JPH0358009A - Microscope reflecting objective - Google Patents

Microscope reflecting objective

Info

Publication number
JPH0358009A
JPH0358009A JP19274789A JP19274789A JPH0358009A JP H0358009 A JPH0358009 A JP H0358009A JP 19274789 A JP19274789 A JP 19274789A JP 19274789 A JP19274789 A JP 19274789A JP H0358009 A JPH0358009 A JP H0358009A
Authority
JP
Japan
Prior art keywords
reflecting
reflecting mirror
spherical
power
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19274789A
Other languages
Japanese (ja)
Inventor
Shingo Kashima
伸悟 鹿島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP19274789A priority Critical patent/JPH0358009A/en
Priority to US07/553,639 priority patent/US5144496A/en
Publication of JPH0358009A publication Critical patent/JPH0358009A/en
Priority to US07/937,551 priority patent/US5253117A/en
Priority to US07/937,128 priority patent/US5291340A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE:To obtain the low power objective which has its spherical aberration compensated excellently by using only spherical surfaces by arranging 1st-3rd reflecting mirrors symmetrically about an axis and making all the 1st-3rd reflecting mirrors spherical. CONSTITUTION:The 1st reflecting mirror M1, 2nd reflecting mirror M2, and 3rd reflecting mirror M3 are all arranged in the order of light incidence symmet rically about the axis. Then the 1st and 2nd reflecting mirrors M1 and M2 have positive power, the 3rd reflecting mirror M3 has negative power, and their surfaces are all spherical. The spherical aberration of a reflection image formation system consisting of two surfaces having power can not be cancelled completely. One reflecting surface with positive cancelled power is added to compensate the spherical aberration almost completely only by a spherical system. Further, when light is reflected three times, a body and an image point are formed on the same side, so the light is reflected twice by the 1st reflecting mirror M1 to increase the number of reflecting surfaces so that the number of times of reflection becomes four.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、測光顕微鏡やステージ走査方式の走査顕微鏡
に用いる低倍率の反射対物鏡に関するものである. [従来の技術] 本発明の顕微鏡反射対物鏡に類似する構成の光学系とし
て、特公昭47−12508、特開昭47−24833
号、特開昭59−77403号、特開昭47−1243
1)号の各公報に記載された光学系が知られている.こ
れらの従来例は、すべてパワーを持つ反射面が2面の構
成である. 〔発明が解決しようとする課題〕 これらの従来例は、パワーを持つ反射面が2面であるた
め、これら2面が球面であると球面収差が補正できない
。又1面を非球面にすると球面収差はほぼ完全に補正さ
れるが、非球面は球面に比べて製造が困難であり、精度
も出しにくいために実際上はあまり使用出来ない。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a low-magnification reflective objective mirror used in photometric microscopes and stage scanning type scanning microscopes. [Prior Art] As an optical system having a configuration similar to the microscope reflecting objective mirror of the present invention, Japanese Patent Publication No. 47-12508 and Japanese Patent Application Laid-Open No. 47-24833
No., JP-A-59-77403, JP-A-47-1243
1) The optical systems described in each publication are known. All of these conventional examples have two reflecting surfaces with power. [Problems to be Solved by the Invention] In these conventional examples, since there are two reflective surfaces having power, if these two surfaces are spherical surfaces, spherical aberration cannot be corrected. Furthermore, if one surface is aspherical, spherical aberration is almost completely corrected, but aspherical surfaces are more difficult to manufacture than spherical surfaces, and are difficult to achieve precision, so they cannot be used much in practice.

本発明の目的は、球面のみを用いて球面収差が良好に補
正されている低倍の顕微鏡用反射対物鏡を提供すること
にある。
An object of the present invention is to provide a low-magnification reflective objective for a microscope in which spherical aberration is well corrected using only spherical surfaces.

[課題を解決するための手段] 本発明の顕微鏡反射対物鏡は、標本からの光が当たる順
に、第1の反射鏡旧、第2の反射1IIM..第3の反
計鏡M3をすべて軸対称に配置した光学系で第1の反射
鏡M.と第2の反射鏡M2が正のパワーを持ち、第3の
反射鏡&lmが負のパワーを持ちすべての面が球面であ
ることを特徴としている.パワーを持つ反射面が2面の
反射結像系(望遠鏡等も含む)においては、第1次鏡の
正のパワーで発生する負の球面収差を第2次鏡の負のパ
ワーで発生する正の球面収差で打ち消すようにするが、
負のパワーの方が強いために、球面系では球面収差を完
全に打ち消すことはできない.そのため反射面を3面に
し増えた面を正のパワーにして球面系だけでも球面収差
をほぼ完全に補正出来る.しかし反射回数が3回では物
体と像点が同じ側に出来る.そのため本発明では第1の
反射!H.で2回反射させるようにして反射面の数を増
やし反射回数を4回にした. ここで第1の反射鏡Mtは球面収差を補正するだけに用
いられるもので、近軸量にはほとんど影響を及ぼさない
ようになっている.例えば倍率は、第2の反射鏡M一曲
率半径r2および第3の反射鏡MmA曲率半径r,との
比と、第2の反射鏡M2と第3の反射鏡M3の間の光学
的距離によって決まる.無限遠設計のことも考えて,倍
率のかわりに焦点距離で正規化して次の条件(1)を満
足するようにしてある. (1)7  ≦ lri/rslx (f/1)  ≦
 9ただしfは顕微鏡反射対物鏡の焦点距離、Lは第2
の反射鏡M,と第3の反射鏡M.の間の光学的距離であ
る. この条件(1)の下限の7を越えると第2の反射鏡hと
第3の反射鏡M3とのトータルの負のパワーが弱くなり
すぎ、それを補うためには第1の反射鏡M1の正のパワ
ーも弱くなるために球面収差が補正不足になり、上限の
9を越えると第2の反射鏡Lと第3の反射鏡Lトータル
の負のパワーが強くなりすぎ、それを打ち消すためには
第1の反射鏡の正のパワーが強くなるため球面収差が補
正過剰になる. 上述のように、近軸量はほぼ第2の反射鏡.第3の反射
鏡M*.kAsで決り、第1の反射鏡は球面収^ 差を補正するだけなのでそのパワーは非常に弱くまた焦
点距離が短い(倍率が高い)ほど弱くなるので焦点距離
で正規化し、次の条件(2)を満足することが望ましい
. (2)  0.02≦|2/rtl×(L”/f)≦0
.3ただし、rtは第1の反射鏡Mtの曲率半径である
. 条件(2)で下限の0.02を越えると第1の反射鏡M
1のパワーが弱くなり過ぎ、球面収差が補正不足になり
、上限の0.3を越えると第lの反射!IIM+のパワ
ーが強くなりすぎ球面収差が補正過剰になる. [実施例] 次に本発明の顕微鏡反射対物鏡の各実施例を示す. 実施例1 f=18.363(LUX).  NA=0.25,隠
蔽率=42%,  WFA=0.001几ro”■ Io”210 a.=60.0 r+= −2760.047 d+=−40.0 ri=89.774 dg=40.0 rs” −2760.047 di=−24.824 r<= −29.936 d.= 24.824 re”■ L” 64.82  .   lrx/rslX (f
/Ll  = 8.512/r1)  X (L”/f
)=0.17実施例2 f=18.0.  NA:0.25,  Io=oo隠
蔽率=42%.  1FA=0.001λro= ■ do= 58.184 r .=−2544.1)3 dl=−40.184 r==90.384 di= 40.184 rs”−2544.1)3 di= −25.440 r4= −29.502 d.= 27.256 r@=ω L= 65.62  .  lr*/rslX ff/
1)12/ri  ×(L”/f)=0.16実施例3 f =9.424(20X) .  NA =0.4隠
蔽率= 21%   WFA= 0.003r0=■ =8.39 !。=210 do= 54.747 rl= −17554.737 d,=−32.719 ra=76.396 da= 32.719 rs” −17554.737 d.=−27.693 r4=−14.685 d.= 32.946 rs= ■ L=60.41 .  . lri/rslX f’f
/1)  =8.1)12/r+ l  X (L”/
fl = 0.044実施例4 f=lIs.0.  NA=0.4.  IO=OO隠
蔽率=21%.  WFA=0.001) Lrow 
の d.= 52.921 rl= −9702.702 d,=−33.565 r諺冨77.199 d,= 33.565 rs” −9702.702 di=−28。319 ?4=−14.387 d.= 35.398 rs=■ L= 61.88  .   lra/ril×(f/
1)=7.812/rll  X (L”/fl=0.
088ただしr1。ran ”・は各反射面の曲率半径
、dl+di・・・は各反射面間の距離、r0は標本面
+rsは胴付面である.又データー中の隠蔽率は (N
Aaia/NA...1 ”である.尚NA■。,NA
...は第9図に示す通りである。
[Means for Solving the Problems] The microscope reflecting objective mirror of the present invention has a first reflecting objective, a second reflecting objective 1IIM, and a second reflecting objective 1IIM. .. In an optical system in which the third anti-metering mirror M3 is all arranged axially symmetrically, the first reflecting mirror M. The second reflecting mirror M2 has positive power, the third reflecting mirror &lm has negative power, and all surfaces are spherical. In a reflective imaging system (including telescopes, etc.) that has two reflecting surfaces with power, the negative spherical aberration caused by the positive power of the primary mirror is replaced by the positive spherical aberration caused by the negative power of the secondary mirror. The spherical aberration of
Since negative power is stronger, spherical aberration cannot be completely canceled in a spherical system. Therefore, spherical aberration can be almost completely corrected by using only a spherical system with three reflective surfaces and the additional surfaces having positive power. However, if the number of reflections is three, the object and the image point will be on the same side. Therefore, in the present invention, the first reflection! H. The number of reflections was increased to 4 by increasing the number of reflection surfaces by making it reflect twice. Here, the first reflecting mirror Mt is used only to correct spherical aberration, and has almost no effect on the paraxial amount. For example, the magnification is determined by the ratio of the radius of curvature r2 of the second reflecting mirror MmA and the radius of curvature r of the third reflecting mirror MmA, and the optical distance between the second reflecting mirror M2 and the third reflecting mirror M3. It's decided. Considering the infinity design, we normalized the focal length instead of the magnification to satisfy the following condition (1). (1) 7 ≦ lri/rslx (f/1) ≦
9 However, f is the focal length of the microscope reflecting objective, and L is the second
reflecting mirror M, and a third reflecting mirror M. is the optical distance between If the lower limit of 7 of this condition (1) is exceeded, the total negative power of the second reflecting mirror h and the third reflecting mirror M3 becomes too weak, and in order to compensate for this, the negative power of the first reflecting mirror M1 is Since the positive power also becomes weak, the spherical aberration becomes under-corrected, and if the upper limit of 9 is exceeded, the total negative power of the second reflecting mirror L and the third reflecting mirror L becomes too strong. Since the positive power of the first reflecting mirror becomes stronger, the spherical aberration becomes overcorrected. As mentioned above, the paraxial quantity is approximately the same as that of the second reflecting mirror. Third reflecting mirror M*. kAs, and since the first reflecting mirror only corrects the spherical aberration difference, its power is very weak, and the shorter the focal length (higher the magnification), the weaker it is, so normalize it by the focal length and use the following condition (2). ) is desirable. (2) 0.02≦|2/rtl×(L”/f)≦0
.. 3, where rt is the radius of curvature of the first reflecting mirror Mt. If the lower limit of 0.02 is exceeded in condition (2), the first reflecting mirror M
If the power of 1 becomes too weak and the spherical aberration becomes insufficiently corrected, and exceeds the upper limit of 0.3, the 1st reflection! The power of IIM+ becomes too strong and spherical aberration becomes overcorrected. [Examples] Next, examples of the microscope reflecting objective mirror of the present invention will be shown. Example 1 f=18.363 (LUX). NA=0.25, concealment rate=42%, WFA=0.001 ro"■ Io"210 a. =60.0 r+= -2760.047 d+=-40.0 ri=89.774 dg=40.0 rs" -2760.047 di=-24.824 r<=-29.936 d.= 24. 824 re”■ L” 64.82.lrx/rslX (f
/Ll = 8.512/r1)
)=0.17 Example 2 f=18.0. NA: 0.25, Io=oo concealment rate=42%. 1FA=0.001λro= ■ do=58.184 r. =-2544.1)3 dl=-40.184 r==90.384 di=40.184 rs”-2544.1)3 di=-25.440 r4=-29.502 d.=27.256 r@=ω L= 65.62 .lr*/rslX ff/
1) 12/ri × (L”/f) = 0.16 Example 3 f = 9.424 (20X). NA = 0.4 Concealment rate = 21% WFA = 0.003r0 = ■ = 8.39! .=210 do=54.747 rl=-17554.737 d,=-32.719 ra=76.396 da=32.719 rs"-17554.737 d. =-27.693 r4=-14.685 d. = 32.946 rs= ■ L=60.41. .. lri/rslX f'f
/1) =8.1)12/r+ l X (L”/
fl = 0.044 Example 4 f = lIs. 0. NA=0.4. IO=OO concealment rate=21%. WFA=0.001) Low
d. = 52.921 rl = -9702.702 d, = -33.565 r proverb 77.199 d, = 33.565 rs" -9702.702 di = -28.319 ?4 = -14.387 d. = 35.398 rs=■ L= 61.88.lra/ril×(f/
1)=7.812/rll X (L”/fl=0.
088 but r1. ran'' is the radius of curvature of each reflecting surface, dl+di... is the distance between each reflecting surface, r0 is the specimen surface + rs is the trunked surface. Also, the concealment rate in the data is (N
Aaia/NA. .. .. 1”.NA■.,NA
.. .. .. is as shown in FIG.

これら実施例中、実施例2と実施例4は無限遠設計の光
学系である.これらの収差曲線図は、f=180の無収
差レンズを付け加えた時のものを示してある.又データ
ー中の波面収差(WFA)は隠蔽率を考慮した軸上の値
であり、収差曲繍図とは評価面が異なっている.つまり
収差曲線図は、視野数より逆追跡しての標本面で値を示
してある. [発明の効果] 本発明の顕微鏡対物鏡は,球面のみで構成されているに
拘らず球面収差が極めて良好に補正されている.
Among these examples, Examples 2 and 4 are optical systems designed for infinite distance. These aberration curve diagrams are shown when an aberration-free lens of f=180 is added. Furthermore, the wavefront aberration (WFA) in the data is an on-axis value that takes into account the concealment rate, and the evaluation surface is different from the aberration curve diagram. In other words, the aberration curve diagram shows the values at the sample plane, which is traced back from the number of fields of view. [Effects of the Invention] Although the microscope objective mirror of the present invention is composed only of spherical surfaces, spherical aberration is extremely well corrected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第4図は夫々本発明の実施例1乃至実施例4
の断面図、第5図乃至第8図は夫々実施例1乃至実施例
4の収差曲線図、第9図は本発明の基本構成を示す図で
ある.
1 to 4 are embodiments 1 to 4 of the present invention, respectively.
5 to 8 are aberration curve diagrams of Examples 1 to 4, respectively, and FIG. 9 is a diagram showing the basic configuration of the present invention.

Claims (1)

【特許請求の範囲】 (1)標本から光が反射する順に第1の反射鏡、第2の
反射鏡、第3の反射鏡をすべて軸対称に配置した光学系
で、第1の反射鏡および第2の反射鏡が正のパワーを持
ち、第3の反射鏡が負のパワーを持ち、すべての面が球
面であることを特徴とする顕微鏡反射対物鏡。 (2)第2の反射鏡の曲率半径をr_2、第3の反射鏡
の曲率半径をr_3とした時、次の条件(1)を満足す
る請求項(1)の顕微鏡反射対物鏡。 (1)7≦|r_2/r_3|×(f/L)≦9ただし
fは顕微鏡対物鏡の焦点距離、Lは第2の反射鏡と第3
の反射鏡間の光学的距離である。 (3)第1の反射鏡の曲率半径をr_1とした時に以下
の条件(2)を満足することを特徴とする請求項(1)
の顕微鏡対物鏡。 (2)0.02≦|2/r_1|×(L^2/f)≦0
.3
[Scope of Claims] (1) An optical system in which a first reflecting mirror, a second reflecting mirror, and a third reflecting mirror are all arranged axially symmetrically in the order in which light is reflected from the specimen; A microscope reflecting objective characterized in that the second reflecting mirror has positive power, the third reflecting mirror has negative power, and all surfaces are spherical. (2) The microscope reflecting objective according to claim (1), which satisfies the following condition (1), where the radius of curvature of the second reflecting mirror is r_2 and the radius of curvature of the third reflecting mirror is r_3. (1) 7≦|r_2/r_3|×(f/L)≦9 where f is the focal length of the microscope objective, and L is the second and third reflecting mirrors.
is the optical distance between the reflecting mirrors. (3) Claim (1) characterized in that the following condition (2) is satisfied when the radius of curvature of the first reflecting mirror is r_1.
microscope objective. (2) 0.02≦|2/r_1|×(L^2/f)≦0
.. 3
JP19274789A 1989-07-19 1989-07-27 Microscope reflecting objective Pending JPH0358009A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP19274789A JPH0358009A (en) 1989-07-27 1989-07-27 Microscope reflecting objective
US07/553,639 US5144496A (en) 1989-07-19 1990-07-18 Reflecting objective system including a negative optical power second mirror with increasing negative optical power off-axis
US07/937,551 US5253117A (en) 1989-07-19 1992-08-31 Reflecting objective system
US07/937,128 US5291340A (en) 1989-07-19 1992-08-31 Reflecting objective system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19274789A JPH0358009A (en) 1989-07-27 1989-07-27 Microscope reflecting objective

Publications (1)

Publication Number Publication Date
JPH0358009A true JPH0358009A (en) 1991-03-13

Family

ID=16296382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19274789A Pending JPH0358009A (en) 1989-07-19 1989-07-27 Microscope reflecting objective

Country Status (1)

Country Link
JP (1) JPH0358009A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040020368A (en) * 2002-08-30 2004-03-09 이성옥 Vehicle for car transportation having separate lifting device
JP2005241645A (en) * 2004-02-25 2005-09-08 Tektronix Inc Calibration method and device thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040020368A (en) * 2002-08-30 2004-03-09 이성옥 Vehicle for car transportation having separate lifting device
JP2005241645A (en) * 2004-02-25 2005-09-08 Tektronix Inc Calibration method and device thereof

Similar Documents

Publication Publication Date Title
US4810070A (en) Lens system having a good image performance for white light
JP3559623B2 (en) Imaging lens
JPS62153909A (en) Optical system
JPH0990214A (en) Wide-angle image forming lens
JPH041715A (en) Internal focusing type telephoto zoom lens
JPH0467114A (en) Variable power lens
JP2692996B2 (en) Imaging lens
US4323302A (en) Wide-angle zoom lens system
JPH07294808A (en) Image forming lens
JP2004233609A (en) Projection lens system and projector
US4770508A (en) Conversion lens releasably attached behind master lens
JP3735909B2 (en) Retro focus lens
US4738517A (en) Copying lens with a wide angle of view
JP2578481B2 (en) Projection lens
JP3340686B2 (en) Eyepiece zoom optical system
GB1602553A (en) Copying lens
EP0611976B1 (en) Keplerian zoom finder optical system
JPH06337348A (en) Gauss type lens
US6239919B1 (en) Internal focusing telephoto lens having high speed aperture ratio
JPH0319527B2 (en)
JPH0358009A (en) Microscope reflecting objective
JPH07325253A (en) Zoom lens
JPH0392809A (en) Reflection and refraction type optical system
JPH1195130A (en) Eyepiece
JP3037967B2 (en) Magnifying projection lens