JPH0358053B2 - - Google Patents

Info

Publication number
JPH0358053B2
JPH0358053B2 JP57140655A JP14065582A JPH0358053B2 JP H0358053 B2 JPH0358053 B2 JP H0358053B2 JP 57140655 A JP57140655 A JP 57140655A JP 14065582 A JP14065582 A JP 14065582A JP H0358053 B2 JPH0358053 B2 JP H0358053B2
Authority
JP
Japan
Prior art keywords
dye
difference
color
chromaticity
standard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57140655A
Other languages
Japanese (ja)
Other versions
JPS5930028A (en
Inventor
Masakazu Suzuka
Hiroshi Oohashi
Yukio Murata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP57140655A priority Critical patent/JPS5930028A/en
Publication of JPS5930028A publication Critical patent/JPS5930028A/en
Publication of JPH0358053B2 publication Critical patent/JPH0358053B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/51Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J2003/466Coded colour; Recognition of predetermined colour; Determining proximity to predetermined colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/465Measurement of colour; Colour measuring devices, e.g. colorimeters taking into account the colour perception of the eye; using tristimulus detection

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は染料の染色結果を予測する方法に関す
るものである。 標準染料と試料染料との同時染色により、おの
おのの染料中に含まれている色素成分の比によつ
て、染色物に濃淡差があらわれる。染料の色彩特
性は、この濃淡差によつて生ずる色の差を補正
し、等しい色の濃さになるように調整して、染色
した時に生ずる両者の間の色差によつて評価され
ている。またこの色差は、赤味傾向とか青味傾向
という、いわゆる色相差と色の純粋さによつて生
ずる鮮かさに関する、いわゆる鮮明度差の二つに
分けられる。通常染色技術者が視感判定で染料の
色を評価する場合は、上記の色相差と鮮明度差に
加えて、等しい色の濃さになるように染色したと
きの染料使用量、すなわち染色濃度の比の百分率
である染色力の三つの値によつて、行なつてい
る。 現在は、染料の色彩特性を試験する際、標準染
料と試料染料について、染料液の調製→染色→洗
浄→乾燥の、いわゆる染色試験操作を行つて得ら
れた染色物を標準の染色物と比較して、色彩特性
を評価する方法が行なわれている。この方法で
は、非常に多くの時間と労力を費やしており、も
つと経済的でかつ高速で、しかも簡単に染色結果
が予測できる方法の要望がきわめて高くなつてい
る。 そこで本発明者等は、経済的かつ高速で、しか
も簡単に染色結果を予測する方法を数多くの実験
データを用いて、鋭意検討してきた。この結果、
染色操作を全く省略して、経済的かつ高速で、し
かも簡単に精度良く染色結果を予測する方法を見
い出した。 すなわち、本発明は、染料の色彩特性を試験し
て標準とする染料に対する試料染料の色差を測定
するにあたつて、 標準とする染料と同一品目の染料の代表的の
代表的試料の溶液をそれぞれ調製し、吸光光度
曲線を測定し、これより通常の三刺激値計算法
に準じ透過率のかわりに吸光度を用いた濃度三
刺激値QX,QY,QZを計算し、ついで補色色
度座標xQ,yQおよび色濃度差を求める。 また前もつて同一品目の染料の中から任意に
1つの染料を選定し、それの透過率曲線を測定
し、これより三刺激値X,Y,Zを求め、つい
で適当な等色差性表色系に変換する。この表色
系において、色相差と彩度差又は鮮明度差が単
独に単位量だけ変化させたときの色度点が与え
る4組の三刺激値を求め、これらに対応する透
過率曲線を混色計算法を用いて計算により求
め、これらを吸光光度曲線に変換し、各色度点
の補色色度座標を求める。これと上記で任意に
選定した染料についての補色色度座標との座標
差より前記等色差性表色系における色相差およ
び彩度差又は鮮明度差と補色色度座標差の関係
を明確にしておく。 この関係を用いて、前記の座標とする染料に
対する同一品目の染料の前記代表的試料の液色
色差から、色相差および鮮明度差を求め、それ
をもつて染料液色色差とする。 前記の標準とする染料と同一品目の染料の前
記代表的試料を用いてそれぞれ染色して得た染
色物の前記の標準とする染料に対する同一品目
の染料の前記代表的試料の染色色差から色相差
と彩度差又は鮮明度差を求め、それをもつて染
料染色色差とする。 統計的方法により、の染料液色色差と、
の染料染色色差との関係を求める。 前記の標準とする染料に対する同一品目の試
料染料の液色色差をの方法と同様にして、色
相差、鮮明度差として染料液色色差を求める。 の前記した標準とする染料に対する同一品
目の前記試料染料の染料液色色差より、で求
めたの染料液色色差との染料染色色差との
関係を用いて、前記した標準とする染料に対す
る同一品目の前記試料染料の染料染色色差を予
測することを特徴とする染料の色差測定方法で
ある。 本発明の方法は、染料の適当な濃度の溶液の色
彩特性と染色した結果の色彩特性との間に非常に
良い相関があるという新しい知見にもとづくもの
である。 すなわち、染料の溶液の吸光度を測定しこれよ
り色濃度刺激値をもとめ、これより補色色度座標
をもとめて、標準とする染料に対する色差をもと
め、別途、前もつて求めておいた染色色差と液色
色差との関係を用いて、液色色差より染色色差を
予測する方法である。 従つて、この方法によると、複雑な染色試験を
行なわないで、溶液色差より、染色色差を推定す
るものである。 従つて、本発明によれば、次の様なすぐれた効
果が得られる。 (a) 染色に関する諸操作の省略により、著しい試
験のスピードアツプ、省工程、省力化、省エネ
ルギーが達成できる。 (b) 現状の染色物による色差評価法は、被染物の
種類、形状の違いや、染色法、染色機械の違い
による染色結果の相異、判定する人の個人差が
出やすい視感判定など、精度を不良にする要因
が多くあるが、新しい色差測定法では、これら
の要因が取り除かれるので、著しく精度が向上
する。 (c) 染料の色差が正確に、かつ迅速に得られるの
で、染料製造の工程管理に広く利用でき、不良
製品の減少、待ち時間の短縮等、顕著な経済的
効果が得られる。 (d) 新しい染料の研究開発段階において本発明の
技術が幅広く利用でき、研究の促進ができる。 (e) 染料使用者からの色相変更要望に対して迅速
な対応ができる。 次に、本発明の代表的な方法を図面により詳し
く説明する。 標準的染料と同一品目の染料の代表的試料
(好しくは数種)の液色色差を後述するの方
法と全く同様にして求める。 品質の基準とする標準的染料及び試料染料の
吸光光度分析により、可視スペクトル波長域の
吸光光度曲線を測定する。 第1図は、赤色染料に関するこれの一例で、1
は標準的染料、2は試料染料の吸光光度曲線であ
る。 これらの吸光度を用いて濃度三刺激値QX,
QY,QZを下記の一般式(1)によつて求める。 QX=∫Pλ xλ Dλ dλ QY=∫Pλ yλ Dλ dλ QZ=∫Pλ zλ Dλ dλ (1) ここにおいて、λ,λ,λはスペクトル
三刺激値でJISZ8728(10゜視野における色のX,
Y,Z系による表示方法)の表1などに規定され
ているもの、あるいは、JISZ8701(2゜視野におけ
る色のX,Y,Z系による表示方法)の表1など
に規定されているものを用いても良い。Pλは標
準の光の分光分布であり、染料の色評価に多く用
いられている光源に対応する標準の光のものを用
いる。 通常はD65が用いられている。またλは、波長
を指している。dλは、積分計算を行なう時のス
ペクトル波長間隔で、通常は10または20nmが用
いられる。 ついで、補色色度座標xQ,yQおよび色濃度値
SQなどをつぎの式(2)によつて求める。 SQ=QX+QY+QZ xQ=QX/SQ yQ=QY/SQ (2) この結果を用いて、補色色度図を作成すると、
第2図のようになる。 ここで、特に補色色度座標を用いる理由は次の
とおりである。 (イ) 溶液濃度に関係なく色度点が一定になる。 (ロ) 色度図上での混色計算が加成的になり、これ
より色差の傾向を理解し易い。 また同一品目中のたとえば標準的染料の吸光
光度曲線を次の式(3)によつて、透過率曲線に変
換後式(4)により、三刺激値X,Y,Zを求め
る。 Tλ=1/EXP(Dλ/0.4343) (3) X=k∫Pλ xλ Tλ dλ Y=k∫Pλ yλ Tλ dλ Z=k∫Pλ zλ Tλ dλ k=100/∫Pλ yλ dλ (4) ついで、式(5)を用いて、等色差性表色系、例え
ばCIEが推奨したCIE1976(L*a*b*)表色系に変
換する。 L*=116(Y/Yo)1/3−16 a*=500〔X/Xo)1/3−(Y/Yo)1/3〕 b*=200〔(Y/Yo)1/3−(Z/Zo)1/3〕 (5) ここにおいて標準の光D6510゜視野の場合 Xp=94.811 Yp=100.0 Zp107.334 となる。 この表色系のa*b*色度座標において、色相差
および彩度差又は鮮明度差を与える色度点a*
(0),b*(0)が単独に単位量だけ変化する色度
点〔a*(1),b*(1)〕〜〔a*(4),b*(4)〕(第3図)が
与える4組の三刺激値〔X(1),Y(1),Z(1)〕〜
〔X(4),Y(4),Z(4)〕を、式(5)の逆変換により求
め、それぞれの三刺激値を与える分光透過率曲線
Tλを透過色用コンピユータカラーマツチング計
算などを用いて求め(第4図〜第7図)、これら
を式(8)を用いて、吸光光度曲線に変換し、式(1)、
(2)により、各色度点の補色色度座標を求める。 これと上記標準的染料が与える補色色度座標
xQ(0),yQ(0)と、上記により求めた4つの
各色度点の補色色度座標〔xQ(1),yQ(1)〕〜
〔xQ(4),yQ(4)〕との差の関係および関係式を求
める(第8図)。 第8図に示すこれらの関係及び関係式を用い
て、まず、試料染料の補色色度座標から、色度点
1,0,2を通る直線(以下等鮮明度線と記す。)
に平行線を引き、色度点3,0,4を通る直線
(以下等色相線と記す。)との交点Aの座標を求め
る。同様にして、試料染料の補色色度座標から、
等色相線に平行線を引き、鮮明度線との交点Bの
座標を求める。 次に、これらの交点A,Bの座標を用いて、次
の式(6)によつて、液色色差を求める。 液色色相差=色度点0,Bを結ぶ直線の長さ/色度点
0,2を結ぶ直線の長さ 液色鮮明度差=
色度点0,Aを結ぶ直線の長さ/色度点0,3を結ぶ直
線の長さ また、従来知られる方法で、標準とする染料
と同一品目の染料の代表的試料を用いてそれぞ
れ染色して得た染色物の標準とする染料に対す
る同一品目の染料の代表的試料の染色色差か
ら、色相差と彩度差又は鮮明度差を求め、それ
をもつて染料染色色差とする。 次にの液色色差との染色色差との関係を
統計的方法により、たとえば回帰直線を求め
る。 の関係を用いて、で求めた試料染料の液
色色差から、染色結果の色差を色相差、鮮明度
差として予測することができる。 次に実施例によつて本発明を説明する。 実施例1 〔試料染料の液色色差の測定〕 反応染料であるカラーインデツクスNo.リアリテ
イブレツド112について、まず品質の基準とす
る標準的染料および試料染料の0.0025%水溶液を
用いて吸光光度分析により、可視スペクトル波長
域の吸光光度曲線を測定する。 第1図の1は、標準的染料、2は試料染料に対
するものである。 これらの吸光度を用いて、一般式(1)によつて、
標準的染料および試料染料について濃度三刺激値
QX,QY,QZを求める。 標準的染料の濃度三刺激値QX,QY,QZは QX=9.6600 QY=23.2810 QZ=23.4630 である。 試料染料の濃度三刺激値QX,QY,QZは、 QX=9.6040 QY=23.2120 QZ=23.5060 である。 つづいて、これらの値を用いて、式(2)によつて
補色色度座標、xQ,yQおよび色濃度値SQなど
を求める。 標準的染料についての補色色度座標xQ,yQお
よび色濃度値SQは、 SQ=56.4040 xQ=xQ(0)=0.1713 yQ=yQ(0)=0.4128 試料染料についての補色色度座標xQ,yQおよ
び色濃度値SQは SQ=56.322 xQ=0.1705 yQ=0.4121 これらの得むれた結果を用いて、補色色度図を
作成すると、第2図のようになる。ここで、第2
図の1は標準的染料、2は試料染料に対するもの
である。 又、同種の標準的染料の吸光光度曲線を式(3)に
よつて、透過率曲線に変換後、式(4)により、三刺
激値X,Y,Zを求める。 X=78.0150 Y=64.0219 Z=66.7220 ついで、式(5)を用いて、等色差性表色系、例え
ば、CIEが推奨したCIE1976(L*a*b*)表色系に
変換する。 L*(0)=84.0114 a*(0)=37.5735 b*(0)=1.7272 この表色系のa*b*色度座標において、色相差
および彩度差又は鮮明度差を与える色度点a*
(0),b*(0)が単独に、1単位量だけ変化する
色度点a*(1),b*(1),a*(2),b*(2),a*(3),b*(3),
a*(4),b*(4)を求める。(第3図) L*(1)=84.0114 a*(1)=37.6194 b*(1)=0.7283 L*(2)=84.0114 a*(2)=37.5276 b*(2)=2.7262 L*(3)=84.0114 a*(3)=38.5725 b*(3)=1.7731 L*(4)=84.0114 a*(4)=36.5746 b*(4)=1.6813 ついで、これらの色度点が与える4組の三刺激
値X(1)〜X(4),Y(1)〜Y(4),Z(1)〜Z(4)を式(5)

逆変換により求め、それぞれの三刺激値を与える
分光透過率曲線Tλを透過色用コンピユータカラ
ーマツチング計算などを用いて求める。(第4〜
第7図) X(1)=78.0378 Y(1)=64.0219 Z(1)=67.9005 X(2)=77.9919 Y(2)=64.0219 Z(2)=65.5570 X(3)=78.5150 Y(3)=64.0219 Z(3)=66.6681 X(4)=77.5169 Y(4)=64.0219 Z(4)=66.7758 これらを、式(3)を用いて、吸光光度曲線に変換
し、式(1),(2)により、各色度点の補色色度座標
xQ(1)〜xQ(4),yQ(1)〜yQ(4)を求める。 xQ(1)=0.1729 yQ(1)=0.4179 xQ(2)=0.1696 yQ(2)=0.4077 xQ(3)=0.1677 yQ(3)=0.4156 xQ(4)=0.1749 yQ(4)=0.4100 これと、上記標準的染料が与える補色色度座標
xQ(0),yQ(0)と上記により求めた4つの各
色度点の補色色度座標xQ(1)〜xQ(4),yQ(1)〜yQ
(4)との差の関係および関係式を求める。(第8図) △xQ(1)=xQ(1)−xQ(0)= 0.0016 △yQ(1)=yQ(1)−yQ(0)= 0.0051 △xQ(2)=xQ(2)−xQ(0)=−0.0017 △yQ(2)=yQ(2)−yQ(0)=−0.0051 △xQ(3)=xQ(3)−xQ(0)=−0.0036 △yQ(3)=yQ(3)−yQ(0)= 0.0028 △xQ(4)=xQ(4)−xQ(0)= 0.0036 △yQ(4)=yQ(4)−yQ(4)−yQ(0)=−0.0028 第8図の0は、標準的染料に対する補色色度座
標であり、1,2,3,4は各補色色度座標と標
準的染料の補色色度座標との差の1/5倍量として
示している。 次に、第8図に於いて、試料染料の補色色度座
標から、色度点0と1を結ぶ直線の勾配と色度点
0と2を結ぶ直線の勾配との平均をとり、この平
均勾配を用いて、色度点0を通る直線(この場
合、色度点0と2を結ぶ直線を用いてもよい。以
下等鮮明度線と記す。)に平行線を引き、色度点
0と3を結ぶ直線の勾配と色度点0と4を結ぶ直
線の勾配との平均をとり、この平均勾配を用い
て、色度点0を通る直線(この場合、色度点0と
3を結ぶ直線を用いてもよい。以下等色相線と記
す。)との交点Aの座標を求める。 xQ(A)=0.1708 yQ(A)=0.4132 同様にして、試料染料の補色色度座標から、等
色相線に平行線を引き、等鮮明度線との交点Bを
求める。 xQ(B)=0.1710 yQ(B)=0.4117 これらの値を用いて、液色色差を求める液色色
相差と液色鮮明度差は下記のようになる。 〔代表的試料の染色色差の測定〕 標準とする染料と同一品目の染料の代表的試料
0.2部を200部の水に溶解し芒硝20部を加え、木綿
10部を加えて50℃に昇温する。ついで30分経過
後、炭酸ソーダ4部を加え同温度で1時間染色す
る。染色終了後、水洗、ソーピング、乾燥を行な
つて得られた染色物の標準とする染料に対する同
一品目の染料の代表的試料の染色色差を色相差お
よび彩度差又は鮮明度差として、染料染色色差を
求める。 〔代表的試料の液色色差の測定〕 上記記載の方法により、標準とする染料に対す
る同一品目の染料の代表的試料の液色色差を色相
差、鮮明度差として、染料液色色差を求める。 〔代表的試料の染色色差と液色色差の関係の決
定〕 これらの染料染色色差および液色色差を用い
て、回帰分析を行ない、代表的試料の液色色差に
対する染料染色色差の関係を回帰直線として求め
る。(第9図) 先に求めた試料染料の液色色差を用いて回帰直
線より染色結果の予測値を求めた。 結果を試料染料を実際に染色して得られた色差
とともに表1に記載する。
The present invention relates to a method for predicting dye staining results. When a standard dye and a sample dye are dyed simultaneously, differences in shading appear in the dyed product depending on the ratio of the pigment components contained in each dye. The color characteristics of dyes are evaluated based on the color difference that occurs when the dye is dyed by correcting the color difference caused by this difference in shade and adjusting the color depth to be equal. Furthermore, this color difference can be divided into two types: a so-called hue difference, such as a reddish tendency or a bluish tendency, and a so-called sharpness difference, which relates to the vividness caused by the purity of the color. Normally, when a dyeing engineer evaluates the color of a dye by visual judgment, in addition to the hue difference and sharpness difference mentioned above, the amount of dye used when dyeing to obtain the same color strength, that is, the dyeing density. This is done using three values of dyeing power, which are percentages of the ratio of Currently, when testing the color characteristics of dyes, standard dyes and sample dyes are subjected to the so-called dyeing test procedure of preparing dye solution, dyeing, washing, and drying, and then comparing the dyed products obtained with standard dyed products. A method of evaluating color characteristics has been carried out. This method requires a great deal of time and effort, and there is an extremely high demand for a method that is economical, fast, and allows easy prediction of dyeing results. Therefore, the present inventors have diligently studied methods for predicting staining results in an economical, fast, and easy manner using a large amount of experimental data. As a result,
We have discovered a method that is economical, fast, and easy to predict staining results with high accuracy by completely omitting the staining operation. That is, in testing the color characteristics of dyes and measuring the color difference of a sample dye with respect to a standard dye, the present invention uses a solution of a representative sample of the same dye as the standard dye. Prepare each, measure the absorbance light curve, calculate the concentration tristimulus values QX, QY, QZ using absorbance instead of transmittance according to the usual tristimulus value calculation method, and then calculate the complementary color chromaticity coordinate xQ. , yQ, and the color density difference. In addition, we have previously selected one dye arbitrarily from among the dyes of the same item, measured its transmittance curve, obtained the tristimulus values X, Y, and Z from this, and then determined the appropriate isochromic color system. Convert to system. In this color system, the four sets of tristimulus values given by the chromaticity points are obtained when the hue difference, saturation difference, or sharpness difference is changed by a unit amount independently, and the transmittance curve corresponding to these values is mixed. This is determined by calculation using a calculation method, these are converted into an absorbance light curve, and the complementary color chromaticity coordinates of each chromaticity point are determined. From the coordinate difference between this and the complementary chromaticity coordinates of the dye arbitrarily selected above, the relationship between the hue difference and chroma difference or the sharpness difference and the complementary chromaticity coordinate difference in the isochromatic color system is clarified. put. Using this relationship, the hue difference and sharpness difference are determined from the liquid color difference of the representative sample of the same item of dye with respect to the dye having the above coordinates, and these are used as the dye liquid color difference. The hue difference from the dyeing color difference of the representative sample of the same item of dye with respect to the standard dye of the dyed products obtained by dyeing using the above-mentioned representative sample of the same item of dye as the standard dye. The difference in chroma or sharpness is determined and used as the difference in dye color. By statistical method, the color difference of dye liquid color and
Find the relationship between dye staining color difference. The dye solution color difference is determined as a hue difference and a sharpness difference in the same manner as in the above-mentioned method of measuring the liquid color difference of the sample dye of the same item with respect to the standard dye. From the dye liquid color difference of the sample dye of the same item with respect to the standard dye described above, using the relationship between the dye liquid color difference of and the dye dyeing color difference obtained in , A dye color difference measuring method is characterized in that the dye dyeing color difference of the sample dye is predicted. The method of the present invention is based on the new finding that there is a very good correlation between the color properties of a solution of a dye at an appropriate concentration and the color properties of the dyed result. That is, the absorbance of the dye solution is measured, the color density stimulus value is determined from this, the complementary color chromaticity coordinates are determined from this, the color difference with respect to the standard dye is determined, and the color difference is calculated separately from the previously determined dye color difference. This is a method of predicting the dyeing color difference from the liquid color difference using the relationship with the liquid color difference. Therefore, according to this method, the dyeing color difference is estimated from the solution color difference without performing a complicated dyeing test. Therefore, according to the present invention, the following excellent effects can be obtained. (a) By omitting various operations related to dyeing, significant test speed-up, process savings, labor savings, and energy savings can be achieved. (b) Current color difference evaluation methods for dyed products are subject to differences in dyeing results due to differences in the type and shape of the dyed product, differences in dyeing methods and dyeing machines, and visual perception judgments that tend to show individual differences among the judges. There are many factors that can cause poor accuracy, but the new color difference measurement method removes these factors and significantly improves accuracy. (c) Since the color difference of dyes can be obtained accurately and quickly, it can be widely used for process control of dye manufacturing, and significant economic effects such as a reduction in defective products and shortening of waiting time can be obtained. (d) The technology of the present invention can be widely used in the research and development stage of new dyes, and research can be promoted. (e) Able to quickly respond to hue change requests from dye users. Next, a typical method of the present invention will be explained in detail with reference to the drawings. The liquid color difference between a standard dye and representative samples (preferably several types) of the same dye is determined in exactly the same manner as described below. Spectrophotometric analysis of standard dyes and sample dyes is used to measure the absorbance curve in the visible spectrum wavelength range. Figure 1 is an example of this for a red dye, with 1
is the standard dye and 2 is the absorbance curve of the sample dye. Using these absorbances, the concentration tristimulus value QX,
Calculate QY and QZ using the following general formula (1). QX=∫Pλ
or those specified in Table 1 of JISZ8701 (display method of colors in the X, Y, Z system in a 2° visual field). May be used. Pλ is the standard spectral distribution of light, and the standard light corresponding to the light source that is often used for color evaluation of dyes is used. D65 is usually used. Further, λ indicates the wavelength. dλ is the spectral wavelength interval when performing integral calculations, and is usually 10 or 20 nm. Next, the complementary color chromaticity coordinates xQ, yQ and color density value
SQ etc. are determined using the following equation (2). SQ=QX+QY+QZ xQ=QX/SQ yQ=QY/SQ (2) Using these results to create a complementary chromaticity diagram, we get
It will look like Figure 2. Here, the reason why complementary color chromaticity coordinates are particularly used is as follows. (a) The chromaticity point remains constant regardless of the solution concentration. (b) Color mixture calculations on the chromaticity diagram become additive, making it easier to understand trends in color differences. Further, after converting the absorbance curve of, for example, a standard dye in the same item into a transmittance curve using the following equation (3), the tristimulus values X, Y, and Z are determined using equation (4). Tλ=1/EXP(Dλ/0.4343) (3) Using equation (5), it is converted to an isometric color system, for example, the CIE1976 (L * a * b * ) color system recommended by CIE. L * = 116 (Y/Yo) 1/3 -16 a * = 500 [X/Xo) 1/3 - (Y/Yo) 1/3 ] b * = 200 [(Y/Yo) 1/3 - (Z/Zo) 1/3 ] (5) Here, in the case of standard light D 65 10° field of view, X p = 94.811 Y p = 100.0 Z p 107.334. In the a * b * chromaticity coordinates of this color system, the chromaticity point a * that gives the hue difference and saturation difference or sharpness difference
Chromaticity points [a * (1), b * (1)] to [a * (4), b * ( 4)] (third Figure) gives four sets of tristimulus values [X(1), Y(1), Z(1)] ~
[X(4), Y(4), Z(4)] is obtained by inverse transformation of equation (5), and the spectral transmittance curve gives the respective tristimulus values.
Tλ is determined using computer color matching calculation for transmitted color (Figs. 4 to 7), and these are converted to an absorbance curve using Equation (8), and Equation (1):
Obtain the complementary chromaticity coordinates of each chromaticity point using (2). Complementary chromaticity coordinates given by this and the standard dye above
xQ(0), yQ(0) and the complementary chromaticity coordinates of each of the four chromaticity points obtained above [xQ(1), yQ(1)] ~
Find the relationship and relational expression of the difference between [xQ(4), yQ(4)] (Figure 8). Using these relationships and relational expressions shown in Figure 8, first, from the complementary chromaticity coordinates of the sample dye, a straight line passing through chromaticity points 1, 0, and 2 (hereinafter referred to as the equal visibility line) is drawn.
A parallel line is drawn, and the coordinates of the intersection A with a straight line passing through chromaticity points 3, 0, and 4 (hereinafter referred to as the equal hue line) are determined. Similarly, from the complementary chromaticity coordinates of the sample dye,
A parallel line is drawn to the equal hue line, and the coordinates of the intersection point B with the sharpness line are determined. Next, using the coordinates of these intersection points A and B, the liquid color difference is determined by the following equation (6). Liquid color hue difference = Length of straight line connecting chromaticity points 0 and B / Length of straight line connecting chromaticity points 0 and 2 Liquid color sharpness difference =
Length of the straight line connecting chromaticity points 0 and A/Length of the straight line connecting chromaticity points 0 and 3 In addition, using a conventionally known method, each dye is The hue difference, saturation difference, or sharpness difference is determined from the dyeing color difference of a representative sample of the same item of dye with respect to the standard dye of the dyed product obtained by dyeing, and these are used as the dye dyeing color difference. Next, the relationship between the dyeing color difference and the liquid color difference is determined by a statistical method, for example, by a regression line. Using the relationship, the color difference of the dyeing result can be predicted as the hue difference and sharpness difference from the liquid color difference of the sample dye determined in . Next, the present invention will be explained with reference to Examples. Example 1 [Measurement of liquid color difference of sample dye] Color Index No. Reality Red 112, which is a reactive dye, was first subjected to spectrophotometric analysis using a standard dye used as a quality standard and a 0.0025% aqueous solution of the sample dye. The absorbance curve in the wavelength range of the visible spectrum is measured. In FIG. 1, 1 is for the standard dye and 2 is for the sample dye. Using these absorbances, according to general formula (1),
Concentration tristimulus values for standard and sample dyes
Find QX, QY, QZ. The concentration tristimulus values QX, QY, QZ of the standard dye are QX = 9.6600 QY = 23.2810 QZ = 23.4630. The concentration tristimulus values QX, QY, QZ of the sample dye are QX=9.6040 QY=23.2120 QZ=23.5060. Next, using these values, the complementary color chromaticity coordinates, xQ, yQ, color density value SQ, etc. are determined by equation (2). The complementary chromaticity coordinates xQ, yQ and the color density value SQ for the standard dye are: SQ=56.4040 xQ=xQ(0)=0.1713 yQ=yQ(0)=0.4128 The complementary chromaticity coordinates xQ, yQ and the color density value for the sample dye are The color density values SQ are SQ = 56.322 xQ = 0.1705 yQ = 0.4121 When a complementary color chromaticity diagram is created using these obtained results, it becomes as shown in Figure 2. Here, the second
In the figure, 1 is for the standard dye and 2 is for the sample dye. Further, after converting the absorbance curve of a standard dye of the same type into a transmittance curve using equation (3), the tristimulus values X, Y, and Z are determined using equation (4). X=78.0150 Y=64.0219 Z=66.7220 Next, using equation (5), the color system is converted into an isometric color system, for example, the CIE1976 (L * a * b * ) color system recommended by CIE. L * (0) = 84.0114 a * (0) = 37.5735 b * (0) = 1.7272 In the a * b * chromaticity coordinates of this color system, the chromaticity point that gives the hue difference and saturation difference or sharpness difference a *
Chromaticity points a * (1), b * (1), a * (2), b * (2), a * (3) where (0), b * (0) change by 1 unit amount independently ), b * (3),
Find a * (4) and b * (4). (Figure 3) L * (1) = 84.0114 a * (1) = 37.6194 b * (1) = 0.7283 L * (2) = 84.0114 a * (2) = 37.5276 b * (2) = 2.7262 L * ( 3)=84.0114 a * (3)=38.5725 b * (3)=1.7731 L * (4)=84.0114 a * (4)=36.5746 b * (4)=1.6813 Then, the four sets given by these chromaticity points The tristimulus values of
The spectral transmittance curve Tλ giving each tristimulus value is determined by using computer color matching calculation for transmitted color. (4th ~
Figure 7) X(1)=78.0378 Y(1)=64.0219 Z(1)=67.9005 = 64.0219 Z(3) = 66.6681 2), the complementary chromaticity coordinates of each chromaticity point
Find xQ(1) to xQ(4) and yQ(1) to yQ(4). xQ(1)=0.1729 yQ(1)=0.4179 xQ(2)=0.1696 yQ(2)=0.4077 xQ(3)=0.1677 yQ(3)=0.4156 xQ(4)=0.1749 yQ(4)=0.4100 With this , the complementary chromaticity coordinates given by the above standard dyes
xQ(0), yQ(0) and complementary color chromaticity coordinates of each of the four chromaticity points found above xQ(1) to xQ(4), yQ(1) to yQ
Find the relationship and relational expression of the difference with (4). (Figure 8) △xQ(1)=xQ(1)−xQ(0)= 0.0016 △yQ(1)=yQ(1)−yQ(0)= 0.0051 △xQ(2)=xQ(2)− xQ(0)=−0.0017 △yQ(2)=yQ(2)−yQ(0)=−0.0051 △xQ(3)=xQ(3)−xQ(0)=−0.0036 △yQ(3)=yQ (3)−yQ(0)=0.0028 △xQ(4)=xQ(4)−xQ(0)=0.0036 △yQ(4)=yQ(4)−yQ(4)−yQ(0)=−0.0028 In Figure 8, 0 is the complementary chromaticity coordinate for the standard dye, and 1, 2, 3, and 4 are 1/5 times the difference between each complementary chromaticity coordinate and the complementary chromaticity coordinate of the standard dye. It shows. Next, in Figure 8, from the complementary chromaticity coordinates of the sample dye, take the average of the slope of the straight line connecting chromaticity points 0 and 1 and the slope of the straight line connecting chromaticity points 0 and 2, and Using the gradient, draw a parallel line to the straight line passing through the chromaticity point 0 (in this case, you may use a straight line connecting the chromaticity points 0 and 2, hereinafter referred to as the equal sharpness line), and draw a parallel line to the chromaticity point 0. Take the average of the slope of the straight line connecting chromaticity points 0 and 3 and the slope of the straight line connecting chromaticity points 0 and 4, and use this average slope to calculate the straight line passing through chromaticity point 0 (in this case, between chromaticity points 0 and 3). The coordinates of the intersection point A with the connecting straight line (hereinafter referred to as the isohue line) may be determined. xQ(A)=0.1708 yQ(A)=0.4132 Similarly, from the complementary chromaticity coordinates of the sample dye, draw a parallel line to the equal hue line and find the intersection B with the equal visibility line. xQ(B)=0.1710 yQ(B)=0.4117 Using these values, the liquid color hue difference and liquid color sharpness difference to calculate the liquid color difference are as follows. [Measurement of dyeing color difference of representative samples] Representative samples of the same dye as the standard dye
Dissolve 0.2 parts in 200 parts of water, add 20 parts of mirabilite, and mix with cotton.
Add 10 parts and raise the temperature to 50°C. After 30 minutes, 4 parts of soda carbonate is added and dyed at the same temperature for 1 hour. After dyeing, the dyed product is washed with water, soaped, and dried, and the dyed color difference of a representative sample of the same item of dye is calculated as the hue difference and saturation difference or sharpness difference between the dye that is the standard dye. Find the color difference. [Measurement of the liquid color difference of a representative sample] According to the method described above, the dye liquid color difference is determined by using the liquid color difference of a representative sample of the same item of dye with respect to the standard dye as the hue difference and sharpness difference. [Determining the relationship between the dye staining color difference and the liquid color difference of a representative sample] Using these dye staining color differences and liquid color color differences, regression analysis is performed to determine the relationship between the dye staining color difference and the liquid color difference of the representative sample using a regression line. Find it as. (FIG. 9) Using the previously determined liquid color difference of the sample dye, a predicted value of the dyeing result was determined from a regression line. The results are listed in Table 1 together with the color difference obtained by actually dyeing the sample dye.

【表】 上記と同様にして、別の試料染料1〜8を用い
て染色予測値を求めた結果を、実際の染色結果と
対比させて表2に示す。
[Table] Table 2 shows the results of the predicted dyeing values obtained using different sample dyes 1 to 8 in the same manner as above, in comparison with the actual dyeing results.

【表】【table】

【表】 以上の実験結果のように、上記方法によつて求
めた染色結果の予測値は(染色予測値)、実際に
に染色して得られた値(染色結果)と非常に良い
一致を示した。 実施例 2 水に難溶解あるいは不溶解性の染料である分散
染料の中で、カラーインデツクスNo.デイスパーズ
ブルー301において、まず品質の基準とする標
準的染料および試料染料0.005部に80%アセトニ
トリルを加えて溶解して100部とした溶液を用い
て吸光光度分析にり、可視スペクトル波長域の吸
光光度曲線を測定する。 第10図の1は、標準的染料、2は試料染料に
対するものである。 これらの吸光度を用いて、一般式(1)によつて、
標準的染料および試料染料について、濃度三刺激
値QX,QY,QZを求める。標準的染料の濃度三
刺激値QX,QY,QZは QX=54.1590 QY=54.1490 QZ=16.2530 である。 試料染料の濃度三刺激値QX,QY,QZは、 QX=54.3260 QY=54.6040 QZ=16.6620 である。 つづいて、これらの値を用いて式(2)によつて、
補色色度座標xQ,yQおよび色濃度値SQを求め
る。 標準的染料についての補色色度座標xQ,yQお
よび色濃度値SQは、 SQ=124.5610 xQ= 0.4348 yQ= 0.4347 試料染料については、 3SQ=125.5920 xQ= 0.4326 yQ= 0.4348 これらの得られた結果を用いて、補色色度図を
作成すると第11図のようになる。ここで、第1
1図の1は、標準的染料、2は試料染料に対する
ものである。 又、同種の標準的染料の吸光光度曲線を式(3)に
よつて、透過率曲線に変換後、式(4)により、三刺
激値X,Y,Zを求める。 X=30.141 Y=32.058 Z=74.119 ついで、式(5)を用いて、等色差性表色系、例え
ば、CIEが推奨したCIE1976(L*a*b*)表色系に
変換する。 L*(0)=63.4180 a*(0)=− 0.9732 b*(0)=−39.8531 この表色系のa*b*色度座標において、色相差
および彩度差又は鮮明度差を与える色度点a*
(0),b*(0)が単独に、1単位量だけ変化する
色度点a*(1),b*(1),a*(2),b*(2),a*(3),b*(3),
a*(4),b*(4)を求める(第12図)。 L*(1)= 63.4180 a*(1)=− 1.9730 b*(1)=−39.8286 L*(2)= 63.4180 a*(2)= 0.0264 b*(2)=−39.8775 L*(3)= 63.4180 a*(3)=− 0.9977 b*(3)=−40.8528 L*(4)= 63.4180 a*(4)=− 0.9489 b*(4)=−38.8534 ついで、これらの色度点が与える4組の三刺激
値X(1)〜(4),Y(1)〜(4),Z(1)〜Z(4)を式(5)の逆

換により求める。 X(1)=29.8769 Y(1)=32.0580 Z(1)=74.0881 X(2)=30.4067 Y(2)=32.0580 Z(2)=74.1496 X(3)=30.1345 Y(3)=32.0580 Z(3)=75.3838 X(4)=30.1475 Y(4)=82.0580 Z(4)=72.8682 これら、それぞれの三刺激値を与える分光透過
率曲線Tλを透過色用コンピユータカラーマツチ
ング計算などを用いて求める(第13〜第116
図)。 これらの分光透過率曲線Tλを、式(3)を用いて、
吸光光度曲線に変換し、式(1)、式(2)により、各色
度点の補色色度座標xQ(1)〜xQ(4),yQ(1)〜yQ(4)
を求める。 xQ(1)=0.4324 yQ(1)=0.4303 xQ(2)=0.4288 yQ(2)=0.4314 xQ(3)=0.4343 yQ(3)=0.4335 xQ(4)=0.4271 yQ(4)=0.4282 これと、上記標準的染料が与える補色色度座標
xQ(0),yQ(0)と、上記により求めた4組の
各色度点の補色色度座標との差△xQ(1)〜△xQ
(4),△yQ(1)〜△yQ(4)及び関係式を求める。 △xQ(1)= 0.0018 △yQ(1)=−0.0006 △xQ(2)= 0.0018 △yQ(2)= 0.0005 △xQ(3)= 0.0037 △yQ(3)= 0.0026 △xQ(4)=−0.0035 △yQ(4)=−0.0027 次に、実施例1に記載の様にして、等色相線及
び等鮮明度線を求め、試料染料の補色色度座標か
ら、等鮮明度線に平行線を引き、等色相線との交
点Aの座標を求める。 xQ(A)=0.4349 xQ(A)=0.4347 同様にして、試料染料の補色色度座標から、等
色相線に平行線を引き、等鮮明度線との交点Bを
求める。 xQ(B)=0.4325 yQ(B)=0.4348 これらの値を用いて、液色色差を求める。 液色色相差は、 色相差=0.00228/0.0019 =1.20 液色鮮明度差は、 鮮明度差=0.000045/0.0045 =0.01 又、標準とする染料と同一品目の染料の代表的
試料0.2部を水300部内にポリエステルスパン系10
部と共に加え、加圧下130℃で60分間染色する。
染色後、湯洗し、更に還元洗浄し乾燥を行なつて
得られた染色物の標準とする染料に対する同一品
目の染料の代表的試料の染色色差を、色相差およ
び彩度差又は鮮明度差として、染料染色色差を求
める。 一方、上記記載の方法により、標準とする染料
に対する同一品目の染料の代表的試料の液色色差
を色相差、鮮明度差として、染料液色色差を求め
る。 これらの染料染色色差および液色色差を用い
て、回帰分析を行ない、液色色差に対する染料染
色色差の関係を回帰直線として求める。この関係
式、染色色相差=0.16×(液色色相差)、染色鮮明
度差=0.28×(液色鮮明度差) を用いて、先に求めた試料染料の液色色差より染
色結果の予測値を求めた。試料染料を実際に染色
して得られた色差とともに結果を表3に記載す
る。
[Table] As shown in the above experimental results, the predicted value of the staining result obtained by the above method (predicted staining value) is in very good agreement with the value actually obtained by staining (staining result). Indicated. Example 2 Among disperse dyes that are poorly soluble or insoluble in water, Color Index No. Disperse Blue 301 was prepared by adding 80% acetonitrile to 0.005 part of the standard dye and sample dye used as quality standards. A solution made by adding and dissolving 100 parts is subjected to spectrophotometric analysis to measure the absorbance curve in the visible spectrum wavelength range. In FIG. 10, 1 is for the standard dye and 2 is for the sample dye. Using these absorbances, according to general formula (1),
Determine the concentration tristimulus values QX, QY, and QZ for the standard dye and sample dye. The concentration tristimulus values QX, QY, QZ of the standard dye are QX = 54.1590 QY = 54.1490 QZ = 16.2530. The concentration tristimulus values QX, QY, QZ of the sample dye are QX=54.3260 QY=54.6040 QZ=16.6620. Next, using these values and using equation (2),
Determine complementary color chromaticity coordinates xQ, yQ and color density value SQ. The complementary chromaticity coordinates xQ, yQ and color density value SQ for the standard dye are: SQ=124.5610 xQ= 0.4348 yQ= 0.4347 For the sample dye, 3SQ=125.5920 xQ= 0.4326 yQ= 0.4348 Using these obtained results, If we create a complementary color chromaticity diagram, it will look like the one shown in Figure 11. Here, the first
In Figure 1, 1 is for the standard dye and 2 is for the sample dye. Further, after converting the absorbance curve of a standard dye of the same type into a transmittance curve using equation (3), the tristimulus values X, Y, and Z are determined using equation (4). X=30.141 Y=32.058 Z=74.119 Next, using equation (5), the color system is converted into an isometric color system, for example, the CIE1976 (L * a * b * ) color system recommended by CIE. L * (0) = 63.4180 a * (0) = - 0.9732 b * (0) = -39.8531 Color that gives hue difference and saturation difference or sharpness difference in a * b * chromaticity coordinates of this color system degree a *
Chromaticity points a * (1), b * (1), a * (2), b * (2), a * (3) where (0), b * (0) change by 1 unit amount independently ), b * (3),
Find a * (4) and b * (4) (Figure 12). L * (1) = 63.4180 a * (1) = - 1.9730 b * (1) = -39.8286 L * (2) = 63.4180 a * (2) = 0.0264 b * (2) = -39.8775 L * (3) = 63.4180 a * (3) = − 0.9977 b * (3) = −40.8528 L * (4) = 63.4180 a * (4) = − 0.9489 b * (4) = −38.8534 Then, these chromaticity points give Four sets of tristimulus values X(1) to (4), Y(1) to (4), and Z(1) to Z(4) are obtained by inverse transformation of equation (5). X(1)=29.8769 Y(1)=32.0580 Z(1)=74.0881 X(2)=30.4067 Y(2)=32.0580 Z(2)=74.1496 X(3)=30.1345 Y(3)=32.0580 Z( 3)=75.3838 (13th to 116th
figure). These spectral transmittance curves Tλ are calculated using equation (3),
Convert to an absorbance light curve, and use equations (1) and (2) to calculate the complementary chromaticity coordinates xQ(1) to xQ(4), yQ(1) to yQ(4) of each chromaticity point.
seek. xQ(1)=0.4324 yQ(1)=0.4303 xQ(2)=0.4288 yQ(2)=0.4314 xQ(3)=0.4343 yQ(3)=0.4335 xQ(4)=0.4271 yQ(4)=0.4282 With this , the complementary chromaticity coordinates given by the above standard dyes
The difference △xQ(1) to △xQ between xQ(0), yQ(0) and the complementary color chromaticity coordinates of each of the four chromaticity points obtained above
(4), find △yQ(1) to △yQ(4) and the relational expression. △xQ(1)= 0.0018 △yQ(1)=−0.0006 △xQ(2)= 0.0018 △yQ(2)= 0.0005 △xQ(3)= 0.0037 △yQ(3)= 0.0026 △xQ(4)=− 0.0035 △yQ(4)=-0.0027 Next, as described in Example 1, obtain the equal hue lines and equal brightness lines, and draw parallel lines to the equal brightness lines from the complementary chromaticity coordinates of the sample dye. Find the coordinates of the intersection point A with the equal hue line. xQ(A)=0.4349 xQ(A)=0.4347 Similarly, from the complementary chromaticity coordinates of the sample dye, draw a parallel line to the equal hue line and find the intersection B with the equal visibility line. xQ(B)=0.4325 yQ(B)=0.4348 Using these values, calculate the liquid color difference. The liquid color hue difference is: Hue difference = 0.00228/0.0019 = 1.20 The liquid color sharpness difference is: Sharpness difference = 0.000045/0.0045 = 0.01 Also, add 0.2 parts of a representative sample of the same dye as the standard dye to 300 parts of water. Polyester spun type 10
and stain for 60 minutes at 130°C under pressure.
After dyeing, the dyed product is washed with hot water, further reduced washed and dried, and the dyed color difference of a representative sample of the same item of dye is calculated as the hue difference, chroma difference, or sharpness difference. , determine the dye staining color difference. On the other hand, by the method described above, the dye liquid color difference is determined by using the liquid color difference of a representative sample of the same dye with respect to the standard dye as the hue difference and the sharpness difference. Regression analysis is performed using these dye staining color differences and liquid color differences, and the relationship between the dye staining color differences and the liquid color differences is determined as a regression line. Using this relational expression, dyeing hue difference = 0.16 × (liquid color hue difference), dyeing sharpness difference = 0.28 × (liquid color sharpness difference), the predicted value of the dyeing result from the liquid color color difference of the sample dye obtained previously. I asked for The results are listed in Table 3 along with the color difference obtained by actually dyeing the sample dye.

【表】 上記と同様にして、別の試料1〜8を用いて染
色予測値を求めた結果を、実際の染色結果と対比
させて表4に示す。
[Table] Table 4 shows the results of the predicted staining values obtained using other samples 1 to 8 in the same manner as above, in comparison with the actual staining results.

【表】【table】

【表】 以上の実験結果のように、上記方法によつて求
めた染色結果の予測値は(染色予測値)、実際に
染色して得られた値(染色結果)と非常に良い一
致を示した。
[Table] As shown in the above experimental results, the predicted value of the staining result obtained by the above method (staining predicted value) is in very good agreement with the value actually obtained by staining (staining result). Ta.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜9図はC.I.リアクテイブ レツド112
について、第10〜16図はC.I.デイスパース
ブルー301について示したものである。第1
図、第10図は吸光光度曲線、第2図、第11図
は補色色度図であり、図中1は標準的染料、2は
試料染料に対するものである。第3図、第12図
は、CIE1976L*a*b*表色系の色度図であり、0
は標準的染料の色度点1,2,3,4は色度点0
が単独に1単位量変化した時の色度点である。第
4〜7図は第3図に記載の各色度点に対応する分
光透過率曲線であり、0,1,2,3,4は第3
図記載の色度点に対応するものである。第8図は
第4〜第7図から求めた補色色度座標であり、○
は標準となる染料、1,2,3,4は第4〜第7
図記載の番号、×印は、試料染料に対するもので
ある。第9図は染色色差と液色色差との関係式で
ある。第13〜16図は透過色用コンピユータカ
ラーマツチング計算を用いて計算された第12図
に記載の各色度点に対応する分光透過率曲線であ
り、0,1,2,3,4は、第12図記載の色度
点に対応するものである。
Figures 1 to 9 are CI Reactive Red 112
Regarding, Figures 10 to 16 are CI dispersion.
This is shown for Blue 301. 1st
10 are absorbance curves, and FIGS. 2 and 11 are complementary chromaticity diagrams, in which 1 is for the standard dye and 2 is for the sample dye. Figures 3 and 12 are chromaticity diagrams of the CIE1976L * a * b * color system, and 0
is the standard dye chromaticity point 1, 2, 3, 4 is the chromaticity point 0
This is the chromaticity point when the is changed by 1 unit amount independently. Figures 4 to 7 are spectral transmittance curves corresponding to each chromaticity point shown in Figure 3, and 0, 1, 2, 3, and 4 are spectral transmittance curves corresponding to the chromaticity points shown in Figure 3.
This corresponds to the chromaticity points shown in the figure. Figure 8 shows the complementary color chromaticity coordinates obtained from Figures 4 to 7.
is the standard dye, 1, 2, 3, 4 are the 4th to 7th dyes.
The numbers and x marks in the figure are for the sample dyes. FIG. 9 is a relational expression between the dye color difference and the liquid color difference. 13 to 16 are spectral transmittance curves corresponding to each chromaticity point shown in FIG. 12 calculated using computer color matching calculation for transmitted colors, and 0, 1, 2, 3, 4 are This corresponds to the chromaticity points shown in FIG.

Claims (1)

【特許請求の範囲】 1 染料の色彩特性と試験して、標準とする染料
に対する試料染料の色差を測定するにあたつて、 標準とする染料と、同一品目の染料の代表的
試料の溶液をそれぞれ調製し、吸光光度曲線を
測定し、これより、通常の三刺激値計算法に準
じ透過率のかわりに吸光度を用いた濃度三刺激
値QX、QY、QZを計算し、ついで、補色色度
座標xQ,yQおよび色濃度値を求める。 また、前もつて前記同一品目の染料の中から
任意に1つの染料を選定し、それの透過率曲線
を測定し、これより三刺激値X,Y,Zを求
め、ついで適当な等色差性表色系に変換する。
この表色系において、色相差と彩度差又は鮮明
度差が単独に単位量だけ変化させたときの色度
点が与える4組の三刺激値を求め、これらに対
応する透過率曲線を混色計算法を用いて計算に
より求め、これらを吸光光度曲線に変換し、各
色度点の補色色度座標を求める。これと、上記
で任意に選定した染料についての補色色度座標
との座標差より、前記等色差性表色系における
色相差および彩度差又は鮮明度差と補色色度座
標差の関係を明確にしておく。 この関係を用いて、前記の標準とする染料に
対する同一品目の染料の前記代表的試料の液色
色差から、色相差および鮮明度差を求め、それ
をもつて染料液色色差とする。 前記の標準とする染料と同一品目の染料の前
記代表的試料を用いてそれぞれ染色して得た染
色物の前記の標準とする染料に対する同一品目
の染料の前記代表的試料の染色色差から、色相
差と彩度差又は鮮明度差を求め、それをもつて
染料染色色差とする。 統計的方法により、の染料液色色差と、
の染料染色色差との関係を求める。 前記の標準とする染料に対する同一品目の前
記試料染料の染料液色色差をの方法と同様に
して、色相差、鮮明度差として染料液色色差を
求める。 の前記した標準とする染料に対する同一品
目の前記試料染料の染料液色色差より、で求
めたの染料液色色差との染料染色色差との
関係を用いて、前記した標準とする染料に対す
る同一品目の前記試料染料の染料染色色差を予
測することを特徴とする染料の色差測定方法。
[Claims] 1. In testing the color properties of dyes and measuring the color difference between a sample dye and a standard dye, solutions of the standard dye and a representative sample of the same dye are prepared. Prepare each, measure the absorbance light curve, calculate the concentration tristimulus values QX, QY, QZ using absorbance instead of transmittance according to the usual tristimulus value calculation method, and then calculate the complementary color chromaticity. Find the coordinates xQ, yQ and color density value. In addition, one dye is arbitrarily selected from among the dyes of the same item mentioned above, its transmittance curve is measured, tristimulus values X, Y, and Z are obtained from this, and then an appropriate isochromic difference Convert to color system.
In this color system, the four sets of tristimulus values given by the chromaticity points are obtained when the hue difference, saturation difference, or sharpness difference is changed by a unit amount independently, and the transmittance curve corresponding to these values is mixed. This is determined by calculation using a calculation method, these are converted into an absorbance light curve, and the complementary color chromaticity coordinates of each chromaticity point are determined. From the coordinate difference between this and the complementary color chromaticity coordinates of the dye arbitrarily selected above, the relationship between the hue difference and chroma difference or the sharpness difference and the complementary color chromaticity coordinate difference in the isochromatic color system is clarified. Keep it. Using this relationship, the hue difference and sharpness difference are determined from the liquid color difference of the representative sample of the same item of dye with respect to the standard dye, and these are used as the dye liquid color difference. From the dyeing color difference of the representative sample of the same item of dye with respect to the standard dye of the dyed products obtained by dyeing using the representative sample of the same item of dye as the standard dye, the color is determined. The phase difference and saturation difference or sharpness difference are determined and used as the dye dyeing color difference. By statistical method, the color difference of dye liquid color and
Find the relationship between dye staining color difference. The dye solution color difference is determined as a hue difference and a sharpness difference in the same manner as in the above-mentioned method of determining the dye solution color difference of the sample dye of the same item with respect to the standard dye. From the dye liquid color difference of the sample dye of the same item with respect to the standard dye described above, using the relationship between the dye liquid color difference of and the dye dyeing color difference obtained in , A method for measuring a dye color difference, comprising predicting a dye dyeing color difference of the sample dye.
JP57140655A 1982-08-12 1982-08-12 Method for measuring color difference of dye Granted JPS5930028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57140655A JPS5930028A (en) 1982-08-12 1982-08-12 Method for measuring color difference of dye

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57140655A JPS5930028A (en) 1982-08-12 1982-08-12 Method for measuring color difference of dye

Publications (2)

Publication Number Publication Date
JPS5930028A JPS5930028A (en) 1984-02-17
JPH0358053B2 true JPH0358053B2 (en) 1991-09-04

Family

ID=15273688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57140655A Granted JPS5930028A (en) 1982-08-12 1982-08-12 Method for measuring color difference of dye

Country Status (1)

Country Link
JP (1) JPS5930028A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6236543A (en) * 1985-08-12 1987-02-17 Kawasaki Steel Corp Purity measurement for steel plate surface
JPS63177039A (en) * 1987-01-19 1988-07-21 Sando Iron Works Co Ltd Method for detecting concentration of dye solution in dye padding tank
CN113866103B (en) * 2021-09-26 2023-10-13 广东溢达纺织有限公司 Sensitive interval detection method and device for reactive dye blending and computer equipment

Also Published As

Publication number Publication date
JPS5930028A (en) 1984-02-17

Similar Documents

Publication Publication Date Title
EP0128633B1 (en) Method of measuring color difference between a sample and a standard dyestuff
JPH056652B2 (en)
Luo et al. CMC 2002 colour inconstancy index; CMCCON02
KR100708000B1 (en) Making dye mixtures to produce a certain target colour
JPH0358053B2 (en)
Iqbal et al. Prediction of low-sensitivity reactive dye recipe in exhaust dyeing influenced by material to liquor ratio and nature of salt
JPH0358054B2 (en)
Everhard et al. Spectrophotometric reflectance method for matching the color of solid dosage forms
Kuramoto et al. Visual colour fastness assessments for multi-coloured fabrics
CN110426222B (en) Washing machine anti-fading performance testing method
JPH03248900A (en) Computer color matching method
Prasad et al. Specification of colour changes of metallochromic indicators in the titration of bismuth with EDTA
CN115728260A (en) Method for avoiding blending and color imitation of metamerism dye
Samanta Colorimetric Evaluations and Characterization of Natural and Synthetic Dyes/Pigments and Dyed Textiles and Related Products
Trotter Characterising Solvent‐soluble Dyes by Optical Transmission Methods
King The colorimetry of indicators
McLaren Industrial applications of colour science
Hirschler et al. Whiteness determination of optically brightened textiles
Samanta Advanced Methods and Tools for Color Measuring and Matching: For Quality Check of Colored Products of Textiles and Apparel Industry
DUFF et al. II‐Replacement of One Dye Class by Another
Appel et al. Standardization of agalma black 10B
CN113326464A (en) Method for evaluating dye intensity based on color depth formula
CN116148127A (en) Method for calculating gram weights and similarity of sample vat and following vat dyeing cloth dyes
Hoban Color Measurement in Fastness Evaluation.
Appel et al. Spectrophotometric Analysis Applied to Chromotrope 10B.