JPH0358288B2 - - Google Patents

Info

Publication number
JPH0358288B2
JPH0358288B2 JP60034577A JP3457785A JPH0358288B2 JP H0358288 B2 JPH0358288 B2 JP H0358288B2 JP 60034577 A JP60034577 A JP 60034577A JP 3457785 A JP3457785 A JP 3457785A JP H0358288 B2 JPH0358288 B2 JP H0358288B2
Authority
JP
Japan
Prior art keywords
olefin polymer
gel
molecular weight
solvent
ultra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60034577A
Other languages
Japanese (ja)
Other versions
JPS61193836A (en
Inventor
Koichi Kono
Shoichi Mori
Kenji Myasaka
Joichi Tabuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Corp filed Critical Tonen Corp
Priority to JP60034577A priority Critical patent/JPS61193836A/en
Priority to DE8686301047T priority patent/DE3676211D1/en
Priority to EP86301047A priority patent/EP0193318B1/en
Priority to US06/832,916 priority patent/US4734196A/en
Publication of JPS61193836A publication Critical patent/JPS61193836A/en
Publication of JPH0358288B2 publication Critical patent/JPH0358288B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • B01D71/262Polypropylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/052Inducing phase separation by thermal treatment, e.g. cooling a solution
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/054Precipitating the polymer by adding a non-solvent or a different solvent
    • C08J2201/0542Precipitating the polymer by adding a non-solvent or a different solvent from an organic solvent-based polymer composition
    • C08J2201/0543Precipitating the polymer by adding a non-solvent or a different solvent from an organic solvent-based polymer composition the non-solvent being organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/054Precipitating the polymer by adding a non-solvent or a different solvent
    • C08J2201/0545Precipitating the polymer by adding a non-solvent or a different solvent from an aqueous solvent-based polymer composition
    • C08J2201/0546Precipitating the polymer by adding a non-solvent or a different solvent from an aqueous solvent-based polymer composition the non-solvent being organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、超高分子量α−オレフイン重合体フ
イルムの製造方法に関する。 従来の技術 超高分子量α−オレフイン重合体、例えば超高
分子量ポリプロピレンは、通常分子量のポリプロ
ピレンに比べて引張弾性率、引張強度、耐摩耗
性、耐薬品性、耐衝撃性などに優れているため、
エンジニヤリングプラスチツクとして用途が拡大
されつつある。しかしながら、この超高分子量ポ
リプロピレンは、通常分子量のポリプロピレンに
比べて分子鎖のからみが著しく溶融粘度が極めて
高く流動性が悪いため、従来の押出成形によつて
薄いフイルムを成形することは非常に難かしく加
工性に問題があつた。 超高分子量α−オレフイン重合体成形物の製造
方法としては、例えば、実質的にポリエチレンま
たはポリプロピレンである超高分子量熱可塑性結
晶性重合体を非揮発性溶剤に溶解し、この溶液か
らゲルを成形し、この非揮発性溶剤を含むゲルま
たはゲル中に含まれる溶剤を揮発性溶剤で抽出除
去した乾燥ゲルを加熱延伸する実質的に繊維であ
る熱可塑性形状物品の製造方法(特開昭58−5228
号公報)が提案されている。しかし、この方法で
は均一な高倍率の延伸フイルムが得難く、極薄膜
化は十分ではなかつた。 発明が解決しようとする問題点 本発明は、超高分子量α−オレフイン重合体を
高倍率で延伸することによる、高弾性、高強度で
かつ透明な薄い超高分子量α−オレフイン重合体
フイルムを得ることを目的とする。 問題点を解決するための手段 本発明者らは、超高分子量α−オレフイン重合
体の延伸フイルムの製造方法について種々の検討
を行つた結果、超高分子量α−オレフイン重合体
の溶液から成形したゲル状成形物中に含まれる溶
媒の特定範囲において均一な高倍率の延伸が可能
であることを見出し、本発明を完成した。 すなわち、本発明は、重量平均分子量が5×
105以上のα−オレフイン重合体を溶媒中で加熱
溶解した溶液からゲル状物を成形し、該ゲル状成
形物をそれに含む溶媒の少くとも10重量%を除去
して該ゲル状成形物に含まれる該α−オレフイン
重合体が10〜90重量%になるようにした後、該α
−オレフイン重合体の融点+10℃以下の温度で延
伸し、得られた延伸成形物をそれに含まれる残存
溶媒を除去した後に、該α−オレフイン重合体の
融点未満の温度で加圧処理することを特徴とする
超高分子量α−オレフイン重合体フイルムの製造
方法である。 本発明において用いる超高分子量α−オレフイ
ン重合体は、重量平均分子量が5×105以上、好
ましくは1×106〜15×106の範囲のものである。
重量平均分子量が5×105未満では、超高分子量
α−オレフイン重合体の特徴である高弾性率で高
強度のフイルムが得られない。一方、上限は特に
限定されないが15×106を越えるものは、ゲル状
成形においても成形加工性が劣る。このような超
高分子量α−オレフイン重合体としては、プロピ
レン、1−ブテン、4−メチル−1−ペンテン、
1−ヘキセンなどを重合した結晶性の単独重合体
またはこれらα−オレフインと10モル%以下のエ
チレンもしくは他のα−オレフインとの共重合体
があげられる。これらのちではプロピレンを主体
とする超高分子量ポリプロピレンが好ましい。な
お、上記の超高分子量α−オレフイン重合体には
必要に応じて酸化防止剤、紫外線吸収剤、滑剤、
アンチブロツキング剤、顔料、染料、無機充填剤
などの各種添加剤を本発明の目的を損わない範囲
で添加することができる。 本発明において原料となる超高分子量α−オレ
フイン重合体の溶液は、上記の重量平均分子量5
×105以上のα−オレフイン重合体を溶媒中で加
熱溶解して調製する。この溶媒としては、該α−
オレフイン重合体を十分に溶解できるものであれ
ば特に限定されない。例えば、ノナン、デカン、
ウンデカン、ドデカン、デカリン、パラフイン油
などの脂肪族または環式の炭化水素あるいは沸点
がこれらに対応する鉱油留分などがあげられる
が、含有溶媒量が安定なゲル状成形物を得るため
にはパラフイン油のような不揮発性の溶媒が好ま
しい。加熱溶解は、該α−オレフイン重合体が溶
媒中で完全に溶解する温度で撹拌しながら行う。
その温度は使用される重合体および溶媒により異
なるが、例えばポリプロピレンの場合には160〜
250℃の範囲である。また、α−オレフイン重合
体溶液の濃度は1〜10重量%が好ましい。あまり
濃度が高いと均一な溶液の調製が難かしい。な
お、加熱溶解にあたつてはα−オレフイン重合体
の酸化劣化を防止するために酸化防止剤を添加す
ることが好ましい。 次に、このα−オレフイン重合体加熱溶液を適
宜選択されたダイスからシート状、またはチユー
ブ状に押出し、あるいは支持体上に流延し、水
浴、空気浴、溶剤などでゲル化温度以下、好まし
く15〜25℃の温度に少くとも50℃/分の速度で冷
却してゲル状化する。ゲル状成形物の厚さは通常
0.1〜5mm程度に成形される。このゲル状シート
は、α−オレフイン重合体溶解時の溶媒で膨潤さ
れたもので脱溶媒処理が必要である。 脱溶媒処理は、ゲル状成形物を易揮発性溶剤に
浸漬し抽出して乾燥する方法、圧縮する方法、加
熱する方法またはこれらの組合せによる方法など
があげられるが、ゲル状成形物の構造を著しく変
化させることなく溶媒を除去できる易揮発性溶剤
による抽出除去が好ましい。この易揮発性溶剤と
しては、ペンタン、ヘキサン、ヘプタン、などの
炭化水素、塩化メチレン、四塩化炭素などの塩素
化炭化水素、三フツ化エタンなどのフツ化炭化水
素、ジエチルエーテル、ジオキサンなどのエーテ
ル類、その他メタノール、エタノール、プロパノ
ールなどのアルコール類などがあげられる。これ
らの溶剤はα−オレフイン重合体の溶解に用いた
溶媒により適宜選択し、単独もしくは混合して用
いられる。 また、ゲル状成形物中の溶媒の除去量は、含ま
れる溶媒に対して少くとも10重量%で、該ゲル状
成形物中に含まれる超高分子量α−オレフイン重
合体が10〜90重量%、好ましくは20〜60重量%に
なるように脱溶媒処理することが必要である。ゲ
ル状成形物からの溶媒の除去量が含まれる溶媒に
対し10重量%未満で、ゲル状成形物中に含まれる
該α−オレフイン重合体が10重量%未満ではゲル
状成形物が溶媒で高度に膨潤しているために加熱
延伸においてゲルの溶解を起し易い。また、部分
的に不均一延伸を起し易く厚さの均一な延伸成形
物が得難く、延伸にともなう溶媒の滲み出しなど
取扱いの上からも好ましくない。一方、ゲル状成
形物中に含まれる該α−オレフイン重合体が90重
量%を越える溶媒の除去は、ゲル状成形物の網状
組織の緻密化が進み過ぎで高倍率の延伸ができず
極薄で高弾性率および高強度のフイルムが得られ
ない。なお、ゲル状成形物中に含まれる溶媒の除
去量は、ゲル状成形物に対する易揮発性溶剤の接
触量、時間あるいはゲル状成形物の圧縮圧力など
によつて調節することができる。 また、ゲル状成形物の易揮発性溶剤による脱溶
媒処理では、ゲル状成形物中に置換された易揮発
性溶剤の蒸発に伴ないゲル状成形物が3軸方向へ
の収縮やたわみを生ずるために、これを防止し、
均一で高倍率の延伸を可能とする平滑で二軸
(縦、横)方向に収縮の小さい原反を得るため、
ゲル状成形物を厚さ方向に選択的に収縮すること
が好ましい。その収縮率は、厚さ方向に50%以
上、好ましくは70%以上で、また2軸方向には20
%以下であることが好ましい。ゲル状成形物の厚
さ方向への選択的な収縮は、例えばゲル化成形物
を片滑な支持体へ密着、2軸方向からの把持ある
いは多孔質板で挟むなどの状態で易揮発性溶剤を
蒸発させる方法があげられる。 延伸は、脱溶媒処理されたゲル状成形物の原反
を加熱し、通常のテンター法、ロール法、インフ
レーシヨン法、圧延もしくはこれらの方法の組合
せによつて所定の倍率で2軸延伸する。2軸延伸
は、同時または逐次のどちらであつてもよい。 延伸温度は、超高分子量α−オレフイン重合体
の融点+10℃以下、好ましくは結晶分散温度から
融点未満の範囲である。例えば、ポリプロピレン
の場合は90〜180℃で、より好ましくは130〜170
℃の範囲である。延伸温度が融点+10℃を越える
場合は、樹脂の過度の溶融により延伸による配向
ができない。また、延伸温度が結晶分散温度未満
では、樹脂の軟化が不十分で延伸において破膜し
易く高倍率の延伸ができない。 また、延伸倍率は、原反の厚さによつて異なる
が、1軸方向で少くとも2倍以上、好ましくは5
〜20倍、面倍率で10倍以上、好ましくは25〜400
倍である。面倍率が10倍未満では延伸が不十分で
高弾性、高強度のフイルムが得られないために好
ましくない。一方、面倍率が400倍を越えると延
伸装置、延伸操作などの点で制約が生じるために
好ましくない。 延伸成形物は、前記の易揮発性溶剤に浸漬して
残留する溶媒を抽出除去した後溶剤を蒸発して乾
燥する。溶媒の抽出は、延伸成形物中の溶媒を1
重量%未満に迄除去することが必要である。 さらに、残留溶媒を除去した延伸成形物は、空
孔を有し不透明であるために、該延伸成形物を構
成するα−オレフイン重合体の融点以下で加圧処
理を行うことが必要である。例えば、ポリプロピ
レンの場合の具体的な加圧処理としては、温度80
〜160℃の範囲で、プレスまたはロール圧延する
方法があげられる。加圧処理は、温度が融点を越
えると延伸成形物に熱収縮が発生し、一方80℃に
満たない低温では延伸成形物の空孔を無くするこ
とができず、透明で高弾性および高強度の極薄フ
イルムが得られない。 本発明の超高分子量α−オレフイン重合体延伸
フイルムの厚さは、用途に応じて適宜選択され得
るが、通常は0.05ないし10μm、好ましくは0.1な
いし4μmの範囲である。 以上、本発明の方法によれば、引張弾性率が
1000Kg/cm2以上、破断強度が200Kg/cm2以上、ヘ
イズが10%以下、好ましくは5%以下の実質的に
空孔を有しない超高分子量α−オレフイン重合体
延伸フイルムを得ることができる。 発明の効果 本発明の方法によれば超高分子量α−オレフイ
ン重合体から高倍率延伸により超薄膜化が可能で
ある。また、得られる超高分子量α−オレフイン
重合体フイルムは、従来の通常分子量のα−オレ
フイン重合体延伸フイルムでは得られない極薄で
高弾性率、高強度を有するものである。 本発明の方法による超高分子量α−オレフイン
重合体延伸フイルムは、上記のような優れた特性
により、各種包装材料の外に高弾性、高強度フイ
ルム分野への利用あるいは各種材料との複合によ
る積層材、さらには超延伸の極薄フイルムは、電
気絶縁材料、特にコンデンサーフイルムとして有
用である。 実施例 以下に、本発明の実施例を示す。なお、実施例
における試験方法は次の通りである。 (1) フイルムの厚さ:フイルム断面を走査型電子
顕微鏡により測定。 (2) 引張弾性率:ASTM D882準拠。 (3) 破断強度:ASTM D882準拠。 (4) 破断伸度:ASTM D882準拠。 (5) ヘイズ:JIS K6714準拠。 実施例 1 重量平均分子量(w)4.7×106のポリプロピ
レン4.0重量%を含む流動パラフイン(64cst/40
℃)混合液100重量部に2,6−ジ−t−ブチル
−P−クレゾール0.125重量部とテトラキス〔メ
チレン−3−(3,5−ジ−t−ブチル−4−ヒ
ドロキシフエニル)−プロピオネート〕メタン
0.25重量部との酸化防止剤を加えて混合した。こ
の混合液を撹拌機付のオートクレーブに充填し、
200℃迄加熱して90分間撹拌して均一な溶液を得
た。 この溶液を加熱した金型に充填し、15℃迄急冷
して厚さ2mmのゲル状シートを成形した。このゲ
ル状シートを塩化メチレン中に60分間浸漬した
後、平滑板にはり付けた状態で塩化メチレンを蒸
発乾燥し、ポリプロピレン量が19.4重量%、厚さ
方向への収縮率が79.4%の原反シートを得た。 得られた原反シートを、2軸延伸機にセツト
し、温度150℃、速度30cm/分、倍率8×8の条
件で同時2軸延伸を行つた。得られた延伸膜を塩
化メチレンで洗浄して残留する流動パラフインを
抽出除去した後に乾燥して延伸成形物を得た。 得られた延伸成形物を120℃、200Kg/cm2G、10
分間の条件でプレスした。得られたポリプロピレ
ン極薄フイルムの特性を表−1に示した。 実施例 2〜6 実施例1において成形したゲル状シートを表−
1に示す各条件で成形した以外は実施例1と同様
にしてフイルムを得た。この特性を表−1に併記
した。 実施例 7 実施例1において、ゲル状シートを表−1に示
す条件で逐時延伸した以外は実施例1と同様にし
てフイルムを得た。この特性を表−1に併記し
た。 実施例 8 実施例1において用いたw=4.7×106のポリ
プロピレンに代り、w=2.5×106のポリプロピ
レンを用いて6.0重量%の流動パラフイン溶液を
調製したことおよび表−1に示す各条件で成形し
た以外は実施例1と同様にしてフイルムを得た。
この条件を表−1に併記した。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for producing an ultra-high molecular weight α-olefin polymer film. Conventional technology Ultra-high molecular weight α-olefin polymers, such as ultra-high molecular weight polypropylene, have superior tensile modulus, tensile strength, abrasion resistance, chemical resistance, impact resistance, etc. compared to normal molecular weight polypropylene. ,
Its use as an engineering plastic is expanding. However, this ultra-high molecular weight polypropylene has extremely entangled molecular chains compared to normal molecular weight polypropylene, has an extremely high melt viscosity, and has poor fluidity, making it extremely difficult to mold into thin films using conventional extrusion molding. However, there were problems with workability. As a method for producing an ultra-high molecular weight α-olefin polymer molded article, for example, an ultra-high molecular weight thermoplastic crystalline polymer that is essentially polyethylene or polypropylene is dissolved in a non-volatile solvent, and a gel is formed from this solution. Then, a method for producing a thermoplastic shaped article that is substantially a fiber (Japanese Unexamined Patent Application Publication No. 1983-1999 5228
No. 2) has been proposed. However, with this method, it was difficult to obtain a uniform stretched film with a high magnification, and the film was not sufficiently thin. Problems to be Solved by the Invention The present invention obtains a thin ultra-high molecular weight α-olefin polymer film with high elasticity, high strength, and transparency by stretching an ultra-high molecular weight α-olefin polymer at a high magnification. The purpose is to Means for Solving the Problems The present inventors conducted various studies on the method for producing a stretched film of an ultra-high molecular weight α-olefin polymer, and as a result, the inventors found that a stretched film formed from a solution of an ultra-high molecular weight α-olefin polymer was formed from a solution of an ultra-high molecular weight α-olefin polymer. The present invention was completed based on the discovery that uniform stretching at a high magnification is possible within a specific range of solvent contained in a gel-like molded product. That is, in the present invention, the weight average molecular weight is 5×
A gel-like product is formed from a solution in which an α-olefin polymer of 10 5 or more is heated and dissolved in a solvent, and at least 10% by weight of the solvent contained in the gel-like product is removed to form the gel-like product. After adjusting the α-olefin polymer content to be 10 to 90% by weight, the α-olefin polymer is
- Stretching at a temperature below the melting point of the olefin polymer + 10°C, removing residual solvent contained in the resulting stretched product, and then applying pressure treatment at a temperature below the melting point of the α-olefin polymer. This is a characteristic method for producing an ultra-high molecular weight α-olefin polymer film. The ultra-high molecular weight α-olefin polymer used in the present invention has a weight average molecular weight of 5×10 5 or more, preferably in the range of 1×10 6 to 15×10 6 .
If the weight average molecular weight is less than 5×10 5 , a film with high elastic modulus and high strength, which are characteristics of ultra-high molecular weight α-olefin polymers, cannot be obtained. On the other hand, although the upper limit is not particularly limited, if it exceeds 15×10 6 , the molding processability is poor even in gel molding. Such ultra-high molecular weight α-olefin polymers include propylene, 1-butene, 4-methyl-1-pentene,
Examples include crystalline homopolymers obtained by polymerizing 1-hexene and the like, and copolymers of these α-olefins and 10 mol% or less of ethylene or other α-olefins. Among these, ultra-high molecular weight polypropylene mainly composed of propylene is preferred. In addition, the above ultra-high molecular weight α-olefin polymer may contain antioxidants, ultraviolet absorbers, lubricants,
Various additives such as antiblocking agents, pigments, dyes, and inorganic fillers can be added within the range that does not impair the purpose of the present invention. The solution of the ultra-high molecular weight α-olefin polymer used as a raw material in the present invention has a weight average molecular weight of 5.
It is prepared by heating and dissolving an α-olefin polymer of ×10 5 or more in a solvent. As this solvent, the α-
It is not particularly limited as long as it can sufficiently dissolve the olefin polymer. For example, nonane, decane,
Examples include aliphatic or cyclic hydrocarbons such as undecane, dodecane, decalin, and paraffin oil, and mineral oil fractions whose boiling points correspond to these. Non-volatile solvents such as oils are preferred. The heating and dissolving is performed while stirring at a temperature at which the α-olefin polymer is completely dissolved in the solvent.
The temperature varies depending on the polymer and solvent used, but for example, in the case of polypropylene, 160 -
It is in the range of 250℃. Further, the concentration of the α-olefin polymer solution is preferably 1 to 10% by weight. If the concentration is too high, it will be difficult to prepare a uniform solution. In addition, during heating and dissolution, it is preferable to add an antioxidant to prevent oxidative deterioration of the α-olefin polymer. Next, this α-olefin polymer heated solution is extruded into a sheet or tube shape from an appropriately selected die, or cast onto a support, and is heated preferably below the gelling temperature in a water bath, air bath, solvent, etc. Cool to a temperature of 15-25°C at a rate of at least 50°C/min to form a gel. The thickness of the gel-like molding is usually
It is molded to about 0.1 to 5 mm. This gel-like sheet is swollen with the solvent used to dissolve the α-olefin polymer, and requires solvent removal treatment. Solvent removal treatment includes methods such as immersing the gel-like molded product in an easily volatile solvent, extracting it, and drying it, compressing it, heating it, or a combination of these methods. Extractive removal using a readily volatile solvent is preferred since the solvent can be removed without significant changes. Examples of easily volatile solvents include hydrocarbons such as pentane, hexane, and heptane, chlorinated hydrocarbons such as methylene chloride and carbon tetrachloride, fluorinated hydrocarbons such as trifluoroethane, and ethers such as diethyl ether and dioxane. and other alcohols such as methanol, ethanol, and propanol. These solvents are appropriately selected depending on the solvent used to dissolve the α-olefin polymer, and are used alone or in combination. In addition, the amount of solvent removed from the gel-like molded product is at least 10% by weight based on the solvent contained, and the amount of the ultra-high molecular weight α-olefin polymer contained in the gel-like molded product is 10 to 90% by weight. , preferably 20 to 60% by weight. If the amount of solvent removed from the gel-like molded product is less than 10% by weight based on the solvent contained, and the α-olefin polymer contained in the gel-like molded product is less than 10% by weight, the gel-like molded product will be highly affected by the solvent. Because the gel is swollen, the gel tends to dissolve during heating and stretching. In addition, uneven stretching tends to occur locally, making it difficult to obtain a stretched product with a uniform thickness, which is also unfavorable from the viewpoint of handling, such as oozing of solvent during stretching. On the other hand, when removing the solvent in which the α-olefin polymer contained in the gel-like molded product exceeds 90% by weight, the network structure of the gel-like molded product becomes too dense and cannot be stretched at a high magnification, making it extremely thin. Therefore, a film with high elastic modulus and high strength cannot be obtained. The amount of solvent contained in the gel-like molded product removed can be adjusted by adjusting the amount of contact of the easily volatile solvent with the gel-like molded product, the time, or the compression pressure of the gel-like molded product. In addition, when desolventizing a gel-like molded product using a readily volatile solvent, the gel-like molded product shrinks or bends in three axes as the easily volatile solvent substituted in the gel-like molded product evaporates. To prevent this,
In order to obtain a smooth raw fabric that can be stretched uniformly and at high magnification, with minimal shrinkage in the biaxial (longitudinal and horizontal) directions,
It is preferable to selectively shrink the gel-like molded product in the thickness direction. Its shrinkage rate is 50% or more in the thickness direction, preferably 70% or more, and 20% or more in the biaxial direction.
% or less. Selective shrinkage of the gel-like molded product in the thickness direction can be achieved by applying a readily volatile solvent, for example, when the gel-formed product is tightly attached to a smooth support, gripped from two axes, or sandwiched between porous plates. One method is to evaporate it. For stretching, the original fabric of the gel-like molded product that has been subjected to solvent removal treatment is heated and biaxially stretched at a predetermined magnification by the usual tenter method, roll method, inflation method, rolling, or a combination of these methods. . Biaxial stretching may be done simultaneously or sequentially. The stretching temperature is below the melting point of the ultra-high molecular weight α-olefin polymer +10° C., preferably in the range from the crystal dispersion temperature to below the melting point. For example, in the case of polypropylene, the temperature is 90-180℃, more preferably 130-170℃.
℃ range. If the stretching temperature exceeds the melting point +10°C, the resin will melt excessively, making orientation by stretching impossible. Furthermore, if the stretching temperature is lower than the crystal dispersion temperature, the resin will not be sufficiently softened and the membrane will easily break during stretching, making it impossible to stretch at a high magnification. In addition, the stretching ratio varies depending on the thickness of the original fabric, but is at least 2 times or more in the uniaxial direction, preferably 5 times or more.
~20x, surface magnification 10x or more, preferably 25-400
It's double. If the areal magnification is less than 10 times, stretching is insufficient and a film with high elasticity and high strength cannot be obtained, which is not preferable. On the other hand, if the areal magnification exceeds 400 times, it is not preferable because restrictions will arise in terms of stretching equipment, stretching operations, etc. The stretched product is immersed in the above-mentioned easily volatile solvent to extract and remove the remaining solvent, and then the solvent is evaporated and dried. Extraction of the solvent is carried out by extracting the solvent in the stretched product by 1
It is necessary to remove it to less than % by weight. Furthermore, since the stretched product from which the residual solvent has been removed has pores and is opaque, it is necessary to perform the pressure treatment at a temperature below the melting point of the α-olefin polymer constituting the stretched product. For example, the specific pressure treatment for polypropylene is at a temperature of 80°C.
Examples include a method of pressing or rolling at a temperature of ~160°C. Pressure treatment causes heat shrinkage in the stretched product when the temperature exceeds the melting point, whereas at low temperatures below 80°C, it is impossible to eliminate pores in the stretched product, making it transparent, highly elastic, and strong. An ultra-thin film cannot be obtained. The thickness of the ultrahigh molecular weight α-olefin polymer stretched film of the present invention can be appropriately selected depending on the application, but is usually in the range of 0.05 to 10 μm, preferably 0.1 to 4 μm. As described above, according to the method of the present invention, the tensile modulus is
It is possible to obtain an ultra-high molecular weight α-olefin polymer stretched film having substantially no pores, having a breaking strength of 1000 Kg/cm 2 or more, a breaking strength of 200 Kg/cm 2 or more, and a haze of 10% or less, preferably 5% or less. . Effects of the Invention According to the method of the present invention, it is possible to form an ultra-thin film from an ultra-high molecular weight α-olefin polymer by stretching at a high magnification. Furthermore, the ultra-high molecular weight α-olefin polymer film obtained is extremely thin, has high elastic modulus, and high strength, which cannot be obtained with conventional stretched α-olefin polymer films of normal molecular weight. Due to the above-mentioned excellent properties, the ultra-high molecular weight α-olefin polymer stretched film produced by the method of the present invention can be used in the field of high elasticity and high strength films in addition to various packaging materials, or can be laminated by combining with various materials. The materials and even ultra-stretched ultrathin films are useful as electrically insulating materials, especially capacitor films. Examples Examples of the present invention are shown below. In addition, the test method in Examples is as follows. (1) Film thickness: Measure the cross section of the film using a scanning electron microscope. (2) Tensile modulus: ASTM D882 compliant. (3) Breaking strength: ASTM D882 compliant. (4) Breaking elongation: ASTM D882 compliant. (5) Haze: JIS K6714 compliant. Example 1 Liquid paraffin ( 64 cst/40
℃) 100 parts by weight of the mixed solution, 0.125 parts by weight of 2,6-di-t-butyl-P-cresol and tetrakis[methylene-3-(3,5-di-t-butyl-4-hydroxyphenyl)-propionate] 〕methane
Add 0.25 parts by weight of antioxidant and mix. Fill this mixture into an autoclave equipped with a stirrer,
A homogeneous solution was obtained by heating to 200°C and stirring for 90 minutes. This solution was filled into a heated mold and rapidly cooled to 15°C to form a gel-like sheet with a thickness of 2 mm. After immersing this gel-like sheet in methylene chloride for 60 minutes, the methylene chloride was evaporated and dried while it was attached to a smooth plate, resulting in an original sheet with a polypropylene content of 19.4% by weight and a shrinkage rate of 79.4% in the thickness direction. Got a sheet. The obtained raw sheet was set in a biaxial stretching machine and subjected to simultaneous biaxial stretching at a temperature of 150° C., a speed of 30 cm/min, and a magnification of 8×8. The obtained stretched film was washed with methylene chloride to extract and remove the remaining liquid paraffin, and then dried to obtain a stretched molded product. The obtained stretched product was heated at 120°C, 200Kg/cm 2 G, 10
Pressed for 1 minute. The properties of the obtained ultra-thin polypropylene film are shown in Table 1. Examples 2 to 6 The gel-like sheets molded in Example 1 are shown in the table below.
A film was obtained in the same manner as in Example 1 except that it was molded under the conditions shown in Example 1. These characteristics are also listed in Table-1. Example 7 A film was obtained in the same manner as in Example 1, except that the gel-like sheet was stretched one after another under the conditions shown in Table 1. These characteristics are also listed in Table-1. Example 8 A 6.0% by weight liquid paraffin solution was prepared using polypropylene with w = 2.5 x 10 6 instead of the polypropylene with w = 4.7 x 10 6 used in Example 1, and each condition shown in Table 1. A film was obtained in the same manner as in Example 1, except that it was molded.
These conditions are also listed in Table-1.

【表】 比較例 1 実施例1において成形したゲル状シート中の溶
媒を除去しないままで2軸延伸機にセツトし、温
度130℃で延伸した以外は実施例1と同様にして
製膜したが、得られたフイルムは不均一なもので
あつた。また、延伸膜は滲み出した過剰の溶媒で
覆われ溜りや垂れを生じ取り扱いがやつかいであ
つた。 比較例 2 実施例1において成形したゲル状シートを多量
の塩化メチレン中に60分間浸漬した後、平滑板に
はり付けた状態で塩化メチレンを蒸発乾燥して得
られた実質的に流動パラフインを含まないゲル状
シートを2軸延伸機にセツトし、延伸温度を110
〜170℃の範囲、速度30cm/分でそれぞれ延伸を
試みが、延伸ムラと破断により倍率3×3以上の
延伸はできず極薄フイルムを得ることができなか
つた。 比較例 3 実施例1において用いた超高分子量ポリプロピ
レンに代り、通常分子量(w=19.5×104)の
ポリプロピレンの濃度14.0重量%流動パラフイン
溶液を用いて実施例1と同様にゲル状シートを成
形した以外は、実施例1と同様に延伸を試みた
が、延伸ムラと破断により倍率3×3以上の延伸
ができず極薄フイルムを得ることができなかつ
た。 比較例 4 実施例8において調製したポリプロピレン溶液
から成形したゲル状シート中の流動パラフインの
9.0重量%を除去してゲル状シート中に含まれる
ポリプロピレン量を7.0重量%にしたことおよび
延伸温度を130℃で製膜した以外は実施例1と同
様にしてフイルムを得たが、得られたフイルムは
不均一なものであつた。
[Table] Comparative Example 1 A film was formed in the same manner as in Example 1 except that the gel-like sheet formed in Example 1 was set in a biaxial stretching machine without removing the solvent and stretched at a temperature of 130°C. However, the film obtained was non-uniform. In addition, the stretched membrane was covered with exuded excess solvent, causing pooling and dripping, making it difficult to handle. Comparative Example 2 A gel-like sheet formed in Example 1 was immersed in a large amount of methylene chloride for 60 minutes, and then attached to a smooth plate and the methylene chloride was evaporated to dry. Set the gel-like sheet without any heat in the biaxial stretching machine and set the stretching temperature to 110.
Attempts were made to stretch the film at a temperature of -170 DEG C. at a speed of 30 cm/min, but due to uneven stretching and breakage, it was not possible to stretch to a ratio of 3.times.3 or more, and an extremely thin film could not be obtained. Comparative Example 3 Instead of the ultra-high molecular weight polypropylene used in Example 1, a gel-like sheet was formed in the same manner as in Example 1 using a 14.0% by weight liquid paraffin solution of polypropylene with a normal molecular weight (w = 19.5 × 10 4 ). Except for the above, stretching was attempted in the same manner as in Example 1, but due to uneven stretching and breakage, stretching was not possible at a magnification of 3×3 or more, and an extremely thin film could not be obtained. Comparative Example 4 Determination of liquid paraffin in a gel-like sheet formed from the polypropylene solution prepared in Example 8
A film was obtained in the same manner as in Example 1, except that 9.0% by weight of polypropylene was removed to make the amount of polypropylene contained in the gel sheet 7.0% by weight, and the stretching temperature was 130°C. The resulting film was non-uniform.

Claims (1)

【特許請求の範囲】 1 重量平均分子量が5×105以上のα−オレフ
イン重合体の溶液からゲル状物を成形し、該ゲル
状成形物をそれに含まれる溶媒の少くとも10重量
%を除去して該ゲル状成形物に含まれる該α−オ
レフイン重合体が10〜90重量%になるようにした
後、該α−オレフイン重合体の融点+10℃以下の
温度で延伸し、得られた延伸成形物をそれに含ま
れる残存溶媒を除去した後に、該α−オレフイン
重合体の融点未満の温度で加圧処理することを特
徴とする超高分子量α−オレフイン重合体フイル
ムの製造方法。 2 α−オレフイン重合体が、ポリプロピレンで
ある特許請求の範囲第1項記載の製造方法。
[Claims] 1. Molding a gel from a solution of an α-olefin polymer having a weight average molecular weight of 5×10 5 or more, and removing at least 10% by weight of the solvent contained in the gel-like molded product. The α-olefin polymer contained in the gel-like molded product is adjusted to 10 to 90% by weight, and then stretched at a temperature equal to or lower than the melting point of the α-olefin polymer by 10°C. A method for producing an ultra-high molecular weight α-olefin polymer film, which comprises removing residual solvent contained in a molded product and then subjecting the molded product to pressure treatment at a temperature below the melting point of the α-olefin polymer. 2. The manufacturing method according to claim 1, wherein the α-olefin polymer is polypropylene.
JP60034577A 1985-02-25 1985-02-25 Preparation of ultra-high molecular weight alpha-olefin polymer film Granted JPS61193836A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP60034577A JPS61193836A (en) 1985-02-25 1985-02-25 Preparation of ultra-high molecular weight alpha-olefin polymer film
DE8686301047T DE3676211D1 (en) 1985-02-25 1986-02-14 MICROPOROUS MEMBRANE MADE OF AN ALPHA OLEFIN POLYMER WITH ULTRA-HIGH-MOLECULAR WEIGHT.
EP86301047A EP0193318B1 (en) 1985-02-25 1986-02-14 Microporous membrane of ultra-high molecular weight alpha-olefin polymer
US06/832,916 US4734196A (en) 1985-02-25 1986-02-24 Process for producing micro-porous membrane of ultra-high-molecular-weight alpha-olefin polymer, micro-porous membranes and process for producing film of ultra-high-molecular-weight alpha-olefin polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60034577A JPS61193836A (en) 1985-02-25 1985-02-25 Preparation of ultra-high molecular weight alpha-olefin polymer film

Publications (2)

Publication Number Publication Date
JPS61193836A JPS61193836A (en) 1986-08-28
JPH0358288B2 true JPH0358288B2 (en) 1991-09-05

Family

ID=12418176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60034577A Granted JPS61193836A (en) 1985-02-25 1985-02-25 Preparation of ultra-high molecular weight alpha-olefin polymer film

Country Status (1)

Country Link
JP (1) JPS61193836A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63279562A (en) * 1987-05-11 1988-11-16 Sanyo Electric Co Ltd Battery
US6617074B1 (en) * 1999-06-30 2003-09-09 Mitsubishi Materials Corporation Lithium ion polymer secondary battery and gelatinous polymer electrolyte for sheet battery
US7871548B2 (en) 2005-09-02 2011-01-18 National University Of Corporation Hiroshima University Process for producing polymer oriented crystal, polymer oriented crystal produced by said production process, and method for determining critical elongation strain rate of polymer melt
JP4839914B2 (en) * 2006-03-24 2011-12-21 東洋紡績株式会社 Polymer film manufacturing apparatus and polymer film manufacturing method
EP2128177B1 (en) 2007-03-02 2012-03-28 Hiroshima University Polymer crystal
US8728616B2 (en) 2009-01-23 2014-05-20 Hiroshima University Polymer sheet and method for producing same

Also Published As

Publication number Publication date
JPS61193836A (en) 1986-08-28

Similar Documents

Publication Publication Date Title
EP0193318B1 (en) Microporous membrane of ultra-high molecular weight alpha-olefin polymer
US4600633A (en) Polyethylene superthin film and a process for the production of the same
EP0355214B1 (en) Process for producing microporous ultra-high molecular weight polyolefin membrane
EP0765900B1 (en) Method of producing a microporous polyolefin membrane
EP0476198B2 (en) Microporous polyolefin membrane and method of production thereof
US4588633A (en) Polyethylene microporous membrane of ultra high molecular weight
JP4494638B2 (en) Polyolefin microporous membrane and method for producing the same
JP3274861B2 (en) Microporous film of ultra-high molecular weight polyethylene and method for producing the same
KR19980018742A (en) Method of producing microporous polyolefin membrane
JPH107832A (en) High strength porous film of polypropylene and its production
JP3549290B2 (en) Polyolefin microporous membrane and method for producing the same
JPH0441702B2 (en)
JPH0813506B2 (en) Method for producing thin stretched film from ultra high molecular weight polyolefin
JPH0556251B2 (en)
JPH0471416B2 (en)
JPH0358288B2 (en)
JP3372116B2 (en) Method for producing high molecular weight polyethylene microporous film
JPH0653826B2 (en) Polyethylene microporous membrane
JPH09104775A (en) Production of microporous polyolefin film
JP3641321B2 (en) Method for producing polyolefin microporous membrane
JP3967421B2 (en) Method for producing polyolefin microporous membrane
JP4017307B2 (en) Method for producing porous film
KR100517204B1 (en) Manufacturing method of polyolefin microporous membrane
JP2711633B2 (en) Method for producing microporous polyolefin membrane
JP2657441B2 (en) Method for producing microporous polyolefin membrane

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees