
関する問題はデキストランと同様である。
For example, polymers do not absorb visible light or ultraviolet rays, so they cannot be measured with a spectrophotometer, and in the case of a liquid chromatograph, they can be measured using a differential refractometer for detection, but they cannot be measured with aqueous polymer solutions. Since the difference in refractive index with water is small, the detection limit concentration is relatively high, 100 to 500 ppm. TOC (total organic carbon meter) is an instrument with a low detection limit concentration, but it is very expensive. However, when measuring membrane fractionation using these substances, it is necessary to reduce the concentration of the stock solution in order to reduce the influence of the gel layer formed on the membrane surface, and the concentration of the permeated water must also be low. It is becoming difficult to improve the measurement accuracy of transmittance (or rejection rate). Furthermore, since a series of dextrans and their derivatives with various molecular weight distributions are all expensive, it is generally possible to measure the fractionation properties of small ultrafiltration membranes, but it is not possible to measure the fractionation properties of general modules that are in practical use. A large amount of reagents are required to carry out the process or to check the process, making it extremely uneconomical. The same applies to the leakage test material described below. relatively cheap
PVA is also available in a range of different molecular weights, but the problems with detection limits by measuring equipment are similar to those for dextran.

次に漏洩検査用物質としては各種の染料が考え
られるが、染料そのままでは分子量が小さく(普
通の染料では分子量100〜1000程度である)、比較
根黄多方面で使用されているグレードの限外過
膜の場合は透過してしまうため膜を正常に透過し
たものか欠陥部からの漏洩かの判別をすることが
不可能であり、漏洩検査用物質として用をなさな
い。
Next, various dyes can be considered as materials for leak testing, but dyes as they are have a small molecular weight (ordinary dyes have a molecular weight of about 100 to 1000), and are outside the limits of the grade used in many areas. In the case of a membrane, it permeates through the membrane, making it impossible to determine whether the substance has passed through the membrane normally or leaked from a defective part, making it useless as a material for leak testing.

前記のPVAやデキストランを漏洩検査用物質
として用いることも考えられるが、測定機器の検
出限界に関する問題は前記と同様であり、通常漏
洩検査用物質としては漏洩の有無の確認が肉眼で
やれることが望ましい。また膜モジユールの製造
工程において漏洩個所を事前に確認できれば補修
も可能であり、製品の歩留り向上にも寄与するこ
とになる。また、これらの膜モジユールは複数の
膜モジユールが組み合わされたシステムとして分
離、濃縮、精製等のプロセスに用いられている
が、従来は多数のモジユールの中から少数の漏洩
モジユールを見つけ出すのが極めて困難であつ
た。
It is possible to use the above-mentioned PVA or dextran as a material for leak testing, but the problem with the detection limit of the measuring equipment is the same as above, and as a material for leak testing, it is usually possible to confirm the presence or absence of leakage with the naked eye. desirable. Furthermore, if leakage points can be confirmed in advance during the membrane module manufacturing process, repairs can be made, which will also contribute to improving product yield. In addition, these membrane modules are used in processes such as separation, concentration, and purification as a system in which multiple membrane modules are combined, but in the past, it was extremely difficult to find a small number of leaking modules from a large number of modules. It was hot.

本発明の漏洩検査用物質はこれらのプロセスの
多数のモジユールの中から少数の漏洩モジユール
を肉眼で簡単に見つけ出す方法としても用いるこ
とが可能である。さらに欠陥モジユールを発見で
きるのみでなく、欠陥部分の着色状態から欠陥を
生じた原因等の追求が可能となりプロセスの改善
に役立つことはいうまでもない。
The leak testing material of the present invention can also be used as a method for easily detecting a small number of leaking modules from among a large number of modules in these processes with the naked eye. Furthermore, it is possible not only to discover defective modules, but also to investigate the cause of the defect from the coloring state of the defective portion, which is of course useful for improving processes.

本発明の物質を用いるこれらの問題点の全てに
ついて解決することができる。
All of these problems can be solved using the materials of the invention.

以下に本発明の構成を詳しく説明する。 The configuration of the present invention will be explained in detail below.

本発明者らは無色の水溶性高分子物質に反応染
料を化学的に結合させることにより呈色した高分
子物質を得てこれが半透膜の分子量分画性測定用
ならびに漏洩検査用物質として極めて秀れたもの
であることを見出し本発明に到達した。
The present inventors have obtained a colored polymer material by chemically bonding a reactive dye to a colorless water-soluble polymer material, and have found that this material is extremely useful as a material for measuring the molecular weight fractionation of semipermeable membranes and for leak testing. We have discovered that this is an excellent product and have arrived at the present invention.

本発明に用いる水溶性高分子物質はPVA、デ
キストラン、カルボキシメチルセルロース、ヒド
ロキシエチルセルロース、エチルセルロースなど
のような合成または半合成高分子およびデンプ
ン、キトサンなどのような天然高分子があるが中
でも特に合成高分子であるPVAが本発明の目的
に最適である。
The water-soluble polymer substances used in the present invention include synthetic or semi-synthetic polymers such as PVA, dextran, carboxymethyl cellulose, hydroxyethyl cellulose, ethyl cellulose, etc., and natural polymers such as starch, chitosan, etc., but especially synthetic polymers. PVA which is suitable for the purpose of the present invention.

その理由は合成高分子は各種の重合度(または
分子量)のものを任意に合成することが可能で、
中でもPVAは反応染料との反応が円滑で反応後
の生成物と未反応染料との分別精製が容易である
ためである。
The reason is that synthetic polymers can be arbitrarily synthesized with various polymerization degrees (or molecular weights).
Among these, PVA reacts smoothly with reactive dyes, and it is easy to separate and purify the reaction product and unreacted dye.

一方水溶性高分子に結合させて呈色高分子とす
るための呈色物質としては通常セルロースなどの
染料用に使用される反応染料が適している。
On the other hand, as a color-forming substance to be bound to a water-soluble polymer to form a color-forming polymer, a reactive dye normally used for dyes such as cellulose is suitable.

反応性染料が水溶性高分子の官能基と化学的に
結合するので反応生成物は化学的に安定な呈色し
た高分子物となり、一定の濃度以上であれば肉眼
でも識別可能な各種の検査用物質として用いるこ
とができる。
Since the reactive dye chemically bonds with the functional group of the water-soluble polymer, the reaction product becomes a chemically stable colored polymer, which can be used in various tests that can be identified with the naked eye if the concentration is above a certain level. It can be used as a medical substance.

この呈色した高分子は高分子一分子に対して分
子量が1/50〜1/100の大きさの染料一分子程度が
反応することにより得られるので反応によつて起
きる分子量分布のずれは殆んどなく、溶解性およ
び膜による分離特性などは反応前の高分子と変ら
ない。
This colored polymer is obtained by reacting one molecule of dye with a molecular weight of 1/50 to 1/100 with one molecule of polymer, so there is almost no shift in molecular weight distribution caused by the reaction. However, the solubility and membrane separation characteristics are the same as those of the polymer before reaction.

また反応生成物を本発明の目的に使用する場合
には未反応の染料を除去するための精製を行なう
必要があるが、メタノールなどによる繰り返し再
沈法および同時に分子量分布のシヤープ化が可能
な限外過法のどちらを用いてもよい。
In addition, when using the reaction product for the purpose of the present invention, it is necessary to perform purification to remove unreacted dye, but repeated reprecipitation with methanol etc. and simultaneous sharpening of the molecular weight distribution are possible. Either of the extrapass methods may be used.

以上のような方法で得た本発明の呈色高分子を
半透膜の分子量分画性測定用物質または漏洩検査
用物質として用いると以下のような利点がある。
When the coloring polymer of the present invention obtained by the method described above is used as a material for measuring molecular weight fractionation of semipermeable membranes or as a material for leak testing, there are the following advantages.

(イ) 価格が安い (ロ) 10ppm程度の濃度なら肉眼で漏洩を確認でき
る。
(a) It is cheap. (b) If the concentration is around 10 ppm, leakage can be confirmed with the naked eye.

(ハ) 分光光度計や液体クロマトグラフを使用すれ
ば1ppm程度まで漏洩を確認できる。
(c) Using a spectrophotometer or liquid chromatograph, leakage can be confirmed down to about 1 ppm.

(ニ) 欠陥部のない正常な膜には着色せず、膜の欠
陥部に選択的に着色する。
(iv) Selectively colors the defective parts of the film without coloring the normal film without any defects.

(ホ) 一連の分子量分布のシヤープなものをとり揃
えることができる。
(e) A series of products with sharp molecular weight distributions are available.

(ヘ) 漏洩検査と分画性測定を同時に行なうことが
できる。
(f) Leakage inspection and fractionability measurement can be performed simultaneously.

(ト) モジユールの漏洩原因が明らかになり製造工
程を改善できる。
(g) The manufacturing process can be improved by clarifying the cause of module leakage.

(チ) プロセス中の多数のモジユールの中から漏洩
モジユールを見つけ出すことができるなどの特
徴を有する半透膜用の漏洩検査用物質ならびに
分子量分画性測定用物質を提供することができ
る。
(h) It is possible to provide a material for leak testing for semipermeable membranes and a material for measuring molecular weight fractionation, which have characteristics such as being able to find a leaking module from among a large number of modules in a process.

以上に実施例をあげて本発明を詳細に説明す
る。
The present invention will be described in detail with reference to Examples above.

実施例 1 (1) 反応および反応混合物の精製 平均分子量w=149000のPVA(日本合成化
学(株)製GH−23)を5重量%になるように水に
溶解して撹拌しながら50℃に加温する。
Example 1 (1) Reaction and purification of reaction mixture PVA (GH-23 manufactured by Nippon Gosei Kagaku Co., Ltd.) with an average molecular weight w = 149,000 was dissolved in water to a concentration of 5% by weight and heated to 50°C with stirring. Warm up.

次に別途調整した5重量%の反応染料(住友
化学(株)Sumifix Brilliant Red H−B)水溶液
を同温度にて前記PVA水溶液50部に対し25部
添加する。これを50℃に保ちながら1時間撹拌
した後別途調整した10重量%の炭酸ナトリウム
水溶液を25部添加し、撹拌しながら60℃に昇温
し、同温度のまま3時間撹拌を続ける。
Next, 25 parts of a separately prepared 5% by weight aqueous solution of reactive dye (Sumifix Brilliant Red HB, manufactured by Sumitomo Chemical Co., Ltd.) is added at the same temperature to 50 parts of the PVA aqueous solution. After stirring this for 1 hour while maintaining the temperature at 50°C, 25 parts of a separately prepared 10% by weight aqueous sodium carbonate solution was added, the temperature was raised to 60°C while stirring, and stirring was continued at the same temperature for 3 hours.

この反応混合物水溶液を室温まで冷却する。
次にこの反応混合物を以下の方法にて精製す
る。反応混合物水溶液をアセトン中に沈澱させ
た後、この沈澱物をメタノールで繰り返し洗浄
する。メタノール中に染料の着色が認められな
くなつたら乾燥する。
The aqueous reaction mixture is cooled to room temperature.
Next, this reaction mixture is purified by the following method. After precipitating the aqueous reaction mixture into acetone, the precipitate is washed repeatedly with methanol. Dry when the dye is no longer visible in the methanol.

乾燥後再び90℃の温水に溶解し、これをメタ
ノール中に再沈させる。再沈時メタノールが着
色したら新しいメタノールで洗浄し、メタノー
ルに着色が認められなくなるまで上記の溶解と
再沈を繰り返し乾燥する。
After drying, dissolve again in warm water at 90°C, and reprecipitate in methanol. When the methanol becomes colored during reprecipitation, it is washed with fresh methanol, and the above dissolution and reprecipitation are repeated until the methanol is no longer colored and dried.

(2) 限外過膜による透過性能測定 (1)で得られたサンプルを用いて限外過膜に
よる透過性能測定を行なつた。使用した限外
過膜はダイセル化学(株)DUY−M(変性ポリアク
リロニトリル製、分画分子量:20000)および
DUY−L(変性ポリアクリロニトリル製、分画
分子量:40000)で運転圧力3Kg/cm2、反応、
精製物水溶液濃度は1000ppmである。除去率を
計算するための濃度測定は(株)島津製作所製高速
液体クロマトグラフLC−3A型を使用した。
(2) Measurement of permeability performance using an ultrafiltration membrane Using the sample obtained in (1), permeation performance measurement was performed using an ultrafiltration membrane. The ultrafiltration membranes used were Daicel Chemical Co., Ltd. DUY-M (made of modified polyacrylonitrile, molecular weight cutoff: 20000) and
Reaction using DUY-L (made of modified polyacrylonitrile, molecular weight cut off: 40000) at an operating pressure of 3 Kg/cm 2 ,
The concentration of purified product aqueous solution is 1000 ppm. A high performance liquid chromatograph LC-3A manufactured by Shimadzu Corporation was used to measure the concentration to calculate the removal rate.

(3) 吸収波長測定 分光光度計((株)日立自記分光光度計EPS3T
型)を用いて(1)で得られた反応・精製物サンプ
ルの可視および紫外領域での吸収ピークが最大
となる波長λmaxを求めた。ピークが2つある
ものはそれぞれのピークの頂点位置の波長を示
した。
(3) Absorption wavelength measurement Spectrophotometer (Hitachi Self-Recording Spectrophotometer EPS3T)
The wavelength λmax at which the absorption peak in the visible and ultraviolet regions of the reaction/purification sample obtained in (1) was maximized was determined using the following method. For those with two peaks, the wavelength at the apex position of each peak is shown.

なお、反応・精製法は福井大学工学部繊維染
料工学科、山岸康秀、昭和43年卒業論文を、各
種PVAの平均分子量wの計算 〔7〕30=11.7×10-4w0.57はW.H.
Stockmayer、J.of Polymer Sci.、C−1、
137(1963)を参考にした。
The reaction and purification method is based on the 1963 graduation thesis by Yasuhide Yamagishi, Department of Textile and Dye Engineering, Faculty of Engineering, University of Fukui, and the calculation of the average molecular weight w of various PVA [7] 30 = 11.7 × 10 -4 w 0.57 is WH
Stockmayer, J. of Polymer Sci., C-1,
137 (1963) as reference.

実施例 2〜6 反応に用いた原料PVAと反応染料を表1に記
載した組み合わせにした以外は実施例1と同様に
行なつた。
Examples 2 to 6 The same procedure as in Example 1 was conducted except that the raw material PVA and reactive dye used in the reaction were used in the combinations shown in Table 1.

表1は実施例1〜6までの各PVAと反応染料
の組み合わおよび反応・精製を1回行なつた反
応・精製物についての可視領域、紫外領域の吸収
波長限外過膜による透過性能を示したものであ
る。
Table 1 shows the transmission performance of each combination of PVA and reactive dye in Examples 1 to 6 and the reaction and purification products that were subjected to one reaction and purification using the absorption wavelength ultraviolet membrane in the visible and ultraviolet regions. It is something that

比較例 1〜4 実施例1〜4に使用した原料PVAの限外過
膜による透過性能を(実施例1(2)に記載した方法
と同じ方法で)求めた。除去率の計算に使用した
濃度はTOCにより測定した。
Comparative Examples 1 to 4 The permeation performance of the raw material PVA used in Examples 1 to 4 through an ultrafiltration membrane was determined (by the same method as described in Example 1 (2)). Concentrations used to calculate removal rates were measured by TOC.

表−2は比較例1〜4までのテスト結果を示し
たものである。表−1および表−2の除去率が対
応するPVAについて同じであることから考えて
反応染料を反応させても検査物質用高分子として
の特性は変らないことがわかる。
Table 2 shows the test results of Comparative Examples 1 to 4. Considering that the removal rates in Tables 1 and 2 are the same for the corresponding PVA, it can be seen that the properties as a polymer for test substances do not change even if a reactive dye is reacted.

これらの結果から表−1中の各反応・精製物の
限外過膜による除去率の異なる物質を適宜選択
することにより、肉眼でも確認が容易で、分析精
度の高い漏洩検査用物質または分子量分画性測定
用物質として使用することができる。
Based on these results, by appropriately selecting substances with different removal rates by the ultrafiltration membrane for each reaction/purification product in Table 1, we can create leakage test substances or molecular weight substances that are easy to confirm with the naked eye and have high analysis accuracy. It can be used as a substance for measuring image quality.

中でも除去率R>99.9%を示した実施例1、
5、6の反応・精製物が漏洩検査用物質として適
していることがわかる。
Among them, Example 1 which showed a removal rate R>99.9%,
It can be seen that the reaction and purified products of Nos. 5 and 6 are suitable as materials for leakage testing.

実施例 7 次にこれら3種類の反応・精製物の限外過膜
に対する着色性を調べるために以下に示す条件で
処理した結果、実施例1、5の反応・精製物は限
外過膜面全体にわづかに着色したが実施例6の
反応・精製物による着色は皆無であつた。したが
つて変性ポリアクリロニトリル製膜に対してはこ
の実施例6の反応・精製物が漏洩検査用物質とし
て最も適している。
Example 7 Next, in order to examine the coloring properties of these three types of reaction/purification products on the ultrafiltration membrane, they were treated under the conditions shown below. As a result, the reaction/purification products of Examples 1 and 5 were Although the entire product was slightly colored, there was no coloration due to the reaction and purification product of Example 6. Therefore, for the production of modified polyacrylonitrile films, the reaction and purification product of Example 6 is most suitable as a material for leakage testing.

着色性確認テスト条件 限外過膜:ダイセル化学(株)製DUY−M(分画分
子量20000) 反応・精製物濃度:1000ppm水溶液 限外過処理圧力:3Kg/cm2 温度:室温 運転時間:1時間 実施例 8 次に漏洩個所に特定が可能かどうかを調べるた
めに限外過膜に故意に数個のピンホールを穿
ち、実施例7と同じ条件で運転し、運転終了後限
外過膜をとりはずして検査した結果、実施例
1、5、6の反応・精製物とも限外過膜のピン
ホール部分にだけ鮮やかに着色した。
Colorability confirmation test conditions Ultrafiltration membrane: DUY-M manufactured by Daicel Chemical Co., Ltd. (molecular weight cut off 20000) Reaction/purification product concentration: 1000ppm Aqueous solution ultrafiltration pressure: 3Kg/cm 2 Temperature: Room temperature Operating time: 1 Time Example 8 Next, in order to investigate whether it is possible to identify the leakage location, several pinholes were intentionally made in the ultrafiltration membrane, and the ultrafiltration membrane was operated under the same conditions as in Example 7. As a result of removing and inspecting the ultrafiltration membrane, the reaction and purification products of Examples 1, 5, and 6 showed bright color only in the pinhole portion of the ultrafiltration membrane.

比較のために実施例1、5、6に用いた反応染
料を付加量相当濃度に調整した水溶液を用いた以
外は実施例7と同じ条件で運転し、運転終了後限
外過膜をとりはづして検査した結果いづれの反
応染料とも限外過膜面全体に着色し且つ限外
過透過液側に透過した。
For comparison, the operation was carried out under the same conditions as in Example 7, except that an aqueous solution adjusted to a concentration equivalent to the added amount of the reactive dye used in Examples 1, 5, and 6 was used, and after the end of the operation, the ultrafiltration membrane was not removed. As a result of the tests, all of the reactive dyes colored the entire ultrafiltration membrane surface and permeated to the ultrafiltration liquid side.

従つて反応染料だけでは、漏洩検査が不可能で
あつた。本発明の検査用物質が膜の欠陥部以外を
着色しなかつたことと限外過透過液が無色透明
であつたことは本発明の検査用物質がPVAと反
応染料の混合物ではなく、これらが化学的に結合
していることを示すものであると考えられる。
Therefore, leakage testing has not been possible using reactive dyes alone. The fact that the test substance of the present invention did not color areas other than the defective parts of the membrane and that the ultrafiltrate was clear and colorless means that the test substance of the present invention is not a mixture of PVA and reactive dye. This is thought to indicate that they are chemically bonded.

実施例 9 次に実施例1〜6までの反応・精製物の検出限
界を調べるために、紫外領域における吸収波長
285mμを用いて分光光度計および液体クロマト
グラフ((株)島津製作所LC−3A型高速液体クロマ
トグラフ・カラム:Sholex oHPAK B800P+
B805+B803)検出器:SPD−2A(UV):Shodex
R1、SE−11(R)により吸光度チヤートおよ
び屈折率チヤートのピーク面積から検量線を作成
して濃度を求めた結果1〜10ppmであつた。
Example 9 Next, in order to investigate the detection limits of the reaction and purified products of Examples 1 to 6, the absorption wavelength in the ultraviolet region was determined.
Using a 285 mμ spectrophotometer and liquid chromatograph (Shimadzu Corporation LC-3A high performance liquid chromatograph column: Sholex oHPAK B800P+
B805+B803) Detector: SPD-2A (UV): Shodex
A calibration curve was prepared from the peak areas of the absorbance chart and the refractive index chart using R1, SE-11 (R), and the concentration was determined to be 1 to 10 ppm.

第1図は原料PVA#500の、また第2図は
PVA#500と反応染料Sumifix Brilliant Red H
−Bとの反応・精製物の精製途中の物質および未
反応の染料の吸光度チヤートおよび屈折率チヤー
トの一例である。
Figure 1 shows the raw material PVA#500, and Figure 2 shows the raw material PVA#500.
PVA#500 and reactive dye Sumifix Brilliant Red H
-B is an example of an absorbance chart and a refractive index chart of a substance in the middle of purification of a purified product and an unreacted dye.

第1図において1は紫外線検出器を用いて測定
した吸光度、2は示差屈折検出器を用いて測定し
た屈折率、第2図において1は紫外線検出器を用
いて測定した染料未反応物の吸光度、2は紫外線
検出器を用いて測定した反応・精製物の精製途中
の物質の吸光度、3は示差屈折検出器を用いて測
定した同物質の屈折率を示す。
In Figure 1, 1 is the absorbance measured using an ultraviolet detector, 2 is the refractive index measured using a differential refraction detector, and in Figure 2, 1 is the absorbance of unreacted dye measured using an ultraviolet detector. , 2 indicates the absorbance of the substance in the process of being reacted and purified using an ultraviolet detector, and 3 indicates the refractive index of the same substance measured using a differential refraction detector.

第1図、第2図とも縦軸は紫外線検出器の場合
は紫外部吸収波長286μを用いた吸光度、示差屈
折検出器の場合は屈折率、横軸はいづれも
Elutiontime(分)を示す。
In both Figures 1 and 2, the vertical axis is absorbance using an ultraviolet absorption wavelength of 286μ in the case of an ultraviolet detector, and the refractive index in the case of a differential refraction detector, and the horizontal axis is in both figures.
Indicates elution time (minutes).

本実施例は実施例3で得られた反応混合物を限
外過膜DUY−Mを用いて水溶液濃度を水に添
加することによつて1000ppmに保ちながら定容連
続過によつて膜の透過物に着色が見られなくな
るまで精製した。限外過処理圧力は3Kg/cm2
ある。
In this example, the reaction mixture obtained in Example 3 was added to water using an ultrafiltration membrane DUY-M to maintain the aqueous solution concentration at 1000 ppm, and the permeate of the membrane was filtered through constant volume continuous filtration. It was purified until no coloration was observed. The ultra-overtreatment pressure is 3 Kg/cm 2 .

この精製物を液体クロマトグラフで調べると第
3図のようになる。即ち未反応物が除去されるの
みでなく、低分子側のものが除去され、実施例1
(2)の再沈法で精製した物質を液体クロマトグラフ
で調べた第4図のものと比べてピーク(分子量分
布)がシヤープになつていることがわかる。即ち
実施例1(2)に示した反応物の精製操作の代りに限
外過処理をすれば未反応物の除去とPVAの低
分子物の除去が同時に行なわれるので好都合であ
る。
When this purified product is examined using a liquid chromatograph, the results are shown in Figure 3. That is, not only unreacted substances were removed, but also those on the low molecular side were removed.
It can be seen that the peak (molecular weight distribution) is sharp compared to that in Figure 4, which is a liquid chromatograph examination of the substance purified by the reprecipitation method (2). That is, if ultrafiltration treatment is used instead of the purification operation of the reactant shown in Example 1 (2), it is convenient because the removal of unreacted substances and the removal of low molecular weight substances of PVA can be carried out at the same time.

表−1に示すように除去率が実施例3の場合よ
り高くなつていることからも低分子物が除去され
分子量分布がシヤープになつていることがわか
る。このように膜によつて精製した反応・精製物
は精度の高い分子量分画性測定物質および漏洩検
査用物質として有用である。なお第3図、第4図
ともたて軸は紫外部吸収波長286mμを用いた吸
光度、横軸はElution time(分)を示す。
As shown in Table 1, the removal rate is higher than in Example 3, which indicates that low molecular weight substances are removed and the molecular weight distribution becomes sharp. The reaction and purified product purified by the membrane in this way is useful as a substance for highly accurate molecular weight fractionation measurement and a substance for leak testing. In addition, in FIGS. 3 and 4, the vertical axis shows the absorbance using an ultraviolet absorption wavelength of 286 mμ, and the horizontal axis shows the elution time (minutes).

また表−3に示すように反応をくり返して反応
染料の付加量を増加させた場合、検出限界濃度が
0.1〜1ppmになるまで精度を上げることができる
ことが判明した。表−3は実施例1で得られた平
均分子量149000のPVAとクロルトリアジニル型
反応染料との反応・精製物をその後3回同反応精
製をくり返して得られた物質の染料付加量を示し
たものである。
In addition, as shown in Table 3, when the reaction is repeated and the amount of reactive dye added is increased, the detection limit concentration increases.
It turns out that the accuracy can be increased to 0.1-1 ppm. Table 3 shows the amount of dye added to the material obtained by repeating the same reaction and purification three times for the reaction and purification of PVA with an average molecular weight of 149,000 and the chlortriazinyl type reactive dye obtained in Example 1. It is something that

この4回反応・精製繰り返した物質の肉眼で判
別できる限界濃度は10ppm以下であり、通常の漏
洩検査を行なう場合は測定機器なしでも可能であ
ることがわかる。なお染料付加量の測定は分光光
度計の吸光度チヤートのピーク面積から検量線を
作成して求めた。
The limit concentration that can be determined with the naked eye for this substance that has been reacted and purified four times is 10 ppm or less, indicating that normal leakage tests can be performed without measuring equipment. The amount of dye added was determined by creating a calibration curve from the peak area of the absorbance chart of a spectrophotometer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例3に用いた原料PVAの液体ク
ロマトグラフの吸光度チヤートおよび屈折率チヤ
ートで、第2図は同実施例に用いた染料未反応物
および1回反応・精製物の精製途中の物質の液体
クロマトグラフの吸光度チヤートおよび屈折率チ
ヤートである。第3図は限外過膜で精製した物
質の、第4図はメタノール再沈法で精製した物質
の液体クロマトグラフの吸光度チヤートである。
Figure 1 shows the absorbance chart and refractive index chart of the liquid chromatograph of the raw material PVA used in Example 3, and Figure 2 shows the unreacted dye and the once-reacted/purified dye used in the same example during purification. Absorbance chart and refractive index chart of a liquid chromatograph of a substance. FIG. 3 is a liquid chromatograph absorbance chart of a substance purified using an ultrafiltration membrane, and FIG. 4 is a liquid chromatographic absorbance chart of a substance purified by a methanol reprecipitation method.

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 反応染料と化学結合する官能基を有する無色
の水溶性高分子に反応染料を反応させてなる呈色
高分子物質であつて、その分子量分布がシヤープ
であることを特徴とする、分離用半透膜の評価に
用いられる膜性能測定用および漏洩検査用物質。
1. A color-forming polymer substance made by reacting a reactive dye with a colorless water-soluble polymer having a functional group that chemically bonds with the reactive dye, which is characterized by a sharp molecular weight distribution. Membrane performance measurement and leakage testing materials used to evaluate permeable membranes.
JP12778383A 1983-07-15 1983-07-15 Material for measuring membrane performance and inspecting leakage Granted JPS6020135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12778383A JPS6020135A (en) 1983-07-15 1983-07-15 Material for measuring membrane performance and inspecting leakage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12778383A JPS6020135A (en) 1983-07-15 1983-07-15 Material for measuring membrane performance and inspecting leakage

Publications (2)

Publication Number Publication Date
JPS6020135A JPS6020135A (en) 1985-02-01
JPH0358366B2 true JPH0358366B2 (en) 1991-09-05

Family

ID=14968567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12778383A Granted JPS6020135A (en) 1983-07-15 1983-07-15 Material for measuring membrane performance and inspecting leakage

Country Status (1)

Country Link
JP (1) JPS6020135A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01307635A (en) * 1988-06-03 1989-12-12 Hamamatsu Photonics Kk Method of evaluating material transmission performance of thin film for testing
KR100859818B1 (en) * 2001-03-29 2008-09-24 코닌클리케 필립스 일렉트로닉스 엔.브이. Method and apparatus for measuring the permeation rate of a substrate, method for testing a set of substrates from a batch on permeability, and method for measuring the permeation rate of an encapsulation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5231386A (en) * 1975-09-05 1977-03-09 Hitachi Ltd Device for deenergizing magnetic blowwout circuit breaker
JPS5536333B2 (en) * 1976-06-01 1980-09-19

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5536333U (en) * 1978-08-29 1980-03-08

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5231386A (en) * 1975-09-05 1977-03-09 Hitachi Ltd Device for deenergizing magnetic blowwout circuit breaker
JPS5536333B2 (en) * 1976-06-01 1980-09-19

Also Published As

Publication number Publication date
JPS6020135A (en) 1985-02-01

Similar Documents

Publication Publication Date Title
EP0254202B1 (en) Method of preparing integral multilayer analytical element
Lübbers et al. Opticl fluorescence sensors for continuous measurement of chemical concentrations in biological systems
US4069017A (en) Colorimetric assay for bilirubin
US4842783A (en) Method of producing fiber optic chemical sensors incorporating photocrosslinked polymer gels
Causserand et al. Improvement of a method for the characterization of ultrafiltration membranes by measurements of tracers retention
US5788862A (en) Filtration medium
US6159369A (en) Process for the partial modification of porous, hydrophilitic filter membranes, of filter membranes treated in such manner and filter modules equipped with such filter membranes, especially filter cartridges
JP2019206000A (en) Separation membrane contaminated state analytic method, filtration object water quality evaluation method using the method, and filtration system for performing separation membrane contaminated state analytic method
EP0785429B1 (en) Glass/cellulose as protein reagent
Clark et al. The colorimetric determination of hydrogen ion concentration and its applications in bacteriology part II
GB1585423A (en) Detecting leaks
EP0789839B1 (en) Ion sensor and a method for producing same
US6630989B1 (en) Method and device for determining the concentration of heparin in a sample of fluid
JPH0358366B2 (en)
EP0418169A2 (en) Method for determination of ion concentration, specific gravity, or osmotic pressure of a solution and apparatus therefor
Li et al. Protein transport through membranes based on toluene diisocyanate surface-modified poly (vinyl alcohol) gels
JPH06254358A (en) Detection of defect of reverse osmosis membrane
WO2002035216A1 (en) Multilayer analytical element and method for determination of analytes in fluids containing interfering substances
CN113188977B (en) TEP-based coagulant regulation and control method and application thereof
CN112657347A (en) Regenerated cellulose ultrafiltration membrane and application and preparation method thereof
Huglin Determination of molecular weights by light scattering
CN106124387A (en) Method for testing retention rate of ultrafiltration membrane
JP3233357B2 (en) Depth filter integrity test method
US3645890A (en) Reverse osmosis membranes from crystalline polymers of vinyl methyl ether
US3881822A (en) Method for determining chrysotile (asbestos) in the talc