JPH0358001B2 - - Google Patents

Info

Publication number
JPH0358001B2
JPH0358001B2 JP21330582A JP21330582A JPH0358001B2 JP H0358001 B2 JPH0358001 B2 JP H0358001B2 JP 21330582 A JP21330582 A JP 21330582A JP 21330582 A JP21330582 A JP 21330582A JP H0358001 B2 JPH0358001 B2 JP H0358001B2
Authority
JP
Japan
Prior art keywords
reinforcing bars
travel
electromagnet
vehicle
reinforcing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21330582A
Other languages
Japanese (ja)
Other versions
JPS59106602A (en
Inventor
Teruo Azusawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP21330582A priority Critical patent/JPS59106602A/en
Publication of JPS59106602A publication Critical patent/JPS59106602A/en
Publication of JPH0358001B2 publication Critical patent/JPH0358001B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Railway Tracks (AREA)
  • Reinforcement Elements For Buildings (AREA)
  • Devices Affording Protection Of Roads Or Walls For Sound Insulation (AREA)

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は磁気浮上式鉄道、特に超電導電磁石
に代表される強力な電磁石を車上に搭載した誘導
反発式の磁気浮上鉄道における軌道に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field to which the Invention Pertains] The present invention relates to a magnetic levitation railway, and particularly to a track in an induced repulsion type magnetic levitation railway in which powerful electromagnets such as superconducting electromagnets are mounted on the train.

〔従来技術とその問題点〕[Prior art and its problems]

従来、誘導反発式の磁気浮上鉄道の軌道として
は、U字形もしくは逆T字形のものが適当である
として検討されている。第1図は、U字形軌道の
従来の構成例の概略を示すもので、強力な電磁石
を搭載した車両1がU字形をした軌道2の中を走
行する様子を示している。。軌道の側壁部分及び
底部には車両の進行方向に設置された鉄筋3及び
進行方向に垂直な方向に設置された鉄筋4がそれ
ぞれ適当な間隔をもつて網目状に並べられ、各交
差部分を針金等で固定したものがコンクリート中
に埋め込まれて軌道としての機械的強度を保持し
ている。第2図はU字形軌道及び車両の断面を示
すもので、車上に搭載された強力な電磁石5が、
軌道に取り付けられ、もしくは埋め込まれた推進
案内コイル6に図示していない外部電源から供給
される電流が流れることにより推力を受け、進行
方向に走行すると、軌道底部に取り付け、もしく
は埋め込まれた浮上コイル7には電流が誘起さ
れ、車上の電磁石5との間の電磁気的な相互作用
により車両重量に相当する浮上力が得られるよう
になり、車両は浮上走行する。側壁中には、推進
案内コイルが車両から受ける案内方向の力及び推
力の反作用として受ける力をも支えられるように
鉄筋網が埋め込まれている。特に、側壁中の車上
の電磁石と対向している部分では鉄筋網の部分で
も磁束密度はかなり大きな値となり、鉄筋網に一
種の電気回路が構成され、大きな電流が誘起され
る。この電流は鉄筋中でのジユール損を発生す
る。そしてこのジユール損は、車両の走行によつ
て発生するものであり、車両からみると走行抵抗
の増加ということになる。この走行抵抗の値は高
速域では空気抵抗の30〜40%にもなり、車両の高
速運転に必要となる電源容量も増大せぜるを得な
くなるという問題があつた。
BACKGROUND ART Conventionally, U-shaped or inverted T-shaped tracks have been considered as suitable as tracks for guided repulsion type magnetic levitation railways. FIG. 1 schematically shows an example of a conventional configuration of a U-shaped track, and shows a vehicle 1 equipped with a powerful electromagnet running on a U-shaped track 2. . On the side walls and bottom of the track, reinforcing bars 3 installed in the direction of vehicle travel and reinforcing bars 4 installed perpendicular to the direction of travel are arranged in a mesh pattern at appropriate intervals, and each intersection is connected with wire. etc., and are embedded in concrete to maintain the mechanical strength of the track. Figure 2 shows a cross section of the U-shaped track and the vehicle, where a powerful electromagnet 5 mounted on the vehicle
When a current supplied from an external power source (not shown) flows through the propulsion guide coil 6 attached to or embedded in the track, it receives thrust, and as it travels in the direction of travel, the levitation coil attached to or embedded in the bottom of the track A current is induced in 7, and due to electromagnetic interaction with the electromagnet 5 on the vehicle, a levitation force corresponding to the weight of the vehicle is obtained, and the vehicle travels levitating. A reinforcing bar mesh is embedded in the side wall so as to support the force in the guidance direction that the propulsion guide coil receives from the vehicle and the force that it receives as a reaction to the thrust force. In particular, in the part of the side wall that faces the electromagnet on the car, the magnetic flux density becomes quite large even in the part of the reinforcing bar network, and a kind of electric circuit is formed in the reinforcing bar network, inducing a large current. This current generates joule loss in the reinforcing steel. This joule loss occurs when the vehicle is running, and from the perspective of the vehicle, it means an increase in running resistance. The value of this running resistance is 30 to 40% of the air resistance at high speeds, creating the problem that the power supply capacity required for high-speed operation of the vehicle inevitably increases.

第3図は逆T形の軌道及び車両の断面と断面中
の鉄筋の配置の従来例を示したもので、U字形軌
道について上述した問題点はそのまま逆T形軌道
についても生じることがわかる。
FIG. 3 shows a conventional example of an inverted T-shaped track, a cross section of a vehicle, and the arrangement of reinforcing bars in the cross section, and it can be seen that the problems described above for the U-shaped track also occur in the inverted T-shaped track.

〔発明の目的〕[Purpose of the invention]

この発明は、軌道に要求される機械的強度を損
うことなしに、鉄筋網によつて生じる走行抵抗を
小さくするような磁気浮上鉄道用の軌道を提供す
ることを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a track for a magnetic levitation railway that reduces running resistance caused by a reinforcing bar network without impairing the mechanical strength required of the track.

〔発明の概要〕[Summary of the invention]

第4図は、従来の車上電磁石5と軌道中の鉄筋
網3,4の位置関係の一例を示す図である。従来
は第4図のように進行方向の鉄筋3は鉄筋網面上
に等間隔に並べられ、進行方向に垂直な鉄筋4と
各交差部分を針金等で固定していた。一方、車上
電磁石5によつて鉄筋網面上に発生する鉄筋網に
垂直な磁界成分の進行方向に垂直な方向の分布を
第5図に示す。第5図より進行方向の鉄筋が等間
隔に設置された場合、鉄筋網が作る各網目回路に
誘起する電圧は、電磁石の中心と対向する点に近
い網目回路ほど大きく、遠くなるにつれて回路の
誘起電圧は小さくなることがわかる。又、各鉄筋
部並びに鉄筋交差部分に発生するジユール損は隣
接する網目回路の電流の差の自乗に比例するので
ジユール損を減少させるには、隣接する網目回路
の電流の差を少くすることが有効であることが推
測される。従つて、進行方向の鉄筋の設置間隔は
第5図に示す磁束分布曲線に反比例するような間
隔にすることが望ましいことがわかる。
FIG. 4 is a diagram showing an example of the positional relationship between the conventional on-board electromagnet 5 and the reinforcing bar networks 3 and 4 in the track. Conventionally, as shown in FIG. 4, the reinforcing bars 3 in the traveling direction were arranged at equal intervals on a reinforcing bar mesh surface, and each intersection with the reinforcing bars 4 perpendicular to the traveling direction was fixed with wire or the like. On the other hand, FIG. 5 shows the distribution of the magnetic field component perpendicular to the reinforcing bar mesh generated on the surface of the reinforcing bar mesh by the on-board electromagnet 5 in the direction perpendicular to the traveling direction. From Figure 5, when reinforcing bars are placed at equal intervals in the advancing direction, the voltage induced in each mesh circuit created by the reinforcing bar network is larger as the mesh circuit is closer to the point facing the center of the electromagnet, and It can be seen that the voltage becomes smaller. In addition, the joule loss that occurs at each reinforcing bar and at the intersection of the reinforcing bars is proportional to the square of the difference in current between adjacent mesh circuits, so in order to reduce the joule loss, it is necessary to reduce the difference in current between adjacent mesh circuits. It is presumed to be effective. Therefore, it can be seen that it is desirable that the installation spacing of the reinforcing bars in the advancing direction is inversely proportional to the magnetic flux distribution curve shown in FIG.

しかしながら、鉄筋を設置する第一の目的は軌
道の機械的強度を保証することであり、又、鉄筋
を取り付ける工事のやり易さの点からも等間隔に
鉄筋を設置することはかなりの利点がある。従つ
て進行方向の鉄筋は等間隔に設置し、車上電磁石
の中心と対向する点から離れた進行方向の鉄筋
3′の一部を垂直な鉄筋4と電気的に絶縁して固
定し車上電磁石の中心と対向する点から離れるに
つれて垂直な鉄筋4と電気的に絶縁して固定した
進行方向の鉄筋3′の比率を多くするようにすれ
ば、走行抵抗の小さい磁気浮上鉄道用の軌道が得
られる。
However, the primary purpose of installing reinforcing bars is to guarantee the mechanical strength of the track, and installing reinforcing bars at equal intervals has considerable advantages in terms of ease of installation work. be. Therefore, the reinforcing bars in the traveling direction are installed at equal intervals, and a part of the reinforcing bars 3' in the traveling direction away from the point facing the center of the on-board electromagnet is electrically insulated from the vertical reinforcing bars 4 and fixed. By increasing the ratio of the vertical reinforcing bars 4 and the reinforcing bars 3' fixed and electrically insulated from the vertical reinforcing bars 4 as you move away from the point facing the center of the electromagnet, a magnetically levitated railway track with low running resistance can be created. can get.

〔発明の効果〕〔Effect of the invention〕

第6図に本発明の一実施例を示す。この例は、
第4図に示された従来の実施例において車上電磁
石に対向している点から離れた位置において上下
各1本ずつ垂直な鉄筋4と電気的に絶縁して固定
した例である。
FIG. 6 shows an embodiment of the present invention. This example:
This is an example in which the conventional embodiment shown in FIG. 4 is electrically insulated and fixed to vertical reinforcing bars 4, one each at the top and bottom, at positions away from the point facing the on-board electromagnet.

第7図に第4図に示した従来の実施例における
鉄筋網によるジユール損の速度特性(第7図中
a)及び第6図に示した本発明の一実施例におけ
る鉄筋網によるジユール損の速度特性(第7図中
b)を示す。
Figure 7 shows the speed characteristics of the Joule loss due to the reinforcing bar network in the conventional embodiment shown in Fig. 4 (a in Fig. 7) and the velocity characteristic of Joule loss due to the reinforcing bar network in the embodiment of the present invention shown in Fig. 6. The speed characteristics (b in Fig. 7) are shown.

このように本発明によれば軌道の機械的強度を
損なうことなく、鉄筋網によるジユール損によつ
て生ずる走行抵抗が小さい磁気浮上鉄鉄道用の軌
道を得ることができ、高速走行に必要な駆動電源
の容量を小さくすることができる。
As described above, according to the present invention, it is possible to obtain a track for a magnetically levitated iron railway that has low running resistance caused by wheel loss caused by a reinforcing bar network, without impairing the mechanical strength of the track, and which is capable of providing the drive required for high-speed running. The capacity of the power supply can be reduced.

〔発明の実施例〕[Embodiments of the invention]

第6図は本発明の最も簡単な実施例の一つを示
す。更に第8図は本発明の他の実施例を示す。こ
の実施例においては、車上電磁石の中心と対向す
る点から離れるにつれて垂直な鉄筋4との交差部
分を電気的に絶縁して固定した進行方向の鉄筋
3′の本数の割合が、垂直な鉄筋4との交差部分
を電気的に結合して固定した進行方向鉄筋3の本
数よりも多くなるように設置されている。このよ
うにして、車上電磁石の作る磁束のうち鉄筋網の
各網目回路と鎖交する磁束がほぼ等しくなるよう
に、鉄筋の交差部分の接続法を変えることによ
り、走行抵抗の小さい磁気浮上鉄道用の軌道を提
供することができる。
FIG. 6 shows one of the simplest embodiments of the invention. Furthermore, FIG. 8 shows another embodiment of the present invention. In this embodiment, as the distance from the point facing the center of the on-board electromagnet increases, the proportion of the number of reinforcing bars 3' in the traveling direction that electrically insulate and fix the intersections with the vertical reinforcing bars 4 increases. The number of reinforcing bars 3 in the advancing direction is electrically connected and fixed at the intersection with the reinforcing bars 3. In this way, by changing the connection method of the intersections of reinforcing bars so that the magnetic fluxes created by the on-board electromagnets that intersect with each mesh circuit of the reinforcing bar network are almost equal, magnetic levitation trains with low running resistance can be created. can provide a trajectory for

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の実施例の斜視図、第2図は従来
の実施例の断面図、第3図は従来の他の実施例の
断面図、第4図は従来の一実施例を説明する説明
図、第5図は本実施例における磁束密度分布を示
す特性図、第6図は本発明の一実施例を示す説明
図、第7図は従来の実施例と本発明の実施例にお
ける走行抵抗を比較する特性図、第8図は本発明
の他の実施例を示す説明図である。 3…垂直な鉄筋4との交差部分を電気的に結合
して固定した進行方向鉄筋、3′…垂直な鉄筋4
との交差部分を電気的に絶縁して固定した進行方
向鉄筋、4…垂直な鉄筋、5…車上に搭載された
電磁石、6…推進案内コイル、7…浮上コイル。
Fig. 1 is a perspective view of a conventional embodiment, Fig. 2 is a sectional view of a conventional embodiment, Fig. 3 is a sectional view of another conventional embodiment, and Fig. 4 explains one conventional embodiment. An explanatory diagram, FIG. 5 is a characteristic diagram showing the magnetic flux density distribution in this embodiment, FIG. 6 is an explanatory diagram showing an embodiment of the present invention, and FIG. 7 is a running diagram in the conventional embodiment and the embodiment of the present invention. A characteristic diagram for comparing resistances, FIG. 8 is an explanatory diagram showing another embodiment of the present invention. 3...Advancing direction reinforcing bars whose intersections with vertical reinforcing bars 4 are electrically connected and fixed, 3'...vertical reinforcing bars 4
4... Vertical reinforcing bars, 5... Electromagnets mounted on the vehicle, 6... Propulsion guide coils, 7... Levitation coils.

Claims (1)

【特許請求の範囲】[Claims] 1 磁気浮上車両に取り付けられた電磁石の面と
ほぼ平行な平面内において、車両の進行方向と、
進行方向にほぼ垂直な方向にそれぞれ設置された
複数の鉄筋から構成され、進行方向に並べられた
鉄筋が進行方向と垂直な方向に、適当な間隔で設
置され、進行方向に垂直な方向の鉄筋との交差部
分において針金等により結合された磁気浮上鉄道
用の軌道において、車上の電磁石に対向し、かつ
電磁石と距離的に近い位置にある進行方向の鉄筋
と、これに垂直な方向の鉄筋との交差部分は電気
的に結合されるように接続、固定し、電磁石から
距離的に離れた進行方向の鉄筋については、これ
に垂直な方向の鉄筋との交差部分を電気的に結合
した進行方向鉄筋と、電気的に絶縁されるように
固定した進行方向鉄筋を交互に配置し、電磁石か
ら距離的に離れるに従い、交差部分を電気的に絶
縁した進行方向の鉄筋の割合を多くするようにし
たことを特徴とする磁気浮上鉄道用軌道。
1. In a plane approximately parallel to the surface of the electromagnet attached to the magnetically levitated vehicle, the direction of travel of the vehicle and
Consisting of multiple reinforcing bars each installed in a direction approximately perpendicular to the direction of travel, reinforcing bars arranged in the direction of travel are installed at appropriate intervals in a direction perpendicular to the direction of travel, and reinforcing bars in the direction perpendicular to the direction of travel In a magnetic levitation railway track connected by wire, etc. at the intersection with the train, there is a reinforcing bar in the direction of travel that faces and is close to the electromagnet on the train, and a reinforcing bar in a direction perpendicular to this. For reinforcing bars located far away from the electromagnet in the direction of travel, the intersections with reinforcing bars in the direction perpendicular to this shall be electrically coupled. Direction reinforcing bars and fixed advancing direction reinforcing bars that are electrically insulated are arranged alternately, and the proportion of advancing direction reinforcing bars whose intersections are electrically insulated increases as the distance from the electromagnet increases. Magnetic levitation railway track.
JP21330582A 1982-12-07 1982-12-07 Track for magnetic float railroad Granted JPS59106602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21330582A JPS59106602A (en) 1982-12-07 1982-12-07 Track for magnetic float railroad

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21330582A JPS59106602A (en) 1982-12-07 1982-12-07 Track for magnetic float railroad

Publications (2)

Publication Number Publication Date
JPS59106602A JPS59106602A (en) 1984-06-20
JPH0358001B2 true JPH0358001B2 (en) 1991-09-04

Family

ID=16636924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21330582A Granted JPS59106602A (en) 1982-12-07 1982-12-07 Track for magnetic float railroad

Country Status (1)

Country Link
JP (1) JPS59106602A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101428677B1 (en) * 2008-05-23 2014-09-23 엘지전자 주식회사 air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101428677B1 (en) * 2008-05-23 2014-09-23 엘지전자 주식회사 air conditioner

Also Published As

Publication number Publication date
JPS59106602A (en) 1984-06-20

Similar Documents

Publication Publication Date Title
US4793263A (en) Integrated linear synchronous unipolar motor with controlled permanent magnet bias
US3845720A (en) Magnetic-levitation vehicle with auxiliary magnetic support at track-branch locations
US4913059A (en) Levitation, propulsion and guidance mechanism for inductive repulsion-type magnetically levitated railway
CN101528501B (en) Magnetic levitation vehicle comprising at least one magnetic system
JP3920358B2 (en) Magnetic levitation vehicle travel system
WO2023241361A1 (en) Permanent magnet electrodynamic suspension system and guiding method therefor
JP3202765B2 (en) Power supply method for superconducting maglev railway
CN106926743A (en) Eddy current retarder and magnetically supported vehicle
US3964398A (en) Magnetic-suspension vehicle system having switch tracks
US3896737A (en) Switch for a suspension railroad
US5652472A (en) Magnetodynamic levitation and stabilizing selfregulating system
JP3974262B2 (en) Magnetic levitation railway track equipment
JPH04268707A (en) Magnet for leviation of linear motor car
CA2211491A1 (en) Self-regulating system of high speed ground transportation based on permanent magnets
US4027597A (en) Linear induction motor with damping cage
US3869990A (en) Switch arrangement for a magnetic suspension railroad
JPH0358001B2 (en)
JPH0669246B2 (en) Levitating, guiding and propulsion combination device for induction repulsion type magnetic levitation railway
JPH0445601B2 (en)
EP0222938A1 (en) Rail for use in magnetic propulsive levitation apparatus
JPH01107603A (en) Combined propelling method for magnetic levitation type railway
JPH09261804A (en) Magnetic levitation system
JPS62210807A (en) Magnet levitation magnet core of attracting type
JP2985807B2 (en) Maglev train vehicle
JPS6015362Y2 (en) magnetic orbit device