JPH0357915A - Magnetic resolver - Google Patents

Magnetic resolver

Info

Publication number
JPH0357915A
JPH0357915A JP19488289A JP19488289A JPH0357915A JP H0357915 A JPH0357915 A JP H0357915A JP 19488289 A JP19488289 A JP 19488289A JP 19488289 A JP19488289 A JP 19488289A JP H0357915 A JPH0357915 A JP H0357915A
Authority
JP
Japan
Prior art keywords
series
salient
salient poles
stator
coils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19488289A
Other languages
Japanese (ja)
Other versions
JPH0756455B2 (en
Inventor
Ritaro Sano
佐野 理太郎
Yutaka Ono
裕 小野
Mitsuhiro Nikaido
二階堂 光宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP19488289A priority Critical patent/JPH0756455B2/en
Publication of JPH0357915A publication Critical patent/JPH0357915A/en
Publication of JPH0756455B2 publication Critical patent/JPH0756455B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To reduce errors of the true roundness generated in a rotor and a stator by overlapping a salient pole wound with a sin phase coil and a salient pole wound with a cos phase coil with predetermined angles mechanically shifted from each other. CONSTITUTION:A stator 3 is provided inside a cylindrical rotor 1 having teeth 2 formed with a predetermined pitch (p) in an outer periphery of the rotor. The stator 3 is formed by overlapping two stator plates of the same shape with a non-magnetic member 33 held therebetween. Each stator plate has 4n (n being an integer), for example, 16 salient poles 3111-31116 or 3211-32116. Teeth 4 are formed with a pitch (p) opossite to the teeth 2 at ends of these salient poles. The phase of teeth formed in the salient poles is shifted every p/4 in the arranging order of the poles. When the salient pole wound with a sin phase coil is mechanically shifted 360 deg./(number or salient poles) from the salient pole wound with a cos phase coil, the error components generated in an inductance of the coils due to the error of the true roundness can be effectively removed.

Description

【発明の詳細な説明】 く産業上の利用分野〉 本発明はステータ板を2枚重ね合わせてステタを構成し
た磁気レゾルバの改良に関するものである. く従来の技術〉 このような磁気レゾルバとしては、本出願人による特願
昭63−30988号の出願明細書に記載されたものが
あった. この磁気レゾルバは、先端に一定ビッチpで歯が形戒さ
れた突極が複数個設けられたステータ板を2枚用い、こ
れらのステータ板を隣合う突極間で歯の位相をp/4だ
けずらして重ね合わせ、ステータを構成する. このように構成したステータで、一方のステタ板の(2
)前記0゜相コイルはEcosωtなる電圧信号(Eは
電圧の振幅、ωは角速度、tは時間)で励磁しく以下、
このコイルをsin相のコイルとする》、他方のステー
タ板の(2)前記0゜相コイルはEsinωtなる電圧
信号で励磁し(以下、このコイルをCOS相のコイルと
する)、励磁によって各コイルの両端に発生する電圧を
もとに回転を検出する. このような磁気レゾルバでは、2枚のステータ板の歯の
位相差p/4に生じる機械的誤差は、励磁信号F,si
nωtとEcosωtの電気角を調整することによって
除去していた. く発明が解決しようとする課題〉 磁気レゾルバでは、ステータまたはロータの真円度に誤
差があると、ロータの回転によりロータ・ステータ間の
ギャップが変動する.これによって、磁気レゾルバの検
出信号に高次のリップルが生じ検出精度が悪くなる. 前述した磁気レゾルバでは、このような真円度の誤差ま
では補正できない. 本発明はこのような問題点を解決するためになされたも
のであり、ロータとステータに生じる真円度の誤差を有
効に低減できる磁気レゾルバを実現することを目的とす
る. く課題を解決するための手段〉 本発明は次のとおりの構成にした磁気レゾルバである. (1)先端にピッチpで歯が形成された突極が4n個(
nは整数)設けられていて、各突極の歯の位相は突極の
配列順に従ってp / 4ずつずれていき、配列順に従
ってO゜突極、90゜究極、180゜究極、270゜突
極をなしているステータ板と、このステータ板を非磁性
体部材を挟んで2枚、一方のステータ板の0゜究極と他
方のステータ板の90゜究極を重ね合わせて構成したス
テータと、前記各(2)前記0゜相コイルと、 一方のステータ板に巻かれたコイルは Esinωtなる電圧(Eは電圧の振幅、ωは角速度、
tは時間)で励磁し、他方のステータ板の(2)前記0
゜相コイルはEcosωtなる電圧で励磁する信号源と
、 隣合う0゜突極と90゜(2)前記0゜相コイルどうし
を直列に接続したコイルの直列接続したコイルのベアで
、 i= l .  2・・・ の機械角を隔てた位置にあるベアどうしを直列に接続し
たコイルの機械角を隔てた位置にあるペアどうしを並列
に接続した0゛相コイルと、隣合う180゜突極、この
ように直列接続したものどうしを直列に接続したコイル
の直列接続したl= 1  2・・・ の機械角を隔てた位置にあるベアどうしを直列に接続し
たコイルの機械角を隔てた位置にあるペアどうしを並列
に接続した180゜相コイルと、前記一方のステータ板
の0゜相コイルと180°相コイルの両端電圧の差をと
り、他方のステータ板の0°相コイルと180゜相コイ
ルの両端電圧の差をとり、これら2つのを差を加算して
前記ロータの回転検出信号を検出する演算回路、を具備
した磁気レゾルバ. (2)前記04相コイルは、隣合う0°突極と90”(
2)前記0゜相コイルどうしを直列に接続したコイルf
=1.  2・・・ の機械角を隔てた位置にあるペアどうしを直列に接続し
たコイルの機械角を隔てた位置にあるペアどうしを直列
に接続したものであり、 前記180゜相コイルは、隣合う180゜突極と270
゜(2)前記0゜相コイルどうしを直列にl=1.  
2・・・ の機械角を隔てた位置にあるベアどうしを直列に接続し
たコイルの機械角を隔てた位置にあるペアどうしを直列
に接続したものであることを特徴とする請求項(1)項
記載の磁気レゾルバ。
[Detailed Description of the Invention] Industrial Application Fields The present invention relates to an improvement in a magnetic resolver in which a stator is constructed by stacking two stator plates. BACKGROUND ART Such a magnetic resolver is described in the specification of Japanese Patent Application No. 1983-30988 filed by the present applicant. This magnetic resolver uses two stator plates each having a plurality of salient poles with teeth shaped at a constant pitch p at the tip. Stack them one on top of the other, shifting them by a certain amount to form the stator. With the stator configured in this way, one stator plate (2
) The 0° phase coil is excited by a voltage signal Ecosωt (E is the amplitude of the voltage, ω is the angular velocity, and t is the time).
(2) The 0° phase coil on the other stator plate is excited by a voltage signal E sin ωt (hereinafter, this coil is referred to as a COS phase coil), and the excitation causes each coil to Rotation is detected based on the voltage generated across the . In such a magnetic resolver, the mechanical error occurring in the phase difference p/4 between the teeth of the two stator plates is caused by the excitation signal F,si
This was removed by adjusting the electrical angles of nωt and Ecosωt. Problems to be Solved by the Invention In a magnetic resolver, if there is an error in the roundness of the stator or rotor, the gap between the rotor and stator will fluctuate as the rotor rotates. This causes high-order ripples in the detection signal of the magnetic resolver, resulting in poor detection accuracy. The magnetic resolver mentioned above cannot correct errors in roundness like this. The present invention has been made to solve these problems, and its purpose is to realize a magnetic resolver that can effectively reduce errors in roundness occurring in the rotor and stator. Means for Solving the Problems The present invention is a magnetic resolver configured as follows. (1) There are 4n salient poles with teeth formed at the pitch p at the tip (
(n is an integer), and the phase of the teeth of each salient pole is shifted by p / 4 according to the order of arrangement of the salient poles, and according to the order of arrangement, 0° salient pole, 90° ultimate, 180° ultimate, 270° salient pole. A stator comprising a stator plate forming a pole, two of these stator plates with a non-magnetic member in between, and the 0° ultimate of one stator plate and the 90° ultimate of the other stator plate, and Each (2) 0° phase coil and the coil wound around one stator plate have a voltage of E sin ωt (E is the amplitude of the voltage, ω is the angular velocity,
(t is time), and the other stator plate (2) is 0.
The 0° phase coil is a bare coil connected in series with a signal source excited by the voltage Ecosωt, adjacent 0° salient poles, and 90° (2) coils in which the 0° phase coils are connected in series. .. 2... A 0゛ phase coil consisting of pairs of coils connected in series, separated by mechanical angles, and adjacent 180゜ salient poles, In this way, the coils connected in series are separated by a mechanical angle of l = 1 2... Bears are connected in series and the coils are separated by a mechanical angle of l = 1 2... A pair of 180° phase coils are connected in parallel, and the voltage difference between the 0° phase coil and 180° phase coil on one stator plate is calculated, and the difference between the 0° phase coil and 180° phase coil on the other stator plate is calculated. A magnetic resolver comprising: an arithmetic circuit that calculates the difference in voltage between both ends of the coil, adds these two differences, and detects a rotation detection signal of the rotor. (2) The 04-phase coil has adjacent 0° salient poles and 90” (
2) A coil f in which the 0° phase coils are connected in series.
=1. 2... Pairs of coils separated by a mechanical angle are connected in series, and pairs of coils separated by a mechanical angle are connected in series, and the 180° phase coils are adjacent to each other. 180° salient pole and 270
(2) The 0° phase coils are connected in series with l=1.
Claim (1) characterized in that the coil is formed by connecting in series pairs of coils located at positions separated by a mechanical angle of 2... in series. Magnetic resolver described in section.

〈作用〉 このような本発明では、sin相のコイルが巻かれた突
極とcos相のコイルが巻かれた突極を、360゜/(
突極数)だけ機械角をずらして重ね合わせることにより
、真円度の誤差によってコイルのインダクタンスに生じ
る誤差戒分を有効に除去する。
<Operation> In the present invention, the salient pole around which the sine phase coil is wound and the salient pole around which the cos phase coil is wound are separated by 360°/(
By shifting the mechanical angle by the number of salient poles and overlapping them, it is possible to effectively eliminate the error margin caused in the inductance of the coil due to the error in roundness.

く実施例〉 以下、図面を用いて本発明を説明する.第1図は本発明
の一実施調の構成図であり、(a)は平面図、(b)は
(a)図のX−X部分の断面図である。
Embodiments> The present invention will be described below with reference to the drawings. FIG. 1 is a block diagram of one embodiment of the present invention, in which (a) is a plan view and (b) is a cross-sectional view taken along the line XX in FIG. 1 (a).

図で、1は円筒形状で内周に一定ビッチpで歯2が形成
されたロータである. 3はロータ1の内開に配置されたステータであり、2枚
の同一形状のステータ板31と32を非磁性体部材33
を挟んで重ね合わせて構成している. 各ステータ板31と32には、4n個(nは整数)例え
ば16個の突極31l1〜311+eと321,〜32
1+sが設けられている.これらの突極の先端には歯2
と対向するピッチpの歯4が形成されている.図では、
突極311,〜311+sだけしか示されていないが、
突極3211〜32l+sはステータ板31の下に重ね
合わせて配置されている。突極に形成された歯の位相は
突極の配列順に従ってp/4ずつずれている.例えば、
突極31l,の歯に対して、突極3112.3113.
3114の歯の位相は、それぞれp/4.2p/4.3
p/4ずつずれている, 突極311+ .3112 ,311:+ .3114
をそれぞれ0°突極,90°突極,180’突極,27
0゜突極とする,以下、突極の配列順に従ってO゜突極
,90゜究極,180゜突極,2700突極を繰り返し
ている, ステータ板32の突極の位相についてもステータ板31
と同様になっている。
In the figure, 1 is a cylindrical rotor with teeth 2 formed at a constant pitch p on the inner circumference. 3 is a stator disposed inwardly of the rotor 1, and two stator plates 31 and 32 of the same shape are connected to a non-magnetic member 33.
It is constructed by overlapping the . Each stator plate 31 and 32 has 4n salient poles (n is an integer), for example, 16 salient poles 31l1 to 311+e and 321 to 32.
1+s is provided. There are two teeth at the tips of these salient poles.
Teeth 4 are formed with a pitch p facing the . In the diagram,
Although only the salient poles 311 to 311+s are shown,
The salient poles 3211 to 32l+s are arranged under the stator plate 31 in an overlapping manner. The phases of the teeth formed on the salient poles are shifted by p/4 according to the order in which the salient poles are arranged. for example,
With respect to the teeth of the salient pole 31l, the salient pole 3112.3113.
The phase of the 3114 teeth is p/4.2p/4.3, respectively.
Salient pole 311+, shifted by p/4. 3112, 311:+. 3114
are respectively 0° salient pole, 90° salient pole, 180' salient pole, and 27
The salient pole of the stator plate 32 is assumed to be 0° salient pole, and the salient poles of the stator plate 32 are repeated as follows: 0° salient pole, 90° ultimate, 180° salient pole, and 2700 salient pole.
It is the same as.

突極311,〜311+aと3211〜32I,θには
、それぞれコイル3121〜312+eと3221〜3
22+sが巻かれている. 41はコイル3121〜312+sを Ecosωtなる電圧信号(Eは電圧の振幅、ωは角速
度、tは時間)で励磁する信号源、42はコイル322
+〜322+eをEs i nωtなる電圧信号で励磁
する信号源である.このため、コイル312+〜312
1eはsin相のコイル、コイル322.〜322,g
はcos相のコイルになる. 5はコイルの両@電圧をもとにロータ1の回転を算出す
る演算回路である. ここで、コイルの接続のしかたについて説明する. 第2図は2枚のステータ板に巻かれたコイルを示した説
明図である. ステータ板31では、(a)図に示すように隣合う(2
)前記0゜相コイルを直列に接続してコイルL1〜L8
を形成している。
Coils 3121 to 312+e and 3221 to 3 are attached to the salient poles 311 to 311+a and 3211 to 32I, θ, respectively.
22+s is wound. 41 is a signal source that excites the coils 3121 to 312+s with a voltage signal Ecosωt (E is the voltage amplitude, ω is the angular velocity, and t is time); 42 is the coil 322;
This is a signal source that excites +~322+e with a voltage signal Es i nωt. For this reason, the coils 312+ to 312
1e is a sin phase coil, coil 322. ~322,g
becomes a cos phase coil. 5 is an arithmetic circuit that calculates the rotation of the rotor 1 based on both voltages of the coils. Here, we will explain how to connect the coil. Figure 2 is an explanatory diagram showing the coils wound around two stator plates. In the stator plate 31, as shown in FIG.
) The 0° phase coils are connected in series to form coils L1 to L8.
is formed.

さらに、コイルし1〜L日は第3図に示すように接続す
ることによってO゜相コイルLsoを形成し、第4図に
示すように接続することによって180゜相コイルLs
+を形成ずる. 一方、ステータ板32でも(b)図に示すように隣合う
コイルどうしを直列に接続してコイルし,〜1,8を構
成している. さらに、コイルし,〜L8は第3図に示すように接続す
ることによってO゜相コイルLcoを横戒し、第4図に
示すように接続することによって180゜相コイルLC
I を構成する.なお、第3図と第4図では、コイルし
,とL5+L2と1、6のように、180゛の機械角を
隔てた位置にあるコイルへアどうしか接続されているが
、の機械角を隔てた位置にあるコイルベアどうしを直列
に接続する。
Furthermore, on days 1 to L, the O° phase coil Lso is formed by connecting as shown in Fig. 3, and the 180° phase coil Ls is formed by connecting as shown in Fig. 4.
Form +. On the other hand, on the stator plate 32, adjacent coils are connected in series to form coils 1 and 8, as shown in FIG. Furthermore, ~L8 is connected as shown in Fig. 3 to transverse the 0° phase coil Lco, and connected as shown in Fig. 4 to the 180° phase coil LC.
Configure I. In addition, in Figures 3 and 4, the coils are connected only to coils located at positions separated by a mechanical angle of 180°, such as L5+L2, 1, and 6, but the mechanical angle of Coil bears located at separate locations are connected in series.

また、この機械角を隔てた位置にあるペアどうしを並列
に接続して0゛相コイルと180゜相コイルを構成して
いるが、直列接続したものどうしを直列に接続してO゜
相コイルと180゜相コイルを構成してもよい.例えば
、コイルL,とL5を直列接続したものとコイルL3と
L7を直列接続したものを直列に接続してO゜相コイル
を構成してもよい. ステータ板31と32は、中心01と02、中心を通る
線X ,X ,とX2  X2合わせて重ね合わされて
いる.これによって、ステータ板31と32の間では2
2,5゜の機械角をずらして対応するコイルが重ね合わ
せられる。
Also, pairs that are separated by a mechanical angle are connected in parallel to form a 0° phase coil and a 180° phase coil, but pairs connected in series are connected in series to form an O° phase coil. A 180° phase coil may also be constructed. For example, an O° phase coil may be constructed by connecting coils L and L5 in series and coils L3 and L7 connected in series. The stator plates 31 and 32 are overlapped with centers 01 and 02 and lines X, X, and X2 passing through the centers. As a result, between the stator plates 31 and 32, 2
Corresponding coils are superimposed with a mechanical angle offset of 2.5°.

このように接続されたコイルの両端電圧をもとに回転検
出信号を算出する演算回路5の構成例を第5図に示す. このように構成された磁気レゾルバでは、ロータとステ
ータに生じた真円度の誤差は次のようにして除去される
. ステータまたはロータに真円度の誤差があると、ロータ
1がθだけ回転したときに各(2)前記0゜相コイルの
インダクタンスしは次のように変化する. L=LO(1+Δ,sin(θ十F+ )十Δ2sin
(2θ+9!)2)−・・+ms i  n  (Nθ
)}         ■L0 :インダクタンス、F
ilψ2:位相差、m:定数、Δ1.Δ2:変動分の振
幅、N:ロータの歯数 ここで、θはロー夕の歯の1ピッチ分を360゜とする
回転角である。
FIG. 5 shows an example of the configuration of the arithmetic circuit 5 that calculates the rotation detection signal based on the voltage across the coils connected in this manner. In a magnetic resolver configured in this way, errors in roundness that occur in the rotor and stator are removed as follows. If there is an error in the roundness of the stator or rotor, when the rotor 1 rotates by θ, the inductance of each (2) 0° phase coil changes as follows. L=LO(1+Δ,sin(θ1F+)+Δ2sin
(2θ+9!)2)-...+ms i n (Nθ
)} ■L0: Inductance, F
ilψ2: phase difference, m: constant, Δ1. Δ2: amplitude of variation, N: number of teeth of the rotor, where θ is the rotation angle where one pitch of the teeth of the rotor is 360°.

■式では、インダクタンスの値はロータ・ステータ間の
ギャップとリニアの関係があるものとした。この式で、
Δ1sin(θ十P+)+Δ2sin(2θ+ψ2)・
・・は真円度の誤差によりロータ・ステータ間のギャッ
プがロータの回転に伴って変動することにより生じる誤
差である。
In the equation (2), it is assumed that the inductance value has a linear relationship with the gap between the rotor and stator. In this formula,
Δ1 sin (θ1P+) + Δ2 sin (2θ+ψ2)・
... is an error caused by the gap between the rotor and stator changing as the rotor rotates due to an error in roundness.

また、回転角θによって位相変調されるmsin(Nθ
)が信号成分である. ここで、θは第2図の上の方にあるX1とX2で示され
る位置を0゜としている. sin相のコイルが巻かれたステータ板31では、ロー
夕がθだけ回転したときの各コイルし,〜L8の平均イ
ンダクタンスは、Δを変動率として、次式のとおりにな
る. これらの式では、コイルL,〜L8のインダクタンスと
してもI−1〜L8を用いた.従って、0゜相コイルの
インダクタンスLSOは次式のとおりになる. 一方、 1 800 相コイルのインダクタンス LS は次式のとおりになる. 一■ θ′ =θ+45゜ ■式で、 ’l<=t で17 l・2で1t L,−偶=L, LO’i ・ム(/一△”sin’2e)となる. これらの式で、 kが奇数の場合は変動分が含よ れない. k=2, 6,・・・の場合すなわち k= (4 (1−1)+21の形で表わされる場合は
く!=1.2・・・)、変動分は2次の項として現れる
。ここで、l〉Δ》Δ2より、2次の変動分は1一分に
小さいとして無視できる. k=4.8・・・の場合すなわちk=41で表わされる
場合は、変動分は1次の項になる.本発明ではこの項を
低減することを特徴としている.すなわち、k=4 /
では、 Lso”I、。{1+Δsin(4fθ)}となる。従
って、41次の成分が誤差となって現れる. 同様にして、■式でも Ls+=Lo(1+Δsin(4lθ′)}=Lo(1
−Δsin(41θ)} となり、41次の成分が誤差となる. 41次の誤差成分と信号或分を考慮すると、コイルLG
 O + L S ,の両@電圧VsO ,V5 ,は
Vsj= ハ( J−Δs’m (4ノρノ−msin
Nθ)vswt第5図のアングラlでとったこれらの電
圧の差は次のとおりになる. ’Jso − Vs+ ・2A (△Sin(41e)
+ms1n NOJ Cosutステータ板32に巻か
れたコイルについてもステータ板31に巻かれたコイル
と同様に、アンプ52でとったコイルLCOとLCIの
両端電圧VCOとVCIの差は次のとおりになる。
Also, msin(Nθ
) is the signal component. Here, θ is set to 0° at the position indicated by X1 and X2 at the top of Fig. 2. In the stator plate 31 on which sine-phase coils are wound, the average inductance of each coil and ~L8 when the rotor rotates by θ is as follows, where Δ is the rate of variation. In these equations, I-1 to L8 are also used as the inductances of the coils L and L8. Therefore, the inductance LSO of the 0° phase coil is as follows. On the other hand, the inductance LS of the 1800-phase coil is given by the following formula. 1■ θ′ = θ+45°■ In the formula, 'l<=t, 17 l・2, 1t L, -even=L, LO'i・mu(/1△"sin'2e). These formulas If k is an odd number, the variation is not included. If k = 2, 6, ..., that is, if k = (4 (1-1) + 21), then ! = 1.2 ), the variation appears as a quadratic term.Here, from l〉Δ》Δ2, the quadratic variation can be ignored as it is 1/1 minute smaller.In the case of k=4.8... In other words, when expressed as k=41, the variation becomes a first-order term.The present invention is characterized by reducing this term.That is, k=4/
Then, Lso''I, {1+Δsin(4fθ)}.Therefore, the 41st-order component appears as an error.Similarly, in equation (■), Ls+=Lo(1+Δsin(4lθ')}=Lo(1
−Δsin(41θ)}, and the 41st order component becomes the error. Considering the 41st order error component and a certain part of the signal, the coil LG
Both @voltages VsO, V5, of O + LS, are Vsj = HA (J-Δs'm (4 no ρ no-m sin
Nθ) vswtThe difference between these voltages taken at underground l in Figure 5 is as follows. 'Jso − Vs+ ・2A (△Sin(41e)
+ms1n NOJ Cosut For the coil wound around the stator plate 32, similarly to the coil wound around the stator plate 31, the difference between the voltages VCO and VCI across the coils LCO and LCI taken by the amplifier 52 is as follows.

この式で、ψはstn相のコイルとCOS相のコイルの
機械的ずれである. 加算器53でとった最終的な磁気レゾルバの出力vsz
oは次のとおりになる. VSrq = Vso − Vs+ + Vto − 
Vt += 2A.., Sin ( Nθ+wt)■
式の右辺第1項は信号成分になり、 右辺第2 項は誤差成分になる.誤差成分を小さくするには、の最
大値が最小になるように゛ψを選ぶ必要がある.この式
の中の41=4.8.12・・・のうち、変動分の大き
い4l=4に着目すると、 F=22.5°のときに■式の第2項が1になって誤差
が最小になる。この角度は、 360゜/16に相当している。
In this equation, ψ is the mechanical deviation between the stn phase coil and the COS phase coil. Final magnetic resolver output vsz taken by adder 53
o is as follows. VSrq = Vso − Vs+ + Vto −
Vt+=2A. .. , Sin (Nθ+wt)■
The first term on the right side of the equation becomes the signal component, and the second term on the right side becomes the error component. To reduce the error component, it is necessary to choose ゛ψ such that the maximum value of is minimized. Among 41=4.8.12... in this equation, if we focus on 4l=4, which has a large variation, when F=22.5°, the second term of the formula becomes 1, resulting in an error. becomes the minimum. This angle corresponds to 360°/16.

一般的に、ψ=360″″/突極数とすれば、誤差成分
は最小になる。
Generally, if ψ=360″/number of salient poles, the error component will be minimized.

なお、実施例ではアウタ・ロータ型の磁気レゾルバであ
ったが、インナ・ロータ型の構成にしてもよい. く効果〉 本発明によればロータとステータの真円度の誤差により
検出信号に生じた変動分で、信号戊分に大きな影響を与
える41次の誤差成分を有効に除去できる。これによっ
て、真円度の誤差の影響を低減し、高精度の検出信号が
得られる.
Although the embodiment uses an outer rotor type magnetic resolver, it may also have an inner rotor type configuration. Effects> According to the present invention, it is possible to effectively remove the 41st-order error component, which has a large effect on the signal component, by the variation that occurs in the detection signal due to the error in the roundness of the rotor and stator. This reduces the influence of roundness errors and provides highly accurate detection signals.

【図面の簡単な説明】[Brief explanation of drawings]

第l図は本発明の一実施例の構成図、第2図〜第4図は
コイルの接続のしかたを示した説明図、第5図は演算回
路の具体的構成例を示した図である。 1・・・ロー夕、2.5・・・歯、3・・・ステータ、
31.32・・・ステータ板、311,〜311+s,
321,〜321+ s・・・突極、312,〜312
+s.322,〜322+ e・・・コイル、41.4
2・・・信号源、5・・・演算回路.
Fig. 1 is a block diagram of one embodiment of the present invention, Figs. 2 to 4 are explanatory diagrams showing how to connect the coils, and Fig. 5 is a diagram showing a specific example of the structure of the arithmetic circuit. . 1... Rotor, 2.5... Teeth, 3... Stator,
31.32... Stator plate, 311, ~ 311+s,
321, ~321+ s... salient pole, 312, ~312
+s. 322, ~322+ e...Coil, 41.4
2...Signal source, 5...Arithmetic circuit.

Claims (2)

【特許請求の範囲】[Claims] (1)先端にピッチpで歯が形成された突極が4n個(
nは整数)設けられていて、各突極の歯の位相は突極の
配列順に従ってp/4ずつずれていき、配列順に従って
0゜突極、90゜突極、180゜突極、270゜突極を
なしているステータ板と、このステータ板を非磁性体部
材を挟んで2枚、一方のステータ板の0゜究極と他方の
ステータ板の90゜突極を重ね合わせて構成したステー
タと、前記各突極に巻かれたコイルと、 一方のステータ板に巻かれたコイルは Esinωtなる電圧(Eは電圧の振幅、ωは角速度、
tは時間)で励磁し、他方のステータ板の突極に巻かれ
たコイルはEcosωtなる電圧で励磁する信号源と、 隣合う0゜究極と90゜究極に巻かれたコイルどうしを
直列に接続し、この直列接続したコイルのペアで、 (360゜/突極数18)×i ただし(360゜/突極数18)×i<360゜i=1
、2・・・ の機械角を隔てた位置にあるペアどうしを直列に接続し
、このように直列接続したものどうしを並列に接続した
0゜相コイルと、 隣合う180゜突極と270゜突極に巻かれたコイルど
うしを直列に接続し、この直列接続したコイルのペアで
、 (360゜/突極数18)×i ただし(360゜/突極数18)×i<360゜i=1
、2・・・ の機械角を隔てた位置にあるペアどうしを直列に接続し
、このように直列接続したものどうしを並列に接続した
180゜相コイルと、 前記一方のステータ板の0゜相コイルと 180゜相コイルの両端電圧の差をとり、他方のステー
タ板の0゜相コイルと180゜相コイルの両端電圧の差
をとり、これら2つのを差を加算して前記ロータの回転
検出信号を検出する演算回路、を具備した磁気レゾルバ
(1) There are 4n salient poles with teeth formed at the pitch p at the tip (
n is an integer), and the phase of the teeth of each salient pole is shifted by p/4 according to the arrangement order of the salient poles, and according to the arrangement order, 0° salient pole, 90° salient pole, 180° salient pole, 270° salient pole. A stator consisting of a stator plate forming a salient pole, two stator plates with a non-magnetic material in between, and the 0° ultimate of one stator plate and the 90° salient pole of the other stator plate stacked together. The coils wound around each of the salient poles and the coil wound around one stator plate have a voltage of Esinωt (E is the amplitude of the voltage, ω is the angular velocity,
t is time), and the coil wound around the salient pole of the other stator plate is excited by a voltage Ecosωt, and the adjacent coils wound at 0° and 90° are connected in series. For this pair of coils connected in series, (360°/number of salient poles 18) x i where (360°/number of salient poles 18) x i < 360° i = 1
, 2... Pairs separated by a mechanical angle of Coils wound around salient poles are connected in series, and in a pair of series-connected coils, (360°/number of salient poles 18)×i where (360°/number of salient poles 18)×i<360°i =1
, 2... Pairs separated by mechanical angles are connected in series, and the series-connected coils are connected in parallel to form a 180° phase coil, and a 0° phase coil on one of the stator plates. The rotation of the rotor is detected by taking the difference in the voltage across the coil and the 180° phase coil, taking the difference in the voltage across the 0° phase coil and the 180° phase coil on the other stator plate, and adding these two differences. A magnetic resolver equipped with an arithmetic circuit that detects signals.
(2)前記0゜相コイルは、隣合う0゜突極と90゜突
極に巻かれたコイルどうしを直列に接続し、この直列接
続したコイルのペアで、 (360゜/突極数18)×i ただし(360゜/突極数18)×i<360゜i=1
、2・・・ の機械角を隔てた位置にあるペアどうしを直列に接続し
、このように直列接続したものどうしを直列に接続した
ものであり、 前記180゜相コイルは、隣合う180゜突極と270
゜突極に巻かれたコイルどうしを直列に接続し、この直
列接続したコイルのペアで、(360゜/突極数18)
×i ただし(360゜/突極数18)×i<360゜i=1
、2・・・ の機械角を隔てた位置にあるペアどうしを直列に接続し
、このように直列接続したものどうしを直列に接続した
ものであることを特徴とする請求項(1)項記載の磁気
レゾルバ。
(2) The above-mentioned 0° phase coil consists of coils wound around adjacent 0° salient poles and 90° salient poles, which are connected in series. )×i However, (360°/number of salient poles 18)×i<360°i=1
, 2... Pairs separated by a mechanical angle of salient pole and 270
゜ Coils wound around salient poles are connected in series, and with a pair of coils connected in series, (360゜/number of salient poles 18)
×i However, (360°/number of salient poles 18) ×i<360°i=1
, 2... Pairs separated by mechanical angles are connected in series, and the series-connected pairs are connected in series. magnetic resolver.
JP19488289A 1989-07-27 1989-07-27 Magnetic resolver Expired - Lifetime JPH0756455B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19488289A JPH0756455B2 (en) 1989-07-27 1989-07-27 Magnetic resolver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19488289A JPH0756455B2 (en) 1989-07-27 1989-07-27 Magnetic resolver

Publications (2)

Publication Number Publication Date
JPH0357915A true JPH0357915A (en) 1991-03-13
JPH0756455B2 JPH0756455B2 (en) 1995-06-14

Family

ID=16331891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19488289A Expired - Lifetime JPH0756455B2 (en) 1989-07-27 1989-07-27 Magnetic resolver

Country Status (1)

Country Link
JP (1) JPH0756455B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006145300A (en) * 2004-11-17 2006-06-08 Mitsubishi Electric Corp Variable reluctance type angle detector
JP2010019866A (en) * 2009-10-29 2010-01-28 Mitsubishi Electric Corp Variable reluctance type angle detector
JP2011064710A (en) * 2011-01-05 2011-03-31 Mitsubishi Electric Corp Variable reluctance-type angle detector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006145300A (en) * 2004-11-17 2006-06-08 Mitsubishi Electric Corp Variable reluctance type angle detector
JP2010019866A (en) * 2009-10-29 2010-01-28 Mitsubishi Electric Corp Variable reluctance type angle detector
JP2011064710A (en) * 2011-01-05 2011-03-31 Mitsubishi Electric Corp Variable reluctance-type angle detector

Also Published As

Publication number Publication date
JPH0756455B2 (en) 1995-06-14

Similar Documents

Publication Publication Date Title
US11512977B2 (en) Redundant resolver and rotation angle detection device using same
US7705504B2 (en) Embedded magnet type motor
EP1271753B1 (en) Three-phase toroidal coil type permanent magnet electric rotating machine
US20050122097A1 (en) Rotation angle detector
US7342330B2 (en) Hybrid type double three-phase electric rotating machine
EP1557644B1 (en) Redundant variable reluctance resolver
JP2988597B2 (en) Rotational position detector
JP2023523149A (en) Multiphase resolver device and differential phase synthesis device
JPH0357915A (en) Magnetic resolver
WO2016098613A1 (en) Electrostatic encoder
JP2624747B2 (en) Resolver
JP6872203B2 (en) Resolver
JP2000316266A (en) Variable reluctance position detector
JPH0131126B2 (en)
JP2019124514A (en) Multipolar resolver
JPH01140018A (en) Position and speed detector
JP2556383B2 (en) Magnetic resolver
JPH0817562B2 (en) Reluctance resolver
JP2680435B2 (en) Rotation angle detector
JP3309025B2 (en) Reluctance type resolver
JPH0346515A (en) Magnetic resolver
US12013263B2 (en) Resolver
WO2024090210A1 (en) Multi-rotation angle detection device and segment counter for same
JPH0356818A (en) Rotation angle detecting device
WO2024090209A1 (en) Multi-rotation angle detection device