JPH035796B2 - - Google Patents

Info

Publication number
JPH035796B2
JPH035796B2 JP8518187A JP8518187A JPH035796B2 JP H035796 B2 JPH035796 B2 JP H035796B2 JP 8518187 A JP8518187 A JP 8518187A JP 8518187 A JP8518187 A JP 8518187A JP H035796 B2 JPH035796 B2 JP H035796B2
Authority
JP
Japan
Prior art keywords
gel
carrier
calcium
carbonate
calcium carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8518187A
Other languages
Japanese (ja)
Other versions
JPS63251085A (en
Inventor
Shigeru Honda
Hiroshi Sano
Yukio Murakami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP8518187A priority Critical patent/JPS63251085A/en
Publication of JPS63251085A publication Critical patent/JPS63251085A/en
Publication of JPH035796B2 publication Critical patent/JPH035796B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

A 産業上の利用分野 本発明は多価金属イオンによりゲル化する物質
を担体として嫌気性発酵微生物を固定化する場合
の安定化手段に関する。 B 従来の技術 微生物の固定化材料として、ポリアクリル酸ゲ
ルやアルギン酸ゲルはカルシウムイオンによつて
架橋したものが広く使用されている。しかし嫌気
性発酵においては、初期段階の低級脂肪酸生成に
よつて架橋カルシウムが脱離されゲル強度が弱く
なり微生物の洗脱、ゲルの崩壊が起り長期間の使
用に耐えない。ゲルのカルシウム脱離を防ぐため
発酵原液に多量のカルシウムイオンを添加する手
段があるが、カルシウムイオン濃度に対する微生
物の適応域から外れる恐れがあり、さらに発酵後
の液が甚しい硬水となるので水処理上好ましくな
い。また予め多量の水溶性カルシウム塩をゲル調
製時に加えることによりゲル保全を計ることもで
きるが、カルシウムイオンは速やかに発酵液中に
溶出され、ゲル強化効果は一時的である。また極
めて濃厚なカルシウムイオン液の中では嫌気性微
生物は生理活性を失う。 C 発明が解決しようとす問題点 本発明は、上記嫌気性微生物を利用する各種分
野、殊に水処理分野において、従来避けられなか
つた微生物固定化担体の強度安定性の低い欠点、
長期使用に耐えない欠点、発酵液の液性が変化す
る欠点、微生物の生理活性を失う欠点等を悉く解
決できる新しい固定化微生物担体の安定化方法を
提供することを目的とする。 D 問題点を解決するための手段 本発明によれば、多価金属イオンによりゲル化
する物質を担体として嫌気性発酵微生物を固定化
する場合の安定化方法が提供される。 本発明者らは、微生物の固定化技術について鋭
意研究を重ねる過程において、嫌気性発酵におけ
る酸敗失活への対策として難溶性の炭酸カルシウ
ムを担体材料に予め添加することによつて発酵初
期段階の生成脂肪酸を中和し、酸敗失活を防止す
ることを発見し、発表したが〔本田、村上、佐
野;水処理技術 27巻9号 619頁(1986)〕これ
は炭酸カルシウムを中和剤として利用することに
成功したものであつて単に炭酸カルシウムを任意
量を添加するだけは担体の崩壊を喰い止めること
はできない。 炭酸カルシウムの溶解度は極めて小さく
(0.052g/あるいは、Ca0.5ミリモル/於30
℃)アルギン酸ゾルの固化に要するカルシウムイ
オン濃度(Ca10〜100ミリモル/)の1/100程
度に過ぎず炭酸カルシウムと接触するだけではゲ
ル化架橋に全く効果がない。炭酸カルシウムが多
過ぎればゲルがもろくなり、初めから容易に崩れ
る。ところが嫌気性発酵においては 有機物→低級脂肪酸→(メタン+二酸化炭素) という二段の反応が遂次的に行われるため、担体
内で初期段階の反応が起きると炭酸カルシウムは
分解して脂肪酸カルシウムとなり、遂次脂肪酸は
メタンと二酸化炭素を発生して消失すると同時に
炭酸カルシウムを再生する。この炭酸カルシウム
リサイクル反応機構は先に発明者らによつて提唱
された〔佐野、本田;エネルギー資源研究会予講
集5−1、99(1985)〕ものであるが、 炭酸カルシウム酸生成 ―――→ ←――― メタン化脂肪酸カルシウム 数値的に実証されていなかつた。そこで本発明者
らは、炭酸カルシウムの量を増減して担体ゲルの
崩壊性を試験し、炭酸カルシウム添加量の一定範
囲内においてゲル担体の寿命を著じるしく延長す
るという新しい知見を得た。本発明はこの知見を
基礎として完成されたものである。 以下、本発明の難溶性炭酸塩を混和することに
よる固定化微生物担体の安定化方法について詳述
する。 本発明に係る固定化微生物担体安定化方法にお
いて、用いられる担体ゲルとしては、多価金属イ
オンより架橋ゲル化する物質であればよく代表的
な例としてポリアクリル酸ナトリウム、アルギン
酸等がある。 本発明方法においては、担体ゾルに嫌気性微生
物、難溶性炭酸塩を攪拌混合して嫌気性微生物含
有担体ゾルを作製する。この際の微生物量は、担
体の種類、使用目的に応じて適宜に決定される。
かくして得られた嫌気性微生物含有担体ゾルは引
続きカルシウムイオンにより架橋反応を行い嫌気
性微生物固定化ゲルが得られる。得られるゲルの
形状は、例えばビーズ状、フイルム状、フレーク
状、顆粒状、塊状等のいずれの形状でも任意に利
用でき、その大きさも特に制限はないが顆粒状の
ものでは0.5mm以上、好ましくは2〜5mm程度で
あるのが適当である。本発明の難溶性炭酸塩によ
るゲル保全機構は炭酸カルシウムを例にして説明
すれば次の通りである。炭酸カルシウムが放出す
るカルシウムイオンは0.5ミリモル/で前後の
ようにゲル架橋効果は無視できるほど小さい。し
かし担体内で嫌気性発酵初期段階で有機物から低
級脂肪酸生成が起き、担体内部のPHが6以下に低
下すると炭酸カルシウムが可溶化して低級脂肪酸
と反応し、脂肪酸カルシウムを生成する。脂肪酸
カルシウムは溶解度が高いので担体内部のカルシ
ウムイオンは急増し、担体の架橋を十分支え得る
ようになる。一方遊離の脂肪酸はカルシウムによ
り中和されるため担体内のPHが低下せずメタン発
酵菌の最適活動範囲になり、脂肪酸が活発にメタ
ンと二酸化炭素に分解される。メタン生成の後
は、分解生成した二酸化炭素によりカルシウムは
再び炭酸カルシウムとなり再生される。 本発明において、炭酸カルシウムの担体材料へ
の添加量は1〜30g/担体、好ましくは1〜
10g/担体である(実施例1)。また、炭酸マ
グネシウム、炭酸鉄などあるいはそれらとの混合
物を用いる場合でも添加量の範囲はほぼ同様であ
る(実施例2)。 本発明において使用される炭酸塩は架橋性を有
する金属で難溶性の炭酸塩を形成するものであれ
ば原理的に同様な効果が期待できる。しかし、嫌
気性微生物の生理活性に重大な影響を及ぼす添加
物を採用することはできないので実際上は炭酸カ
ルシウム、炭酸マグネシウム、炭酸鉄の三者ある
いは、これらの混合物に限定される。 E 実施例 以下、本発明難溶性炭酸塩を混和することによ
る固定化微生物担体の安定化方法例及びこれによ
り得られた固定化微生物を用いた水処理試験例を
実施例として挙げる。 実施例 1 市販ポリアクリル酸ソーダ(重合度22000〜
66000)の8%水溶液を調整し、下水処理場の消
化汚泥(MLSS10%、MLVSS6%)と炭酸カル
シウムを加え混合して、微生物含有ゾルを調製す
る。このときポリアクリル酸ソーダ濃度は約4%
となる。微生物含有ゾルを1.5%塩化カルシウム
溶液中に注射筒から滴下し約1時間攪拌を行ない
架橋反応を行なわせ、微生物含有ゲルを作製す
る。得られたゲル粒子は0.4cm〜0.5cmφであつ
た。このゲル粒子を嫌気発酵槽に充填し、ペプト
ン、グルコースなどからなる人工下水を通水し、
中温消化法で消化試験を行い、ゲル粒子の崩壊性
を調べた。結果を第1表に示す。崩壊度は粒を水
中にて目開き0.3cmの網にてふるい網を通過しな
かつた粒を原形をとどめたものとして計算した。
A. Field of Industrial Application The present invention relates to stabilizing means for immobilizing anaerobic fermentation microorganisms using a substance that gels with polyvalent metal ions as a carrier. B. Prior Art Polyacrylic acid gels and alginate gels cross-linked with calcium ions are widely used as materials for immobilizing microorganisms. However, in anaerobic fermentation, cross-linked calcium is removed due to the production of lower fatty acids in the initial stage, the gel strength is weakened, microorganisms are washed out, the gel collapses, and it cannot withstand long-term use. There is a method of adding a large amount of calcium ions to the fermentation stock solution to prevent calcium desorption from the gel, but there is a risk that the microorganisms will be out of the adaptation range for the calcium ion concentration, and furthermore, the solution after fermentation will become extremely hard water. Unfavorable for processing. Gel preservation can also be achieved by adding a large amount of water-soluble calcium salt in advance during gel preparation, but calcium ions are quickly eluted into the fermentation liquid and the gel strengthening effect is temporary. Furthermore, anaerobic microorganisms lose their physiological activity in extremely concentrated calcium ion solutions. C Problems to be Solved by the Invention The present invention solves the problem of low strength stability of microorganism immobilization carriers, which was unavoidable in the past in various fields that utilize the above-mentioned anaerobic microorganisms, especially in the water treatment field.
The purpose of the present invention is to provide a new method for stabilizing an immobilized microorganism carrier that can solve all of the drawbacks such as not being able to withstand long-term use, changing the liquid properties of the fermentation liquid, and losing physiological activity of microorganisms. D Means for Solving the Problems According to the present invention, a stabilization method is provided for immobilizing anaerobic fermentation microorganisms using a substance that gels with polyvalent metal ions as a carrier. In the process of intensive research into microbial immobilization technology, the present inventors discovered that the initial stage of fermentation was improved by adding sparingly soluble calcium carbonate to the carrier material in advance as a countermeasure against rancidity and deactivation during anaerobic fermentation. They discovered and announced that it neutralizes the produced fatty acids and prevents rancidity and deactivation [Honda, Murakami, Sano; Water Treatment Technology Vol. 27, No. 9, p. 619 (1986)]. Although it has been successfully utilized, simply adding an arbitrary amount of calcium carbonate cannot prevent the disintegration of the carrier. The solubility of calcium carbonate is extremely small (0.052 g/or Ca 0.5 mmol/30
°C) The concentration of calcium ions (Ca10 to 100 mmol/) required for solidification of alginate sol is only about 1/100, and contact with calcium carbonate alone has no effect on gelling and crosslinking. Too much calcium carbonate makes the gel brittle and easily crumbles from the beginning. However, in anaerobic fermentation, a two-step reaction of organic matter → lower fatty acids → (methane + carbon dioxide) takes place in succession, so when the initial stage reaction occurs within the carrier, calcium carbonate decomposes and becomes fatty acid calcium. , sequentially, the fatty acids generate methane and carbon dioxide and disappear, and at the same time regenerate calcium carbonate. This calcium carbonate recycling reaction mechanism was previously proposed by the inventors [Sano, Honda; Energy Resources Research Society Preliminary Lectures 5-1, 99 (1985)]; ―→ ←――― Methanated fatty acid calcium has not been numerically demonstrated. Therefore, the present inventors tested the disintegration properties of the carrier gel by increasing and decreasing the amount of calcium carbonate, and obtained the new finding that the life of the gel carrier can be significantly extended within a certain range of the amount of calcium carbonate added. . The present invention was completed based on this knowledge. Hereinafter, a method for stabilizing an immobilized microorganism carrier by incorporating a sparingly soluble carbonate of the present invention will be described in detail. In the method for stabilizing an immobilized microorganism carrier according to the present invention, the carrier gel used may be any substance that can be crosslinked into a gel by polyvalent metal ions, and typical examples thereof include sodium polyacrylate, alginic acid, and the like. In the method of the present invention, an anaerobic microorganism-containing carrier sol is prepared by stirring and mixing an anaerobic microorganism and a poorly soluble carbonate with a carrier sol. The amount of microorganisms at this time is appropriately determined depending on the type of carrier and the purpose of use.
The thus obtained anaerobic microorganism-containing carrier sol is then subjected to a crosslinking reaction using calcium ions to obtain an anaerobic microorganism-immobilized gel. The shape of the resulting gel can be any shape, such as bead-like, film-like, flake-like, granular, lump-like, etc., and its size is also not particularly limited, but granules are preferably 0.5 mm or more. It is appropriate that the distance is about 2 to 5 mm. The gel preservation mechanism by the poorly soluble carbonate of the present invention will be explained below using calcium carbonate as an example. The amount of calcium ions released by calcium carbonate is around 0.5 mmol, so the gel crosslinking effect is so small that it can be ignored. However, lower fatty acids are produced from organic matter within the carrier during the initial stage of anaerobic fermentation, and when the pH inside the carrier drops to 6 or less, calcium carbonate becomes solubilized and reacts with the lower fatty acids to produce fatty acid calcium. Since fatty acid calcium has a high solubility, calcium ions inside the carrier rapidly increase and can sufficiently support crosslinking of the carrier. On the other hand, free fatty acids are neutralized by calcium, so the PH inside the carrier does not drop and falls within the optimal activity range of methane-fermenting bacteria, and the fatty acids are actively decomposed into methane and carbon dioxide. After methane production, calcium is regenerated into calcium carbonate again by decomposed carbon dioxide. In the present invention, the amount of calcium carbonate added to the carrier material is 1 to 30 g/carrier, preferably 1 to 30 g/carrier.
10g/carrier (Example 1). Further, even when magnesium carbonate, iron carbonate, etc. or a mixture thereof is used, the range of addition amount is almost the same (Example 2). The same effect can be expected in principle as long as the carbonate used in the present invention is a metal that has crosslinking properties and forms a poorly soluble carbonate. However, since additives that have a significant effect on the physiological activity of anaerobic microorganisms cannot be used, the additives are actually limited to calcium carbonate, magnesium carbonate, iron carbonate, or a mixture thereof. E. Examples Hereinafter, an example of a method for stabilizing an immobilized microorganism carrier by mixing the hardly soluble carbonate of the present invention and a water treatment test example using the immobilized microorganism obtained thereby will be given as an example. Example 1 Commercially available sodium polyacrylate (degree of polymerization 22,000~
A microorganism-containing sol is prepared by preparing an 8% aqueous solution of 66000) and adding and mixing digested sludge from a sewage treatment plant (MLSS 10%, MLVSS 6%) and calcium carbonate. At this time, the concentration of sodium polyacrylate is approximately 4%.
becomes. The microorganism-containing sol is dropped into a 1.5% calcium chloride solution from a syringe and stirred for about 1 hour to cause a crosslinking reaction, thereby producing a microorganism-containing gel. The obtained gel particles had a diameter of 0.4 cm to 0.5 cm. These gel particles are filled into an anaerobic fermentation tank, and artificial sewage consisting of peptone, glucose, etc. is passed through it.
A digestion test was conducted using a mesophilic digestion method to examine the disintegration properties of the gel particles. The results are shown in Table 1. The degree of disintegration was calculated by assuming that the particles that did not pass through a sieve screen with a mesh size of 0.3 cm in water remained in their original shape.

【表】 炭酸カルシウム無添加でも初期には十分架橋が
行われゲル化するが下水を通水すると間もなくカ
ルシウムイオンが洗脱され始め崩壊が起つてく
る。炭酸カルシウムが多過ぎるとゲル粒子がもろ
くなり初めから容易に崩れる。 実施例 2 実施例1と同様にして微生物含有ゾルを作製
し、添加炭酸塩を3g/の割合でそれぞれ混合
しゲル化後ゲル崩壊速度を実験した結果を第2表
に示す。*アクリル酸系吸水性樹脂ゲルを使用し
た。
[Table] Even without the addition of calcium carbonate, sufficient crosslinking occurs and gelatinization occurs in the initial stage, but as soon as sewage water is passed through, calcium ions begin to be washed out and collapse occurs. If there is too much calcium carbonate, the gel particles become brittle and easily collapse from the beginning. Example 2 A microorganism-containing sol was prepared in the same manner as in Example 1, and added carbonate was mixed at a ratio of 3 g/gel. The gel disintegration rate after gelation was tested. The results are shown in Table 2. *Acrylic acid-based water-absorbing resin gel was used.

【表】【table】

【表】 実施例 3 実施例1で得た嫌気性微生物を固定化させたゲ
ルを嫌気発酵槽に充填し、人工下水(有機物とし
てペプトン0.4g/ブドウ糖0.8g/栄養塩と
してリン酸カリウムを0.02g/PH調整のため重
炭酸ナトリウムを含有、PH約7とする)の一定量
を連続して加え、中温消化法(37℃)に従い嫌気
消化させ、有機物の分解能力の経日変化を調べた
結果を第1図に線1として示す。比較試験結果と
して難溶性炭酸塩無添加時の有機物分解能を線2
として示し、供給人工下水の有機物量を線3とし
て示す。第1図において縦軸は、島津製作所製、
全有機炭素測定装置に従い測定された水中の有機
物濃度(mg/)を、横軸は試験開始後の連続運
転経過日数(日)を示す。 第1図より、難溶性炭酸カルシウム添加の場合
線1と、無添加の場合線2(15日経過で崩壊打切
り)との対比より明らかなように、本発明のゲル
化安定化方法により得られた固定化微生物ゲルは
長期に亘つて安定に所望の有機物分解能力を持続
発現できることが判る。
[Table] Example 3 The gel on which the anaerobic microorganisms obtained in Example 1 were immobilized was filled into an anaerobic fermenter, and artificial sewage (0.4 g of peptone as organic matter/0.8 g of glucose/0.02 g of potassium phosphate as nutrients) (containing sodium bicarbonate to adjust pH to approximately 7) was added continuously, and anaerobic digestion was performed according to the mesophilic digestion method (37°C) to examine changes over time in the ability to decompose organic matter. The results are shown as line 1 in FIG. As a result of a comparative test, the organic matter decomposition ability without the addition of poorly soluble carbonates was shown as line 2.
The amount of organic matter in the supplied artificial sewage is shown as line 3. In Fig. 1, the vertical axis indicates products manufactured by Shimadzu Corporation;
The concentration of organic matter in water (mg/) measured using a total organic carbon measuring device is shown, and the horizontal axis shows the number of days of continuous operation (days) since the start of the test. From FIG. 1, as is clear from the comparison between line 1 in the case of addition of poorly soluble calcium carbonate and line 2 in the case of no addition (disintegration stopped after 15 days), the gelation stabilization method of the present invention shows that It is clear that the immobilized microbial gel can stably and sustainably exhibit the desired organic matter decomposition ability over a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は固定化微生物ゲルの有機物分解能の経
日変化を調べたグラフ。
Figure 1 is a graph examining the daily change in organic matter decomposition ability of immobilized microbial gel.

Claims (1)

【特許請求の範囲】[Claims] 1 嫌気性発酵において、嫌気性発酵微生物を固
定化する担体材料としてポリアクリル酸ゲル、ア
ルギン酸ゲル等多価金属イオンによりゲル化する
物質を使用する場合に、カルシウム、マグネシウ
ム、鉄の炭酸塩またはこれらの混合物をゲルに含
有させることを特徴とする固定化微生物担体の安
定化方法。
1. In anaerobic fermentation, when using a substance that gels with polyvalent metal ions, such as polyacrylic acid gel or alginate gel, as a carrier material for immobilizing anaerobic fermentation microorganisms, calcium, magnesium, iron carbonate or these 1. A method for stabilizing an immobilized microbial carrier, the method comprising containing a mixture of the following in a gel.
JP8518187A 1987-04-06 1987-04-06 Stabilization of immobilized bacterium gel by adding slightly soluble carbonate Granted JPS63251085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8518187A JPS63251085A (en) 1987-04-06 1987-04-06 Stabilization of immobilized bacterium gel by adding slightly soluble carbonate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8518187A JPS63251085A (en) 1987-04-06 1987-04-06 Stabilization of immobilized bacterium gel by adding slightly soluble carbonate

Publications (2)

Publication Number Publication Date
JPS63251085A JPS63251085A (en) 1988-10-18
JPH035796B2 true JPH035796B2 (en) 1991-01-28

Family

ID=13851487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8518187A Granted JPS63251085A (en) 1987-04-06 1987-04-06 Stabilization of immobilized bacterium gel by adding slightly soluble carbonate

Country Status (1)

Country Link
JP (1) JPS63251085A (en)

Also Published As

Publication number Publication date
JPS63251085A (en) 1988-10-18

Similar Documents

Publication Publication Date Title
CN106422152B (en) Method for removing oxytetracycline in biological medicine waste residues
CN107010650B (en) A kind of preparation method of nm-class active calcium carbonate
CN108018280B (en) Construction method of microorganism slow-release carrier
EP0417185A1 (en) A process for removing nitrogen compounds from raw water.
CN113735246A (en) Foaming light filler for synchronously removing nitrogen and phosphorus and preparation method thereof
CN111961659A (en) Immobilization material, biological denitrification material, preparation method and application
JP4414006B2 (en) Biological treatment carrier
JPH05811A (en) Activated carbon material, its production and use thereof
JPH0564789A (en) Treatment of waste fluid containing water polluting organic matter
JPH035796B2 (en)
JP3203026B2 (en) Biocatalyst immobilized gel
JPH0929280A (en) Wastewater treatment method
CN110810435A (en) Oxidation water purification disinfectant for aquaculture and preparation method thereof
CN113800651A (en) Method for realizing rapid start of anaerobic ammonia oxidation reactor through immobilization of anaerobic ammonia oxidation microorganisms
JPH05123694A (en) Treatment of organic waste water with nitrogen fixation bacterial
KR100650448B1 (en) External carbon source pellet for wastewater treatment
JP2001178483A (en) Method for degrading polylactic acid
JPH03292818A (en) Cultivation of plant
JPH0249709B2 (en)
JPH03242293A (en) Anaerobic bacteria immobilizing gel and production thereof
JPS63276488A (en) Method for immobilizing microbial cell
KR102346460B1 (en) Manufacturing method of high calcium chitosan liquid fertilizer using organic acid and microorganism
KR20000063415A (en) Porous inorganic carrier for treating organic waste water and method for preparing the same
JP3506264B2 (en) Water treatment agent
CN107265656B (en) Method for reducing adverse effect of nano silver on nitrate removal by using visible light

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term