JPH0357691B2 - - Google Patents

Info

Publication number
JPH0357691B2
JPH0357691B2 JP14174381A JP14174381A JPH0357691B2 JP H0357691 B2 JPH0357691 B2 JP H0357691B2 JP 14174381 A JP14174381 A JP 14174381A JP 14174381 A JP14174381 A JP 14174381A JP H0357691 B2 JPH0357691 B2 JP H0357691B2
Authority
JP
Japan
Prior art keywords
current
fault
phase difference
equation
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14174381A
Other languages
Japanese (ja)
Other versions
JPS5846832A (en
Inventor
Fumio Ando
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP14174381A priority Critical patent/JPS5846832A/en
Publication of JPS5846832A publication Critical patent/JPS5846832A/en
Publication of JPH0357691B2 publication Critical patent/JPH0357691B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Description

【発明の詳細な説明】 (a) 技術分野 本発明は併架多回線電線の1相地絡事故の保護
に用いられる地絡回線選択継電器の改良に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field The present invention relates to an improvement in a ground fault line selection relay used for protection against single-phase ground faults in parallel multi-line electric wires.

(b) 従来の技術 高抵抗接地系の平行2回線送電線(以下被保護
送電線という)が他の送電線(以下起誘導送電線
という)と同一鉄塔に併架される場合すなわち多
回線併架送電線の場合には、起誘導送電線の電流
による誘導のために被保護送電線の2回線間を零
相分の大きい循環電流が流れる。一般の地絡回線
選択継電器は、被保護平行送電線の間の零相差電
流(以下単に零相差電流という)を演算量とし
て、地絡事故回線を識別するものであるが、前記
の零相循環電流が大きい場合には、この影響のた
め正常な保護が不可能となる。
(b) Conventional technology When a high-resistance grounded parallel two-circuit transmission line (hereinafter referred to as a protected transmission line) is installed on the same tower as another transmission line (hereinafter referred to as an induced transmission line), in other words, a multi-circuit In the case of an overhead power transmission line, a large zero-phase circulating current flows between two circuits of the protected power transmission line due to induction by the current of the induced power transmission line. A general ground fault line selection relay uses the zero-sequence difference current between protected parallel transmission lines (hereinafter simply referred to as zero-sequence difference current) as the calculation amount to identify a ground fault line. If the current is large, this effect makes normal protection impossible.

この対策として、1相地絡事故時に於ける零相
差電流の事故前の値に対する変化分を用いて地絡
事故回線を識別する地絡回線選択継電器が用いら
れている。これにより零相循環電流が大きに場合
にも、被保護送電線の1相地絡事故の保護が可能
である。しかし、被保護送電線の事故検出と同時
に、または事故検出後に、起誘導送電線の運転状
況に変化が起こると、これによる循環電流の変化
分を生ずるため、正常な保護が不可能となる。
As a countermeasure against this problem, a ground fault line selection relay is used that identifies a line in which a ground fault has occurred by using the change in zero-sequence difference current from the value before the fault at the time of a one-phase ground fault fault. As a result, even when the zero-phase circulating current is large, it is possible to protect the protected power transmission line from a one-phase ground fault. However, if a change occurs in the operating status of the induced power transmission line at the same time as an accident is detected on the protected power transmission line or after the accident is detected, a change in circulating current occurs due to this change, making normal protection impossible.

すなわち、零相差電流は常時運転中は前記の零
相循環電流の2倍の値となつているが、被保護送
電線の内部事故を生ずると事故分零相差電流を重
畳したものとなる。この事故分零相差電流は零相
電圧との位相関係が平行送電線のどの回線に事故
があるかに応じて逆になる。前記の零相差電流の
変化分を用いた継電器は、常時の零相差電流を記
憶し、零相電圧の発生により地絡事故を検出する
と、このときの零相差電流と前記の記憶された零
相差電流の差を求めて、事故分差電流を得、これ
と零相電圧の位相関係により地絡事故回線を識別
するものである。
That is, the zero-sequence difference current is twice the value of the above-mentioned zero-sequence circulating current during normal operation, but when an internal fault occurs in the protected power transmission line, the zero-sequence difference current becomes the same as the fault. The phase relationship between the zero-sequence difference current for the fault and the zero-sequence voltage is reversed depending on which line of the parallel power transmission line has the fault. A relay that uses the change in the zero-sequence difference current memorizes the constant zero-sequence difference current, and when a ground fault is detected due to the occurrence of zero-sequence voltage, the relay uses the current zero-sequence difference current and the stored zero-sequence difference. The fault difference current is obtained by calculating the difference in current, and the ground fault fault line is identified based on the phase relationship between this and the zero-sequence voltage.

しかし、起誘導送電線が直接接地系統でその地
絡事故で事故電流が大きい場合には誘導電圧が大
きく、被保護送電線に誘導される零相電圧が事故
検出レベル以上となる場合が多い。この場合循環
電流も同時に事故電流に対応した値だけ変化す
る。前記の変化分を用いた継電器はこの変化によ
る零相差電流の変化分で誤動作する。また誘導電
圧がそれほど大きくない場合でも、この時同時に
被保護送電線に1相地絡事故を生ずると、これに
よる零相電圧により地絡事故が検出される。この
ときの零相差電流は前記の循環電流の変化分と事
故分差電流の和であり、循環電流の変化分によつ
て事故回線を誤まつて選択する場合が多い。以上
のような誤動作は、例えば継電器を限時動作とし
起誘導送電線の事故がしや断されるまで待つこと
によつて防止することができる。しかし、しや断
により起誘導送電線が1回線停止となつたときの
循環電流は事故発生前の循環電流とは異なつた値
となつており、この変化分が零相差電流の変化分
として表われる。この変化分によつても誤動作の
恐れがある。
However, if the induced power transmission line is a directly grounded system and the fault current is large due to a ground fault, the induced voltage will be large, and the zero-sequence voltage induced in the protected power transmission line will often exceed the fault detection level. In this case, the circulating current also changes at the same time by a value corresponding to the fault current. A relay using the above-mentioned change malfunctions due to the change in the zero-sequence difference current due to this change. Furthermore, even if the induced voltage is not so large, if a one-phase ground fault occurs in the protected transmission line at the same time, the ground fault will be detected based on the resulting zero-phase voltage. The zero-sequence difference current at this time is the sum of the variation in the circulating current and the fault difference current, and the fault line is often mistakenly selected depending on the variation in the circulating current. The above-mentioned malfunctions can be prevented by, for example, setting the relay to a time-limited operation and waiting until the fault on the induced power transmission line has been cut off. However, the circulating current when one line of the induced power transmission line is stopped due to a shingle break has a value different from the circulating current before the accident, and this change is expressed as the change in the zero-sequence difference current. be exposed. There is also a risk of malfunction due to this variation.

(c) 目的 本発明は以上の事実に鑑みなされたもので、そ
の目的とするところは差電流の変化分のうち起誘
導送電線の状況変化による循環電流の変化分を補
償し、循環電流の変化による影響を軽減して、高
感度にしても誤動作しないようにした地絡回線選
択継電器を得ることにある。
(c) Purpose The present invention has been made in view of the above facts, and its purpose is to compensate for the change in circulating current due to a change in the situation of the induced transmission line, out of the change in differential current, and to reduce the circulating current. To provide a ground fault line selection relay which reduces the influence of changes and does not malfunction even when it is highly sensitive.

(d) 構成、作用 第1図は本発明の一実施例の構成を示す図であ
る。図において1は母線でa、b、cは相記号を
示す。2および3は被保護平行送電線であり、し
や断器4および5を介して母線1に連けいされ
る。6および7は送電線2および3に設けた変流
器、8は計器用変圧器である。そして9は入力変
換器、10はサンプルホールド回路、11はマル
チプレクサ、12はAD変換器、13は計算機で
あり、内部にCPU、メモリ入出力装置を有して
いる。変流器6および7により送電線2および3
の電流に対応した電流を得、図示の接続により、
両送電線2,3のa、b、c各相の差電流ias
ibsおよびIcsと3×(零相差電流)3ipsが得られる。
また、計器用変圧器8により母線1を通じて送電
線2および3の端子のa、b、c各相電圧および
零相電圧に対応した電圧va、vb、vcおよびvpが得
られる。これらの電流、電圧は入力変換器9に加
えられ、次段のサンプルホールド回路10に適し
た値の電圧に変換される。入力変換器9にはフイ
ルタが設けられており各電圧電流の基本波分のみ
が出力として得られる。サンプルホールド回路で
は同一時刻に一定周期(例えば電圧、電流の1周
期の1/12の周期)で入力値をサンプルしホールド
する。このホールド値はマルチプレクサ11によ
り逐次AD変換器12に供給され、デイジタル値
に変換される。計算機13は予定のプログラムに
従がい、AD変換器12の出力を用いて所要の演
算を行ない、入力データが所定条件のときにしや
断器4または5のしや断を指令する。
(d) Structure and operation FIG. 1 is a diagram showing the structure of an embodiment of the present invention. In the figure, 1 is a bus bar, and a, b, and c indicate phase symbols. 2 and 3 are parallel power transmission lines to be protected, which are connected to the bus 1 via bow breakers 4 and 5. 6 and 7 are current transformers provided on the power transmission lines 2 and 3, and 8 is a voltage transformer. 9 is an input converter, 10 is a sample and hold circuit, 11 is a multiplexer, 12 is an AD converter, and 13 is a computer, which includes a CPU and a memory input/output device. Transmission lines 2 and 3 by current transformers 6 and 7
Obtain the current corresponding to the current of , and by the connections shown,
Differential current i as of each phase a, b, c of both transmission lines 2 and 3,
i bs and I cs and 3×(zero-sequence difference current) 3i ps are obtained.
Further, voltages v a , v b , v c and v p corresponding to the a, b , c phase voltages and zero-phase voltage of the terminals of the power transmission lines 2 and 3 are obtained through the bus 1 by the instrument transformer 8 . These currents and voltages are applied to the input converter 9 and converted into voltages with values suitable for the sample and hold circuit 10 at the next stage. The input converter 9 is provided with a filter, and only the fundamental wave component of each voltage and current is obtained as an output. The sample and hold circuit samples and holds the input value at the same time and at a constant cycle (eg, 1/12 cycle of one cycle of voltage or current). This hold value is sequentially supplied to the AD converter 12 by the multiplexer 11 and converted into a digital value. The computer 13 follows a predetermined program, performs necessary calculations using the output of the AD converter 12, and instructs the sinter breaker 4 or 5 to sever when the input data meets a predetermined condition.

計算機13で行なわれる演算フローの一例を第
2図に示す。先ずステツプS1で開始指令を受け
ると、ステツプS2で短絡事故検出を行なう。短
絡事故が検出されると他の演算(通常短絡保護演
算)へ移る。短絡事故が検出されないときはステ
ツプS3に移り、地絡事故検出を行なう。地絡事
故が検出されないときはステツプS4に進み後述
する必要な諸量の値を記憶する。この記憶を行な
つた後、振り出しに戻り短絡および地絡事故が検
出されない限り繰り返され、記憶値を更新する。
ステツプS3で地絡事故が検出されるとステツプ
S5へ進む。
An example of the calculation flow performed by the computer 13 is shown in FIG. First, when a start command is received in step S1, short circuit fault detection is performed in step S2. When a short circuit accident is detected, the process moves to other calculations (usually short circuit protection calculations). If no short circuit fault is detected, the process moves to step S3, where ground fault detection is performed. If no ground fault is detected, the process advances to step S4 and the values of necessary quantities described later are stored. After this storage, the process returns to the beginning and is repeated until a short circuit or ground fault is detected to update the stored value.
If a ground fault is detected in step S3, the step
Proceed to S5.

ステツプS5では地絡相選別を行なう。すなわ
ちステツプS5−1、S5−2およびS5−3の順に
各々、a、bおよびc相地絡事故を選別し、a、
bまたはc相地絡が検出されると判定5Ya,5
Ybまたは5Ycが得られる。どの相の地絡も検出
されないと、判定5Nが得られ他の演算(通常地
絡後備保護演算)へ移る。ステツプS5で判定5
Ya,5Ybまたは5Ycがいずれか得られたとき
は、ステツプS6に進み、どの判定が得られたか
すなわちどの相の地絡であるかに応じ、各々ステ
ツプS6−1、S6−2またはS6−3で、電圧、電
流およびステツプS4の記憶量を用いて演算量eea
eebまたはeecを求める。これが求められると、ス
テツプS7で回線選択演算を行なう。ステツプS7
では先ずステツプS7−1、S7−2の順に送電線
2および3の事故検出演算を行ない。いずれかの
事故が検出されれば各々判定7Y1または7Y2
が得られてしや断器4または5をしや断する。い
ずれの事故も検出されなければ判定5Nが得られ
て、他の演算(通常、地絡後備保護演算)へ移
る。
In step S5, ground fault phase selection is performed. That is, in the order of steps S5-1, S5-2 and S5-3, phase a, b and c ground faults are selected, and a,
Judgment 5Ya, 5 when b or c phase ground fault is detected
Yb or 5Yc is obtained. If no ground fault in any phase is detected, a determination of 5N is obtained and the process moves to another calculation (normal ground fault back-up protection calculation). Judgment 5 at step S5
When Ya, 5Yb or 5Yc is obtained, the process proceeds to step S6, and steps S6-1, S6-2 or S6-3 are performed, respectively, depending on which judgment is obtained, that is, which phase of the ground fault. Then, using the voltage, current, and the memory amount of step S4, the calculation amount e ea is
Find e eb or e ec . Once this is determined, a line selection calculation is performed in step S7. Step S7
First, fault detection calculations for power transmission lines 2 and 3 are performed in the order of steps S7-1 and S7-2. If any accident is detected, judge 7Y1 or 7Y2 respectively.
is obtained and the sheath cutter 4 or 5 is sheared. If no accident is detected, a determination of 5N is obtained, and the process moves on to other calculations (usually ground fault backup protection calculations).

以上でステツプS2の短絡検出およびS3の地絡
検出は公知の地絡回線選択継電器でも用いられて
いる手段であり、種々の手段が公知である。すな
わち、ステツプS2の短絡検出では各相間電圧va
−vb、vb−vcおよびvc−vaがいずれかでも一定値
以下になるかまたは一定巾以上降下することによ
つて短絡事故と判断するなどの手段が公知であ
る。ステツプS3の地絡検出は通常零相電圧vpが一
定値以上であることで地絡事故と判断する。ま
た、ステツプS5の地絡相選別手段も種々の手段
が公知であるが、例えば零相電圧vpが各相間電圧
vb−vc、vc−vaおよびva−vbに対して一定位相範
囲内にあるとき、それぞれa、bまたはc相地絡
と判断するものがある。これらはいずれも周知の
技術であるので詳細な説明を省略する。
The short circuit detection in step S2 and the ground fault detection in step S3 described above are means that are also used in known ground fault line selection relays, and various means are known. In other words, in the short circuit detection in step S2, each phase voltage v a
A known method is to determine that a short circuit has occurred when any of -v b , v b -v c and v c -va falls below a certain value or drops by a certain amount or more. The ground fault detection in step S3 is normally determined to be a ground fault fault if the zero-phase voltage v p is greater than a certain value. Furthermore, various means are known for the ground fault phase selection means in step S5, but for example, if the zero-phase voltage v p is
When within a certain phase range for v b -v c , v c -v a and v a -v b , there are cases where it is determined that there is an a-, b-, or c-phase ground fault, respectively. Since these are all well-known techniques, detailed explanations will be omitted.

ステツプS4では次の演算を行ないその値を記
憶する。
In step S4, the following calculation is performed and its value is stored.

ipsM×vbcM、ipsM×vcaM、ipsM×vabM、K1bibcM K1ca(icsM+iasM)×vcaM、K1bibsM×vabM …(1) 但し、ipsM、ibsM、icsM、iasMは各々零相、b相c
相およびa相の差電流ips、ibs、icsおよびiasの記憶
時の値、vbcM、vcaMおよびvabMは各々bc、caおよ
びab相間電圧vb−vc、vc−vaおよびva−vbの記憶
時の値K1bおよびk1caは定数である。また、上式
はすべて外積であり、以下記号(x)で(2)式の関
係を示す。
i psM ×v bcM , i psM ×v caM , i psM ×v abM , K 1b i bcM K 1ca (i csM + i asM ) × v caM , K 1b i bsM ×v abM …(1) However, i psM , i bsM , i csM , i asM are zero phase and b phase c, respectively.
The stored values of the phase and a phase difference currents i ps , i bs , i cs and i as , v bcM , v caM and v abM are the bc, ca and ab phase voltages v b −v c , v c − respectively The stored values K 1b and k 1ca of v a and v a −v b are constants. Furthermore, all of the above equations are cross products, and the symbol (x) below indicates the relationship in equation (2).

A×B=|AB|sin(θA−θB) …(2) 但し、AおよびBはベクトル量、|AB|はAB
の積の絶対値、θAおよびθBは各々ベクトル量Aお
よびBの角度である。
A×B=|AB|sin(θ A −θ B ) …(2) However, A and B are vector quantities, and |AB| is AB
The absolute values of the products θ A and θ B are the angles of the vector quantities A and B, respectively.

尚、ステツプS2またはS3で短絡または地絡事
故検出が行なわれるには、事故発生後若干の時間
を必要とする。このため、ステツプS4の演算は
事故発生後事故検出までの間は事故時の値で行な
われる。この値が記憶値とされることは好ましく
ないので、記憶値の更新にあたつて記憶値に変化
が認められたときは古い値を若干時間保持し、一
定時間内に事故が検出されないとき記憶値を更新
するようにする。
Note that it takes some time after the occurrence of the accident to detect a short circuit or ground fault in step S2 or S3. Therefore, the calculation in step S4 is performed using the value at the time of the accident from the time the accident occurs until the accident is detected. It is not desirable for this value to be used as a memorized value, so when updating the memorized value, if a change is observed in the memorized value, the old value is retained for a while, and if no accident is detected within a certain period of time, it is memorized. Make sure to update the value.

第3図はステツプS4で行なわれる上記のフロ
ーを示す図である。先ず第2図のステツプS3で
地絡事故が検出されず判定Nが得られると、ステ
ツプS4−1で(1)式の値を演算する。次に、ステ
ツプS4−2でステツプS4−1の演算値とステツ
プS4−4の記憶値を比較し有意差があることを
検出する。差が無ければ第2図のステツプS1に
戻り、差があればステツプS4−3に移り差が生
じてから一定時間継続したことを検出する。一定
時間に達しないときはステツプS1に戻り、一定
時間継続と判断されるまでこの処理が繰り返され
る。一定時間継続と判断された時はステツプS4
−4に移りステツプS4−1の演算値を記憶する。
尚、上記の一定時間はステツプS2およびS3の短
絡および地絡検出時間より若干長い時間とする。
これにより短絡または地絡事故の検出に若干の遅
れがあつても、事故前の値が記憶される。
FIG. 3 is a diagram showing the above flow performed in step S4. First, when no ground fault is detected and a determination N is obtained in step S3 of FIG. 2, the value of equation (1) is calculated in step S4-1. Next, in step S4-2, the calculated value in step S4-1 and the stored value in step S4-4 are compared, and it is detected that there is a significant difference. If there is no difference, the process returns to step S1 in FIG. 2, and if there is a difference, the process moves to step S4-3, where it is detected that the difference has continued for a certain period of time. If the predetermined time has not been reached, the process returns to step S1, and this process is repeated until it is determined that the predetermined time has continued. If it is determined that it will continue for a certain period of time, proceed to step S4.
-4, the calculated value of step S4-1 is stored.
Note that the above-mentioned fixed time is a slightly longer time than the short circuit and ground fault detection time in steps S2 and S3.
As a result, even if there is a slight delay in detecting a short circuit or ground fault, the value before the fault is stored.

ステツプS6では、ステツプS6−1、S6−2ま
たはS6−3で各々次式で表わされる演算量eea
eebまたはeecの値を算出する。
In step S6, the amount of calculation e ea expressed by the following formula in steps S6-1, S6-2, or S6-3 is calculated, respectively.
Calculate the value of e eb or e ec .

eea=eda−eha eeb=edb−ehb eec=edc−ehc …(3) 但し、eda、edbおよびedcは検出量、eha、ehb
よびehcは補償量でありいずれも次式で表わされ
る。
e ea = e da −e ha e eb = e db −e hb e ec = e dc −e hc …(3) However, e da , e db and e dc are the detected amounts, e ha , e hb and e hc is the amount of compensation, and both are expressed by the following equations.

eda=ips×vbc−ipsM×vbcM ddb=ips×vcb−ipsM×vcaM edc=ips×vab−ipsM×vabM …(4) eha=K1bibs×vbc−K1bibsM×VbcM eha=K1bibs×vbc−K1bibsM×VbcM ehb=K1ca(ics+ias)×vca−K1ca(icsM+iasM)×Vc
aM
ehc=K1bibs×vab−k1bibsM×vabM …(5) 但し、vbc、vcaおよびvabは相間電圧vb−vc、vc
−vaおよびva−vbである。
e da = i ps ×v bc −i psM ×v bcM d db = i ps ×v cb −i psM ×v caM e dc = i ps ×v ab −i psM ×v abM …(4) e ha =K 1b i bs ×v bc −K 1b i bsM ×V bcM e ha =K 1b i bs ×v bc −K 1b i bsM ×V bcM e hb =K 1ca (i cs +i as )×v ca −K 1ca ( i csM + i asM )×V c
aM
e hc = K 1b i bs ×v ab −k 1b i bsM ×v abM …(5) However, v bc , v ca and v ab are the phase-to-phase voltages v b −v c , v c
−v a and v a −v b .

上記で(4)式の検出量は、いずれも零相差電流ips
と事故相に対する直角位相の電圧(以後、単に直
角電圧と呼ぶ)vbc、vcaまたはvabの外積の事故検
出前に記憶された記憶値に対する事故検出後の値
の変化分(以後、単に事故変化分という)であ
る。また、(5)式の補償量は健全相中の1相の差電
流ibsまたは健全2相の差電流の合成値ics+iasと直
角電圧の外積の事故変化分である。
The detected amount in equation (4) above is the zero-sequence difference current i ps
and the voltage in quadrature with respect to the fault phase ( hereinafter simply referred to as quadrature voltage ) . (referred to as accident change). Further, the compensation amount in equation (5) is the fault change of the cross product of the differential current i bs of one phase in the healthy phase or the composite value i cs + i as of the differential current of two healthy phases and the orthogonal voltage.

ステツプS7では、ステツプS7−1およびS7−
2で各々(6)式または(7)式の演算を行なう。
In step S7, steps S7-1 and S7-
2 performs the calculation of equation (6) or equation (7), respectively.

eea>K2a|Vbc|、eeb>K2b|Vca| またはeec>K2c|vab| …(6) −eea>K2a|vbc|、−eeb>K2b|vca| または−eec>K2c|vab| …(7) 但し|vbc|は電圧vbcの大きさ(実効値、平均
値または波高値など)であり、以後同様の記号で
大きさを示す。また、K2a、K2bおよびK2cは各々
正の定数である。
e ea >K 2a |V bc |, e eb >K 2b |V ca | or e ec >K 2c |v ab | …(6) −e ea >K 2a |v bc |, −e eb >K 2b |v ca | or −e ec > K 2c |v ab | …(7) However, |v bc | is the magnitude of the voltage v bc (effective value, average value, peak value, etc.), and from now on, the same symbol will be used. Indicates size. Furthermore, K 2a , K 2b and K 2c are each positive constants.

(6)および(7)式では、ステツプS5の相選別の結
果に従いステツプS6で演算量eea、eebまたはeec
値のいずれか一つが算出されるので、算出された
演算量に対する演算のみを行なう。(6)式が成立す
れば判定7Y2、(7)式が成立すれば判定7Y1が
得られる。
In equations (6) and (7), one of the values of the calculation amount e ea , e eb , or e ec is calculated in step S6 according to the result of phase selection in step S5, so the calculation for the calculated calculation amount is Only do the following. If the formula (6) is satisfied, the determination 7Y2 is obtained, and if the formula (7) is satisfied, the determination 7Y1 is obtained.

次に本発明の作用を図面を用いて説明する。第
4図は多回線併架送電線を説明するための糸統図
である。図で、1L,2Lは起誘導送電線、3
L,4Lは被保護送電線、Tは変圧器、Rは中性
点接地抵抗器、A,B,C,Dは母線であり、
EF間で送電線1L〜4Lが同一鉄塔に併架され
る。変圧器Tの中性点は起誘導系統(起誘導送電
線に変圧器を介することなくつながる系統)では
直接接地され、被保護系統(被保護送電線に変圧
器を介することなくつながる系統)では中性点接
地抵抗器Rを経て接地される。回線選択継電器は
被保護送電線3Lおよび4Lを保護する。
Next, the operation of the present invention will be explained using the drawings. FIG. 4 is a thread diagram for explaining a multi-circuit parallel power transmission line. In the figure, 1L and 2L are induction power transmission lines, 3
L and 4L are protected transmission lines, T is a transformer, R is a neutral point grounding resistor, A, B, C, and D are busbars,
Transmission lines 1L to 4L will be installed on the same tower between EF and EF. The neutral point of transformer T is directly grounded in an inductive system (a system connected to an inductive transmission line without going through a transformer), and in a protected system (a system connected to a protected transmission line without going through a transformer). It is grounded via a neutral point grounding resistor R. The line selection relay protects protected transmission lines 3L and 4L.

第5図は併架区間の電線配置の例を示す図であ
る。a1,b1,c1,a2,b2,c2,a
3,b3,c3,a4,b4およびc4は各々送
電線1L,2L,3Lおよび4Lのa、b、c相
各相の電線である。この配置は被保護送電線3L
および4Lでは順配列(鉄塔に対して線対称)で
あり、このため被保護送電線3Lおよび4Lのみ
に電流が流れても内部事故(3L,4Lの短絡ま
たは地絡事故)が無い限り、送電線3Lおよび4
Lの電流は各相とも等しく、両送電線の同一相の
差電流(以下単に差電流という)は零である。
FIG. 5 is a diagram showing an example of the arrangement of electric wires in the parallel section. a1, b1, c1, a2, b2, c2, a
3, b3, c3, a4, b4, and c4 are electric wires of phases a, b, and c of power transmission lines 1L, 2L, 3L, and 4L, respectively. This arrangement is for the protected power transmission line 3L.
and 4L are sequential arrays (line symmetrical with respect to the tower), so even if current flows only to protected transmission lines 3L and 4L, unless there is an internal fault (short circuit or ground fault of 3L, 4L), the transmission Electric wires 3L and 4
The current of L is equal in each phase, and the difference current between the same phases of both power transmission lines (hereinafter simply referred to as difference current) is zero.

起誘導送電線1Lおよび2Lの電線配置は逆配
列である。送電線3Lおよび4Lがともに運転さ
れ、送電線1L(または2L)のみ運転されこれ
に負荷電流が流れたとすると、これによる誘導は
送電線3L(または4L)が送電線4L(または3
L)より大きく、この差により第4図のように送
電線3Lおよび4L間を循環する循環電流ith
a、b、c各相に流れる。この誘導は送電線3L
および4Lとも起誘導送電線1L(または2L)
に近いものほど大きく、循環電流の大きさはa相
が最も大きくc相が最も小さい。また、起誘導送
電線1L(または2L)のうちの送電線3Lおよ
び4Lに近いc相(またはa相)電流の影響が大
きく、送電線3Lおよび4Lの循環電流はa、
b、c各相とも、送電線1L(または2L)のc
相(またはa相)電流との間の位相差が小さい。
また、送電線1Lおよび2Lの両者に負荷電流が
流れたときの循環電流は1Lおよび2Lの各々に
単独に負荷電流が流れた場合の循環電流を重畳し
たものとなる。また、送電線1Lまたは2Lに1
相地絡事故を生じたときの循環電流は、地絡事故
電流を主な起誘導電流として流れるため、通常運
転時に比べて著しく大きく且つ地絡相電流との位
相差が小さい。
The electric wire arrangement of the induction power transmission lines 1L and 2L is reversed. If both transmission lines 3L and 4L are operated, and only transmission line 1L (or 2L) is operated and a load current flows through it, the induction caused by this will cause transmission line 3L (or 4L) to
L), and due to this difference, a circulating current i th circulating between power transmission lines 3L and 4L flows through each phase of a, b, and c as shown in FIG. This induction is a power transmission line 3L
and 4L and induction power transmission line 1L (or 2L)
The closer to , the larger the circulating current is, and the magnitude of the circulating current is largest in the a phase and smallest in the c phase. In addition, the effect of the c-phase (or a-phase) current near the transmission lines 3L and 4L of the induced transmission line 1L (or 2L) is large, and the circulating current of the transmission lines 3L and 4L is a,
For each phase of b and c, c of the transmission line 1L (or 2L)
The phase difference between the current and the phase (or a-phase) current is small.
Further, the circulating current when the load current flows through both the power transmission lines 1L and 2L is a superposition of the circulating current when the load current flows independently through each of the power transmission lines 1L and 2L. In addition, 1L or 2L of power transmission line
The circulating current when a phase-to-ground fault occurs is significantly larger than that during normal operation, and the phase difference with the ground-fault phase current is small, because the ground-fault fault current flows as the main induced current.

以上のような関係から被保護送電線3Lおよび
4Lのa、b、c各相の循環電流iath、ibthおよび
icthの位相差は比較的小さく、その零相分すなわ
ち零相循環電流ipth(=(iath+ibth+icth/3)が比
較的大きいものとなる、これらの各循環電流の値
を、起誘導送電線の種々の状態に対して求める
と、次の値となる。但し各差電流には循環電流の
2倍の値が表われるので、2倍の値で示す。
From the above relationship, the circulating currents i ath , i bth and
The phase difference of i cth is relatively small, and its zero-phase component, i.e., zero-phase circulating current i pth (=(i ath + i bth + i cth /3)) is relatively large. When calculated for various states of the induced power transmission line, the following values are obtained.However, since each difference current appears twice the value of the circulating current, it is shown as twice the value.

〔条件1〕 起誘導送電線1L停止、2L平常運転で2Lの
電流は(8)式の状態 I′A=2000 0゜〔A〕I′B=2000 120゜〔A〕、 I′C=2000 120゜〔A〕 …(8) 但し、IA′、IB′およびIC′は送電線2Lのa、
b、c各相の電流である。また □゜は εj□° 、 □゜はε−j□° を示し、以下同様
とする。
[Condition 1] When 1L of the induction power transmission line is stopped and 2L is in normal operation, the current of 2L is the state of equation (8): I' A = 2000 0° [A] I' B = 2000 120° [A], I' C = 2000 120゜[A] …(8) However, I A ′, I B ′ and I C ′ are a of transmission line 2L,
b and c are the currents of each phase. Also, □゜ indicates εj□°, □゜ indicates ε−j□°, and the same applies hereinafter.

2iath=98.8 4゜ 〔A〕 2ibth=44.4 12゜ 〔A〕 2icth=26.4 15゜ 〔A〕 2ipth=56.4 8゜ 〔A〕 …(9) 〔条件2〕 起誘導送電線1Lおよび2Lとも平常運転で、
各々の電流は(10)式の状態 IA=IA′=1000 0゜ 〔A〕 IB=IB′=1000 240゜ 〔A〕 IC=IC′=1000 120゜ 〔A〕 …(10) 但し、IA、IBおよびICは各々送電線1Lのa、
b、c各相の電流である。
2i ath =98.8 4゜ [A] 2i bth =44.4 12゜ [A] 2i cth =26.4 15゜ [A] 2i pth =56.4 8゜ [A] ...(9) [Condition 2] Inductive power transmission line 1L and Both 2L are operating normally.
Each current is in the state of equation (10) I A = I A ′=1000 0° [A] I B = I B ′=1000 240° [A] I C = I C ′=1000 120° [A] … (10) However, I A , I B and I C are a of 1L transmission line, respectively.
b and c are the currents of each phase.

2iath=94.4 25゜ 〔A〕 2ibth=42.8 27゜ 〔A〕 2icth=25.6 27゜ 〔A〕 2ipth=54.2 26゜ 〔A〕 …(11) 各相および零相の循環電流の比は(8)または(10)式
の電流値が3相平衡状態のまま変化しても変化し
ない。循環電流はまた起誘導送電線の事故でも生
ずる。その一計算例を次に示す。
2i ath = 94.4 25゜ [A] 2i bth = 42.8 27゜ [A] 2i cth = 25.6 27゜ [A] 2i pth = 54.2 26゜ [A] …(11) Ratio of circulating current of each phase and zero phase does not change even if the current value in equation (8) or (10) changes while the three phases are in equilibrium. Circulating currents also result from induced power line faults. An example of this calculation is shown below.

〔条件3〕 起誘導送電線1Lおよび2L無負荷運転、1L
のF地点で電流IA′が7000〔A〕のc相1相地絡の状
態 2iath=474 142゜ 〔A〕 2ibth=232 143゜ 〔A〕 2icth=150 144゜ 〔A〕 2ipth=285 143゜ 〔A〕 …(12) 以上で例えば次の変化が起きたとする。
[Condition 3] Induction power transmission line 1L and 2L no-load operation, 1L
C- phase 1- phase ground fault condition where the current I A ′ is 7000 [A] at point F of pth = 285 143゜ [A] ...(12) For example, suppose the following change occurs.

〔変化1〕 条件2の平常運転状態で起誘導送電線1Lに地
絡事故が起こり、この時の事故では条件3の事故
電流が重畳されたものとする。また、このとき同
時に被保護送電線でも1相地絡事故が検出された
とする。このときの被保護送電線の循環電流の事
故変化分は(12)式の値に等しく、各相および合成値
の関係は次のようになる。
[Change 1] It is assumed that a ground fault occurs in the induction power transmission line 1L under the normal operating state of condition 2, and the fault current of condition 3 is superimposed in this accident. It is also assumed that at this time, a one-phase ground fault is also detected on the protected power transmission line. At this time, the fault change in the circulating current of the protected power transmission line is equal to the value of equation (12), and the relationship between each phase and the combined value is as follows.

△iath:△ibth:△icth:△iath+△icth:△ipth 1.66 1゜:0.81 0゜:0.53 1゜:21.9 0゜:1 0゜ …(13) 但し、△iath、△ibth、△icthおよび△ipthは各々
a、b、cおよび零相循環電流iath、ibth、icthおよ
びipthの事故変化分である。
△i ath : △i bth : △i cth : △i ath +△i cth : △i pth 1.66 1゜: 0.81 0゜: 0.53 1゜: 21.9 0゜: 1 0゜ ...(13) However, △i ath , Δi bth , Δi cth and Δi pth are accidental changes in a, b, c and zero-sequence circulating currents i ath , i bth , i cth and i pth , respectively.

〔変化2〕 前記の状態から送電線1Lがしや断され、条件
1の状態になつたとする。この時の循環電流の事
故変化分は(9)式と(11)式の値の差に等しく次の値と
なる。
[Change 2] Assume that the power transmission line 1L is suddenly disconnected from the above state, and the state becomes the condition 1. The fault change in the circulating current at this time is equal to the difference between the values of equations (9) and (11), and is the following value:

2△iath=98.8 4゜〔A〕−94.4 25°
〔A〕=35.5 70゜〔A〕 2△iath=98.8 4゜〔A〕−94.4 25°
〔A〕=35.5 70゜〔A〕 2△ibth=44.4 12゜〔A〕−42.8 27゜〔A〕=11.5 63
゜〔A〕 2△iath=98.8 4゜〔A〕−94.4 25°
〔A〕=35.5 70゜〔A〕 2△ibth=44.4 12゜〔A〕−42.8 27゜〔A〕=11.5 63
゜〔A〕 2△icth=26.4 15゜〔A〕−25.6 27゜〔A〕=5.3 61゜
〔A〕 2△iath=98.8 4゜〔A〕−94.4 25°
〔A〕=35.5 70゜〔A〕 2△ibth=44.4 12゜〔A〕−42.8 27゜〔A〕=11.5 63
゜〔A〕 2△icth=26.4 15゜〔A〕−25.6 27゜〔A〕=5.3 61゜
〔A〕 2△ipth=56.4 8゜〔A〕−54.2 26゜〔A〕=17.5 6゜
〔A〕 2(△iath+△icth)=40.8 69゜〔A〕 …(14) (14)式から次の比が得られる。
2△i ath =98.8 4゜〔A〕−94.4 25°
[A] = 35.5 70゜ [A] 2△i ath = 98.8 4゜ [A] −94.4 25°
[A] = 35.5 70゜ [A] 2△i bth = 44.4 12゜ [A] - 42.8 27゜ [A] = 11.5 63
゜〔A〕 2△i ath =98.8 4゜〔A〕−94.4 25°
[A] = 35.5 70゜ [A] 2△i bth = 44.4 12゜ [A] - 42.8 27゜ [A] = 11.5 63
゜〔A〕 2△i cth =26.4 15゜〔A〕−25.6 27゜〔A〕=5.3 61゜〔A〕 2△i ath =98.8 4゜〜〔A〕−94.4 25°
[A] = 35.5 70゜ [A] 2△i bth = 44.4 12゜ [A] - 42.8 27゜ [A] = 11.5 63
゜ [A] 2 △ I CTH = 26.4 15 ゜ [a] -25.6 27 ゜ [a] = 5.3 61 ゜ [a] 2 △ I PTH = 56.4 8 ゜ [a] -54.2 26 ゜ [A] = 17.5 6゜[A] 2(△i ath + △i cth ) = 40.8 69゜[A]...(14) The following ratio can be obtained from equation (14).

△iath:△ibth:△icth:△iath+△icth:△ipth =2.03 4゜:0.66 3゜:0.30 5゜:2.33 3゜:1 0
゜ …(15) (13)式と(15)式の比をくらべて見ると、位
相の差は僅かであり、絶対値にもそれほど大きな
差はない。本発明はこのような関係を用いたもの
である。
△i ath : △i bth : △i cth : △i ath + △i cth : △i pth = 2.03 4゜: 0.66 3゜: 0.30 5゜: 2.33 3゜: 1 0
゜ ...(15) Comparing the ratios of equations (13) and (15), the difference in phase is slight, and the difference in absolute value is not that large either. The present invention uses such a relationship.

各相および零相の差電流は次式で表わされる。 The difference current between each phase and zero phase is expressed by the following equation.

ias=iaf+2iath ibs=ibf+2ibth ics=icf+2icth ips=ipf+2ipth …(16) 但し、iaf、ibf、icfおよびipfは各々a、b、cお
よび零相の事故分差電流であり、ipfは次式で表わ
される。
i as = i af +2i ath i bs = i bf +2i bth i cs = i cf +2i cth i ps = i pf +2i pth ...(16) However, i af , i bf , i cf and i pf are a and b, respectively. , c, and the zero-phase fault difference current, and i pf is expressed by the following equation.

ipf=1/3(iaf+ibf+icf) …(17) (16)および(17)式で事故分差電流iaf、ibf
よびicfは被保護送電線に内部事故のある場合に事
故相にのみ流れる。健全相では零であり、また外
部事故の場合は事故相でも零である。したがつて
零相差電流ipfは内部事故の場合に事故相差電流の
1/3に等しく、その他の場合は零である。
i pf = 1/3 (i af + i bf + i cf ) ...(17) In equations (16) and (17), the fault differential currents i af , i bf and i cf are calculated when there is an internal fault in the protected transmission line. It only flows during the accident phase. It is zero in the healthy phase, and in the case of an external accident, it is also zero in the accident phase. Therefore, the zero phase difference current i pf is equal to 1/3 of the fault phase difference current in the case of an internal fault, and is zero in other cases.

被保護系統に1相地絡を生じた場合の現象をa
相地絡を例に説明する。抵抗接地系の1相地絡で
は事故電流が小さいため、事故点と継電器設置点
との間の電圧の差は僅かであるので、電圧につい
ては事故点電圧で説明する。事故点に於ける対称
分電圧電流は周知のように次式で示される。
The phenomenon that occurs when a one-phase ground fault occurs in the protected system is a.
This will be explained using a phase-to-ground fault as an example. In the case of a one-phase ground fault in a resistance grounding system, the fault current is small, so the difference in voltage between the fault point and the relay installation point is small, so the voltage will be explained in terms of the fault point voltage. As is well known, the symmetrical voltage and current at the fault point is expressed by the following equation.

Ia1F=Ia2F=Ia0F1/Z1+Z2+Z0+3RG・Ea1F …(19) 但し、Va1F、Va2FおよびVa0Fは各々事故点に於
ける事故時の正、逆および零相電圧、Ea1Fは事故
点に於ける事故前の正相電圧、Ia1F、Ia2Fおよび
Ia0Fは事故点の正、逆および零相電流であり、い
ずれもa相を基準とするものである。また、RG
は事故点抵抗、Z1、Z2およびZ0は事故点での正、
逆および零相駆動点インピーダンスである。Z1
Z2およびZ0は次の関係がある。
I a1F = I a2F = I a0F 1/Z 1 +Z 2 +Z 0 +3R G・E a1F …(19) However, V a1F , V a2F , and V a0F are the positive, negative, and zero values at the accident point, respectively. The phase voltage, E a1F is the positive sequence voltage before the fault at the fault point, I a1F , I a2F and
I a0F are the positive, reverse, and zero-sequence currents at the fault point, all of which are based on the a-phase. Also, R G
is the fault point resistance, Z 1 , Z 2 and Z 0 are positive at the fault point,
Reverse and zero-sequence drive point impedance. Z1 ,
Z 2 and Z 0 have the following relationship.

Z1=Z2≪Z0 …(20) (18)および(20)式から事故点の直角電圧
VbcFは次のようになる。
Z 1 = Z 2 ≪Z 0 …(20) From equations (18) and (20), the right-angle voltage at the fault point
V bcF is as follows.

VbcF=a2Va1F+aV2aF−(aVa1F+a2Va2F =(a2−a)(Va1F−Va2F=(a2−a)Ea1F
…(21) 但しa=1 120゜である。
V bcF = a 2 V a1F + aV 2aF − (aV a1F + a 2 V a2F = (a 2 − a) (V a1F − V a2F = (a 2 − a) E a1F
...(21) However, a=1 120°.

(21)式は電圧VbcFが電圧Ea1Fの√3倍で且つ
Ea1Fより90゜遅れであり、したがつて事故前の値
から変化しないことを示す。したがつて継電器の
電圧vbcは地絡事故発生の前後で変化しない。ま
た電圧vbcはVbcFとほぼ同位相であり電圧Ea1Fより
90゜遅れである。
Equation (21) shows that the voltage V bcF is √3 times the voltage E a1F and
E is 90° behind a1F , thus indicating no change from the pre-accident value. Therefore, the relay voltage v bc does not change before and after the ground fault occurs. In addition, the voltage v bc is almost in phase with V bcF , and is smaller than the voltage E a1F .
It is delayed by 90°.

また、(19)式より事故点事故相電流IaFは次式
となる。
Also, from equation (19), the fault phase current I aF at the fault point is given by the following equation.

IaF=Ia1F+Ia2F+Ia0F≒3/Z0+3RGEa1F …(22) (22)式でZ0はリアクタンス分が小さく抵抗分
の大きいインピーダンスであり、RGは抵抗なの
で、電流IaFは電圧Ea1Fとほぼ同位相である。内部
事故の場合はこの電流が事故のある送電線にその
端子から流入する。これにより事故分差電流iaf
生じる。差電流の方向を第1図とした場合、電流
iafは送電線2の事故では電流IaFすなわち電圧Ea1F
と同位相であり、送電線3の事故では逆位相であ
る。以上の関係から事故分差電流iafは直角電圧
vbcに対して送電線2の事故ではほぼ90゜進みとな
り、送電線3の事故ではほぼ90゜遅れとなる。
I aF = I a1F + I a2F + I a0F ≒3/Z 0 +3R G E a1F …(22) In equation (22), Z 0 is an impedance with a small reactance component and a large resistance component, and R G is a resistance, so the current I aF is approximately in phase with voltage E a1F . In the case of an internal fault, this current flows into the faulty transmission line through its terminals. This produces a fault differential current i af . If the direction of the difference current is shown in Figure 1, the current
i af is the current I aF or the voltage E a1F in the case of an accident on transmission line 2
It is in the same phase as the transmission line 3, and in the case of an accident on the transmission line 3, it is in the opposite phase. From the above relationship, the fault differential current i af is the quadrature voltage
In the case of an accident on transmission line 2, it is approximately 90° ahead of v bc , and in the case of an accident on transmission line 3, it is delayed by approximately 90°.

以上はa相地絡について述べたが、b相または
c相地絡の場合も各相の相対的関係は同様であ
り、事故相の事故分差電流の直角電圧に対する相
対的関係は変わらない。
The above description has been made regarding the a-phase ground fault, but the relative relationship between the phases is the same in the case of a b-phase or c-phase ground fault, and the relative relationship of the fault differential current of the fault phase to the quadrature voltage remains the same.

以上のように直角電圧は1相地絡事故発生の前
後で変わらないので、(4)および(5)式の直角電圧の
間には次の関係が成立する。
As described above, since the quadrature voltage does not change before and after the occurrence of a one-phase ground fault, the following relationship holds between the quadrature voltages in equations (4) and (5).

vbc=vbcM、Vca=vcaM、vab=vabM …(23) (4)式のedaをこの関係を用いて変形すると eda=(ips−ipsM)×vbc …(24) 電流ipsおよびipsMを(16)および(17)式の関
係と健全相事故分差電流ibfおよびicfで零であり且
つ事故検出前の値ipsMでは事故分差電流が零であ
ることを用いて、(24)式を変形すると、 eda=(1/3iaf+2ipth−2ipthM)×vbc …(25) 但し、ipthMは事故検出前に於ける零相循環電流
である。
v bc = v bcM , V ca = v caM , v ab = v abM … (23) If e da in equation (4) is transformed using this relationship, e da = (i ps − i psM ) × v bc … (24) The relationship between the currents i ps and i psM in equations (16) and (17) and the healthy phase fault difference currents i bf and i cf are zero, and the fault difference current is zero at the value i psM before fault detection. Transforming equation ( 24 ) using the fact that It is a circulating current.

以上のようにして(4)式の各検出量は次式で表わ
される。
As described above, each detected amount in equation (4) is expressed by the following equation.

但し、△ipth=ipth−ipthMで零相循環電流の事故
変化分である。
However, △i pth = i pth − i pthM , which is the fault change in the zero-sequence circulating current.

また、健全相差電流には事故分差電流は含まれ
ないので、以上と同様にして(5)式の各補償量は次
式で表わされる。
Furthermore, since the healthy phase difference current does not include the fault difference current, each compensation amount in equation (5) is expressed by the following equation in the same way as above.

eha=2K1b△ibth×vbc ehb=2K1ca(△icth+△iath)×vca ehc=2K1b△ibth×vab …(27) 但し、△ibth、△icthおよび△iathは各々b、cお
よびa相循環電流の事故変化分である。(26)お
よび(27)式より(3)式の各演算量は次式となる。
e ha =2K 1b △i bth ×v bc e hb =2K 1ca (△i cth +△i ath ) ×v ca e hc =2K 1b △i bth ×v ab …(27) However, △i bth , △ i cth and Δi ath are fault changes in the b, c, and a phase circulating currents, respectively. From equations (26) and (27), the amount of calculation in equation (3) is as follows.

但し、eea′、eeb′およびeec′は補償誤差分であ
り、次式で表わされる。
However, e ea ′, e eb ′, and e ec ′ are compensation errors, and are expressed by the following equation.

eea′=(2△ipth−2K1b△ibth)×v
bc eeb′={2△ipth−2K1ca(△icth+△iath)}×vca eec′=(2△ipth−2K1b△ibth×vab …(29) 次に本実施例の事故検出時の応動を説明する。
被保護系統に1相地絡を生じ且つ起誘導送電線の
状況に変化が無い場合は、循環電流が変化しない
ので、(29)式の△ipth、△iath、△ibthおよび△icth
にすべて零である。このため演算量は(30)式の
ように事故相の事故分差動電流と直角電圧の外積
のみとなる。
e ea ′=(2△i pth −2K 1b △i bth )×v
bc e eb ′={2△i pth −2K 1ca (△i cth +△i ath )}×v ca e ec ′=(2△i pth −2K 1b △i bth ×v ab …(29) Next The response at the time of accident detection in this embodiment will be explained.
If a one-phase ground fault occurs in the protected system and there is no change in the condition of the induced transmission line, the circulating current will not change, so △i pth , △i ath , △i bth and △i in equation (29) cth
are all zero. Therefore, the amount of calculation is only the cross product of the fault differential current and quadrature voltage of the fault phase, as shown in equation (30).

事故が外部事故の場合は、事故分差電流iaf、ibf
またはicfが零のため演算量eea、eebまたはeecも零
となり、(6)および(7)式とも成立せず継電器は動作
しない。内部事故の場合は、第1図の送電線2の
事故では前述のように事故相の事故分差電流(例
えばiaf)は直角電圧(例えばvbc)に対してほぼ
90゜進みとなるので、(30)式の演算量ee(eea、eeb
およびeecのうち演算に使用するもの)が正とな
り、大きさが(6)式を満足すれば動作し、ステツプ
S7で判定SY1が得られてしや断器4をしや断す
る。送電線3の事故では前記と位相関係が逆であ
るので演算量eeが負となり、大きさが(7)式を満足
すれば動作し、判定7Y2が得られてしや断器5
をしや断する。
If the fault is an external fault, the fault difference current i af , i bf
Alternatively, since i cf is zero, the calculation amount e ea , e eb , or e ec is also zero, and both equations (6) and (7) do not hold, and the relay does not operate. In the case of an internal fault, in the case of the fault on transmission line 2 in Figure 1, the fault differential current (e.g. i af ) of the fault phase is approximately equal to the quadrature voltage (e.g. v bc ) as described above.
Since the lead is 90°, the amount of calculation in equation (30) is e e (e ea , e eb
and e ec (used for calculation) is positive, and if the size satisfies equation (6), it will work and the step will work.
Judgment SY1 is obtained in S7, and the breaker 4 is cut off. In the case of an accident on power transmission line 3, the phase relationship is opposite to the above, so the calculation amount e is negative, and if the magnitude satisfies equation (7), it will operate, and judgment 7Y2 will be obtained.
to refuse.

(30)式のeeを(6)および(7)式に適用した場合の
動作条件をa相を例に示すと次式となる。
Taking the a-phase as an example, the operating conditions when applying e in equation (30) to equations (6) and (7) are as follows.

1/3iaf×vbc>K2a|vbc| …(31) −1/3iaf×Vbc>K2a|vbc| …(32) (31)式は事故相差電流の1/3すなわち1/3iaf
直角電圧vbcに対する進み無効成分(vbcを90゜進ま
せたものと同位相の成分)が一定値K2a以上であ
るとき動作することを示し、(32)式は逆に遅れ
無効成分が一定値K2a以上であるとき動作するこ
とを示す。この動作値は直角電圧Vbcの大きさが
変化しても変化しない。このように、動作値が回
線選択の媒介として使用される電圧(以後極性電
圧と呼ぶ)の大きさの影響を受けないことは従来
より勝れた特性と考えられている。
1/3i af ×v bc >K 2a |v bc | …(31) −1/3i af ×V bc >K 2a |v bc | …(32) Equation (31) is 1/3 of the fault phase difference current, i.e. This shows that 1/3i af operates when the leading reactive component (component in phase with the 90° lead of v bc ) with respect to the quadrature voltage v bc is greater than a certain value K 2a , and equation (32) is reversed. indicates that it operates when the delayed reactive component is greater than or equal to a certain value K 2a . This operating value does not change as the magnitude of the quadrature voltage V bc changes. In this way, the fact that the operating value is not affected by the magnitude of the voltage used as a medium for line selection (hereinafter referred to as polarity voltage) is considered to be a superior characteristic compared to the prior art.

事故検出と同時に起誘導送電線の情況が変化し
た場合には、(29)式の補償誤差分ee′(eea′eeb
eec′のうち演算に用いられるもの)を生ずる。内
部事故の無い場合、演算量eeは補償誤差分ee′と
等しくなるので、動作値はこの補償誤差分で誤動
作しない値としなければならない。(29)式は次
のように表わされる。
If the situation of the induced transmission line changes at the same time as the fault is detected, the compensation error in equation (29) e e ′ (e ea ′e eb
e ec ′ used in the calculation). If there is no internal accident, the calculation amount e e will be equal to the compensation error amount e e ′, so the operating value must be set to a value that will not malfunction due to this compensation error amount. Equation (29) is expressed as follows.

eea′=iea′×vbc eeb′=ieb′×vca eec′=iec′×vab …(33) 但し、iea′、ieb′およびiec′は補償誤差電流であ
り、次式で表わされる。
e ea ′=i ea ′×v bc e eb ′=i eb ′×v ca e ec ′=i ec ′×v ab …(33) However, i ea ′, i eb ′, and i ec ′ are compensation errors It is a current and is expressed by the following formula.

iea′=iec′=2△ipth−2K1b△ibth ieb′=2△ipth−2K1ca(△icth+△iath) …(34) 定数K1bおよびK1caは循環電流の種々の変化に
対して補償誤差電流ie′(iea′、ieb′およびiec′の

ち演算に使用するもの)が大きくならないように
選定する。前記の変化1および2での(13)およ
び(15)式の関係から、各定数を例えば(35)式
の値とする。
i ea ′=i ec ′=2△i pth −2K 1b △i bth i eb ′=2△i pth −2K 1ca (△i cth +△i ath ) …(34) Constants K 1b and K 1ca are circular It is selected so that the compensation error current i e ' (whichever of i ea ', i eb ', and i ec ' is used for calculation) does not become large with respect to various changes in current. Based on the relationship between equations (13) and (15) in changes 1 and 2 above, each constant is set to the value of equation (35), for example.

K1b=1.4 0゜ K1ca=0.44 0゜ …(35) この場合の補償誤差電流の大きさは(12)式の
値(変化1の変化分に等しい)および(14)式の
値から次の値となる。
K 1b = 1.4 0゜ K 1ca = 0.44 0゜ ...(35) The magnitude of the compensation error current in this case is calculated as follows from the value of equation (12) (equal to the change of change 1) and the value of equation (14). The value is .

〔変化1〕 |iea′|=|iec′|=40〔A〕 |ieb′|=11〔A〕 …(36) 〔変化2〕 |iea′|=|iec′|=1.67〔A〕 |ieb′|=1.0〔A〕 …(37) (6)式および(7)式の定数K2a、K2bおよびK2cをこ
の値より大きくすれば、この補償誤差電流ie′が
どのような位相になつても補償誤差分ee′によつ
て(6)および(7)式が成立して誤動作することが無
い。したがつて変化1を対象とする場合は、例え
ばK2aおよびK2cの値を56A、K2bの値を15〔A〕、
変化2を対象とする場合は例えばK2aおよびK2c
を2.2AK2bを1.4〔A〕とすることができる。変化1
のように起誘導線に大きな事故電流が流れる場合
は起誘導送電線は高速しや断されるので、例えば
限時動作などの手段によつてこの間にしや断しな
いようにすれば変化1を除外して動作値を選ぶこ
とができる。従来装置では循環電流の変化分に応
動するので、変化1を対象とする場合は動作値
(K2a、K2bおよびK2cの値)を285A以下とするこ
とができず、変化2を対象とする場合は動作値を
17.5A以下にできないので、前記実施例は著しく
感度を向上し得るものである。
[Change 1] |i ea ′|=|i ec ′|=40[A] |i eb ′|=11[A] …(36) [Change 2] |i ea ′|=|i ec ′|= 1.67 [A] |i eb ′|=1.0 [A] …(37) If the constants K 2a , K 2b and K 2c in equations (6) and (7) are made larger than this value, this compensation error current i No matter what phase e ′ is, equations (6) and (7) hold due to the compensation error e e ′, and no malfunction occurs. Therefore, when targeting change 1, for example, set the values of K 2a and K 2c to 56A, the value of K 2b to 15 [A],
For example, when targeting change 2, K 2a and K 2c
can be set to 2.2AK 2b to 1.4 [A]. Change 1
If a large fault current flows through the induction line, as in the case of , the induction transmission line will be cut off quickly, so change 1 can be eliminated by using measures such as time-limited operation to prevent the line from breaking during this time. You can select the operating value using Conventional equipment responds to changes in circulating current, so if change 1 is the target, the operating value (K 2a , K 2b and K 2c values) cannot be lower than 285A, and change 2 is the target. If so, set the operating value
Since the current cannot be lowered to 17.5 A or less, the sensitivity can be significantly improved in the above embodiment.

(e) 演算に使用する電圧・電流の変形 (e1) 一般 前記実施例は、零相差電流ipsを検出電流id
し、健全相差電流ibsまたは健全2相の差電流
の合成電流ics+iasを補償電流ihとし、また直角
電圧vbc、vcaまたはvabを極性電圧vpとして、検
出電流idと極性電圧vpの外積id×vpおよび補償
電流ihと極性電圧vpの外積ih×vpの各々の事故
検出前の値に対する事故検出後の値の変化分
(事故変化分)を用いて、地絡事故回線を検出
するものである。
(e) Modification of voltage and current used for calculation (e1) General In the above embodiment, the zero-sequence difference current i ps is used as the detection current i d , and the healthy phase difference current i bs or the composite current of the healthy two-phase difference current i cs +i as is the compensation current i h , and the quadrature voltage v bc , v ca or v ab is the polar voltage v p , the cross product i d ×v p of the detection current i d and the polar voltage v p , and the compensation current i h and the polarity. A ground fault line is detected using the change in the value after the fault detection (fault change) with respect to the value before the fault detection of each of the outer product i h ×v p of the voltage v p .

以上の検出電流id、補償電流ih、極性電圧vp
を用いて、前記実施例の(3)、(4)および(5)式の演
算量、検出量および補償量を表わすと次のよう
になる。
Detection current i d , compensation current i h , polarity voltage v p
Using the equations (3), (4), and (5) of the above embodiment, the calculation amount, detection amount, and compensation amount are expressed as follows.

ee=ed−eh ed=id−vp−idM×vpM eh=ih×vp−ihM×vpM …(38) ida=idb=idc=ips iha=ihc=K1bibs iob=K1ca(ica+ias) vpa=vbc、vpb=vca、vpc=vab …(39) 但し、ee、ed、eh、id、ihおよびvpは各々同一記
号に添字a、bまたはcを付加したもののうち演
算に使用されるものを示し、ida、idb、idc、iha
ihb、ihc、vpa、vpbおよびvpcは各々a、bまたはc
相地絡で用いられる検出電流id、補償電流ihおよ
び極性電圧vpを示す。また、ihM、idMおよびvpM
各々id、ihおよびvpの記憶値である。
e e =e d −e h e d =i d −v p −i dM ×v pM e h =i h ×v p −i hM ×v pM …(38) i da =i db =i dc =i ps i ha = i hc = K 1b i bs i ob = K 1ca (i ca + i as ) v pa = v bc , v pb = v ca , v pc = v ab …(39) However, e e , e d , e h , i d , i h and v p respectively indicate the same symbol with a subscript a, b or c added, and are used in the calculation, i da , i db , i dc , i ha ,
i hb , i hc , v pa , v pb and v pc are a, b or c respectively
Detection current i d , compensation current i h and polarity voltage v p used in phase-to-earth fault are shown. Moreover, i hM , i dM and v pM are the stored values of i d , i h and v p, respectively.

また、上記表現に従えば(6)および(7)式は各々次
の(40)および(41)式で示される。
Furthermore, according to the above expressions, equations (6) and (7) are expressed by the following equations (40) and (41), respectively.

ee>K2|vp| …(40) −ee>K2|vp| …(41) 但し、K2はK2a、K2bおよびK2cのうち演算に使
用されるものを示す。
e e >K 2 |v p | …(40) −e e >K 2 |v p | …(41) However, K 2 indicates the one used in the calculation among K 2a , K 2b and K 2c .

(38)および(39)式で検出電流id、補償電流
ihおよび極性電圧vpは各々次の条件の範囲で種々
変形実施可能である。
(38) and (39), the detection current i d and the compensation current are
i h and polarity voltage v p can be modified in various ways within the following conditions.

(i) 検出電流id:事故相差電流または事故相差
電流を含む同一相差電流の合成電流より得た
電流 (ii) 補償電流ih:同一相差電流またはその合成
電流より得た電流で、事故相差電流成分が検
出電流idより充分に小さいもの (iii) 極性電圧vp:被保護系統の1相地絡発生の
前後での変化が僅かである電圧、すなわち
(42)式が成立つ電圧 vp=vpM …(42) すなわち、(42)式の条件で(38)式は次のよ
うに変形される。
(i) Detection current i d : Current obtained from the fault phase difference current or a composite current of the same phase difference current including the fault phase difference current. (ii) Compensation current i h : Current obtained from the same phase difference current or its composite current, which is the fault phase difference current. The current component is sufficiently smaller than the detected current i d (iii) Polarity voltage v p : Voltage that changes only slightly before and after the occurrence of a one-phase ground fault in the protected system, that is, the voltage v for which equation (42) holds true. p = v pM (42) That is, under the conditions of equation (42), equation (38) is transformed as follows.

ed=(id−idM)×vp eh=(ih−ihM)×vp …(43) 電流idおよびihはいずれも同一相差電流または
その合成電流であるので、各々次式で表わされ
る。
e d = (i d − i dM )×v p e h = (i h −i hM )×v p …(43) Since the currents i d and i h are both the same phase difference current or their combined current, Each is expressed by the following formula.

id−idM=idf+2△idth ih−ihM=ihf+2△ihth …(44) 但し、idfおよびihfは各々電流idおよびihの事故
電流分である。
i d −i dM = i df +2△i dth i h −i hM = i hf +2△i hth (44) However, i df and i hf are the fault current portions of the currents i d and i h , respectively.

△idthおよび△ihthは各々idおよびihの循環電流
分の事故変化分である。
△i dth and △i hth are the fault changes in the circulating currents of i d and i h , respectively.

これらの関係から(38)式の演算量eeは(28)
および(29)式の場合と同様に次のように表わさ
れる。
From these relationships, the amount of calculation e in equation (38) is (28)
And as in the case of equation (29), it is expressed as follows.

ee=(idf−ihf)×vp−ee′ …(45) ee′=2(△idth−△ihth)×vp …(46) (44)式で一般には補償電流ihに事故電流分ihf
を含まないようにする、すなわち健全相差電流ま
たは健全2相の差電流の合成電流を補償電流ih
する。これにより(45)式のihfが零となる。しか
し、必らずしもこの必要はなくihfがidfに対して充
分小さければ、補償電流ihに事故電流分ihfを含む
ことができる。また(46)式の補償誤差分ee′で
は、(47)式の補償誤差電流ie′が充分小さいよう
に検出電流idおよび補償電流ihを選ぶ。
e e = (i df −i hf )×v p −e e ′ …(45) e e ′=2(△i dth −△i hth )×v p …(46) In general, compensation is Fault current i hf to current i h
In other words, the healthy phase difference current or the composite current of the healthy two-phase difference current is defined as the compensation current i h . As a result, i hf in equation (45) becomes zero. However, this is not always necessary, and if i hf is sufficiently smaller than i df , the fault current i hf can be included in the compensation current i h . Furthermore, for the compensation error component e e ' in equation (46), the detection current i d and compensation current i h are selected so that the compensation error current i e ' in equation (47) is sufficiently small.

ie′=2(△idth−△ihth) …(47) (e2) 検出電流idの変形例 (48)式は検出電流idの一変形実施例を示す
ものである。
i e ′=2(Δi dth −Δi hth ) (47) (e2) Modification of detection current i d Equation (48) shows a modification of the detection current i d .

ida=idc=ics+ias idb=ibs …(48) この実施例について補償電流ihおよび極性電圧
vpを(39)式とした場合について説明する。この
場合の補償誤差電流は(39)式のih、(47)およ
び(48)式の関係から次式で示される。
i da = i dc = i cs + i as i db = i bs …(48) Compensation current i h and polarity voltage for this example
The case where v p is expressed as (39) will be explained. The compensation error current in this case is expressed by the following equation from the relationship between i h in equation (39) and equations (47) and (48).

iea′=iec′=2(△icth+△iath
K1b△ibth) ieb′=2{△ibth−K1ca(△icth+△iath)} …(49) (49)式で各定数を例えば次の値とする。
i ea ′=i ec ′=2(△i cth +△i ath
K 1b △i bth ) i eb ′=2 {△i bth −K 1ca (△i cth + △i ath )} (49) In equation (49), let each constant be the following value, for example.

k1b=3.1 0゜ K1ca=0.32 0゜ …(50) この場合について循環電流に事故変化分がある
場合の補償誤差電流の大きさを(12)および(14)式
の値から求めると次の値となる。
k 1b = 3.1 0゜ K 1ca = 0.32 0゜ ...(50) In this case, the magnitude of the compensation error current when there is a fault change in the circulating current is calculated from the values of equations (12) and (14) as follows. The value is .

〔変化1〕;|iea′|=|iec′|=96〔A〕、 |ieb′|=32〔A〕 …(51) 〔変化2〕;|iea′|=|iec′|=6.5〔A〕、 |ieb′|=2.0〔A〕 …(52) 一方、事故分差電流は事故相にのみ流れるの
で、(48)式の検出電流idおよび(39)式の補償
電流ihの事故電流分は次式で表わされる。
[Change 1]; |i ea ′|=|i ec ′|=96[A], |i eb ′|=32[A] …(51) [Change 2]; |i ea ′|=|i ec ′|=6.5 [A], |i eb ′|=2.0 [A] …(52) On the other hand, since the fault differential current flows only in the fault phase, the detection current i d in equation (48) and equation (39) The fault current component of the compensation current i h is expressed by the following equation.

idfa=iaf、idfb=ibf、idfc=icf …(53) ihfa=ihfb=ihfc=0 …(54) 但し、idfa、idfb、idfc、ihfa、ihfbおよびihfcは各

ida、idb、idc、iha、iobおよびihcの事故電流分であ
る。
i dfa = i af , i dfb = i bf , i dfc = i cf … (53) i hfa = i hfb = i hfc = 0 … (54) However, i dfa , i dfb , i dfc , i hfa , i hfb and i hfc are each
These are the fault currents of i da , i db , i dc , i ha , i ob and i hc .

(53)式の事故電流分の値は、(39)式の検出
電流idのように零相差電流ipsを検出電流とした場
合の3倍の値である。すなわち循環電流の事故変
化分が無く(49)式の補償誤差電流ie′が零の場
合に、(45)式の演算量eeは(55)式となり、同
様の条件での(30)式の演算量の3倍である。
The value of the fault current in equation (53) is three times the value when the zero-sequence difference current i ps is used as the detection current, like the detection current i d in equation (39). In other words, when there is no fault change in the circulating current and the compensation error current i e ' in equation (49) is zero, the calculation amount e e in equation (45) becomes equation (55), and under the same conditions, (30) This is three times the amount of calculation in the equation.

ee=if×vp …(56) 但し、ifは事故相の事故分差電流、すなわち
a、bまたはc相地絡に対してiaf、ibfまたはicf
示す。
e e = i f ×v p (56) where i f indicates the fault differential current of the fault phase, that is, i af , i bf or i cf for the a, b or c phase ground fault.

検出電流idを(48)式とした実施例は、(56)
式の演算量により(45)または(46)式に従つ
て、正しく事故回線を検出する。
An example in which the detection current i d is expressed as (48) is (56)
Correctly detect the faulty line according to equation (45) or (46) depending on the amount of calculation in equation.

また、補償誤差電流ie′は変化1で最大96〔A〕、
変化2で最大6.5Aであり、動作値をこの値まで
低下し得る。これは従来装置の動作値が変化1で
最小285〔A〕、変化2で最小17.5〔A〕であるのに対
して充分小さい。且つ前述のように事故分差電流
の値が従来装置の3倍であるので著しく高感度で
ある。
In addition, the compensation error current i e ′ is maximum 96 [A] for one change,
Variation 2 has a maximum of 6.5A and the operating value can be reduced to this value. This is sufficiently smaller than the operating value of the conventional device, which is a minimum of 285 [A] for change 1 and a minimum of 17.5 [A] for change 2. Moreover, as mentioned above, the value of the fault differential current is three times that of the conventional device, so the sensitivity is extremely high.

次に検出電流idの第2の変形実施例として、事
故相基準の逆相分差電流を用いたものを(56)式
に示す。
Next, as a second modified example of the detection current i d , one using the negative phase differential current based on the fault phase is shown in equation (56).

ida=ia2s、idb=ib2s、idc=ic2s …(56) 但し、ia2s、ib2sおよびic2sは各々a、b、また
はc相基準の逆相分差電流で、各々次式で表わさ
れる。
i da = i a2s , i db = i b2s , i dc = i c2s (56) However, i a2s , i b2s and i c2s are the negative phase differential currents based on the a, b, or c phase, respectively. It is expressed by the following formula.

但しa=1 120゜である。 However, a=1 120°.

各検出電流を事故電流分と循環電流分とに分け
ると、事故分差電流は事故相のみ流れるので次式
のようになる。
When each detected current is divided into a fault current component and a circulating current component, the fault difference current flows only in the fault phase, so the following equation is obtained.

但し、ia2th、ib2thおよびic2thは各々事故相基準
の逆相循環電流で次式で表わされる。
However, i a2th , i b2th , and i c2th are each negative phase circulating currents based on the fault phase and are expressed by the following equations.

ia2th=1/3(iath+a2ibth+aicth) ib2th=aiath ic2th=a2iath …(59) 本実施例では(58)式の循環電流分2ia2th
2ib2thまたは2ic2thの事故変化分を補償電流ih
事故変化分で補償した電流が補償誤差電流ie
となりまた(58)式の事故電流分1/3iaf、1/3ibf または1/3icfにより事故回線を識別する。事故 電流分は従来装置と同様であり、循環電流に事
故変化分を生じないときは従来装置と同様の感
度となる。
i a2th = 1/3 (i ath + a 2 i bth + ai cth ) i b2th = ai ath i c2th = a 2 i ath (59) In this example, the circulating current of equation (58) 2i a2th ,
The current obtained by compensating the fault change of 2i b2th or 2i c2th with the fault change of compensation current i h is the compensation error current i e
Then, the fault line is identified by the fault current 1/3i af , 1/3i bf , or 1/3i cf in formula (58). The fault current component is the same as that of the conventional device, and when no fault variation occurs in the circulating current, the sensitivity is the same as that of the conventional device.

補償電流ihを(39)式としたとき、補償誤差
電流ie′は次式で示される。
When the compensation current i h is expressed by equation (39), the compensation error current i e ' is expressed by the following equation.

iea′=2(△ia2th−K1b△ibth) ieb′=2{△ib2th−K1ca(△icth+△iath)} iec′=2(△ic2th−K1ba2 bth) …(60) 但し、△ia2th、△ib2thおよび△ic2thは各々事故
相基準の逆相循環電流ia2th、ib2thおよびic2thの事
故変化分で各々次式で表わされる。
i ea ′=2(△i a2th −K 1b △i bth ) i eb ′=2{△i b2th −K 1ca (△i cth +△i ath )} i ec ′=2(△i c2th −K 1b a 2 bth ) ...(60) However, △i a2th , △i b2th and △i c2th are the fault changes in the negative sequence circulating currents i a2th , i b2th and i c2th based on the fault phase, respectively, and are expressed by the following equations: .

△ia2th=1/3(△iath+a2△ibth+a△icth) △ib2th=a△ia2th △ic2th=a2△ia2th …(61) 変化1および変化2の2△ia2thの値を(12)およ
び(14)式より求めると次の値となる。
△i a2th = 1/3 (△i ath + a 2 △i bth + a△i cth ) △i b2th = a△i a2th △i c2th = a 2 △i a2th … (61) 2△ of change 1 and change 2 When the value of i a2th is calculated from equations (12) and (14), the following value is obtained.

〔変化1〕;2△ia2th=97.3 155゜〔A〕…(62) 〔変化2〕;2△ia2th=9.0 60゜〔A〕 …(63) (60)式で各定数を例えば次の値とする。[Change 1]; 2△i a2th = 97.3 155゜[A]...(62) [Change 2]; 2△i a2th = 9.0 60゜[A]...(63) In equation (60), each constant is changed to, for example, be the value of

K1b=0.6 7゜、K1ca=0.19 130゜ …(64) この場合について変化1および変化2での補
償誤差電流の大きさを、(12)、(14)、(62)およ
び(63)式より求めると次の値となる。
K 1b = 0.6 7゜, K 1ca = 0.19 130゜ ...(64) In this case, the magnitude of the compensation error current at change 1 and change 2 is expressed as (12), (14), (62) and (63). The following value is obtained from the formula.

〔変化1〕 |ica′|=|iec′|=43.7〔A〕 |ieb′|=2.2〔A〕 …(65) 〔変化2〕 |iea′|=|iec′|=2.2〔A〕 |ieb′|=1.26〔A〕 …(66) 以上のように補償誤差電流ie′は変化1で最大
43.7A、変化2で2.2Aでり、動作値を最小この値
まで低下できる。且つ検出電流中の事故電流分は
従来装置と同様なので、著しく高感度の保護を行
なうことができる。
[Change 1] |i ca ′|= |i ec ′|=43.7[A] |i eb ′|=2.2[A] …(65) [Change 2] |i ea ′|= |i ec ′|= 2.2 [A] |i eb ′|=1.26 [A] …(66) As shown above, the compensation error current i e ′ is maximum at change 1.
43.7A, 2.2A with change 2, and the operating value can be reduced to the minimum value. Moreover, since the fault current component in the detection current is the same as that of the conventional device, protection can be achieved with extremely high sensitivity.

以上の例は検出電流idの僅かな例に過ぎず、事
故相差電流または事故相差電流を含む同一相差電
流の合成電流の種々のものが検出電流idとして用
い得る。例えばa相またはc相地絡に対してはa
相差電流iasまたはc相相差電流icsが使用可能であ
り、b相地絡に対してb相差電流ibsに他の同一
相差電流を合成して用いることもできる。また2
つの同一相差電流を合成する場合も例えば(48)
式のようなics+iasに限らず例えばics+K3ias(但
し、K3は複素定数)のような形で合成すること
も可能である。また3つの同一相差電流の合成電
流も前述の零相差電流ipsおよび逆相差電流ia2s
ib2s、ic2sのほか正相差電流など種々のものを用い
ることができる。
The above examples are just a few examples of the detection current i d , and various types of fault phase difference currents or composite currents of the same phase difference current including the fault phase difference current can be used as the detection current i d . For example, for a phase or c phase ground fault, a
The phase difference current i as or the c phase difference current i cs can be used, and the b phase difference current i bs and another same phase difference current can be combined and used for the b phase ground fault. Also 2
For example, when combining two identical phase difference currents, (48)
It is also possible to compose not only i cs + i as as in the formula, but also in a form such as i cs +K 3 i as (where K 3 is a complex constant). Also, the composite current of the three same phase difference currents is the above-mentioned zero-sequence difference current i ps and anti-phase difference current i a2s ,
In addition to i b2s and i c2s , various types such as positive phase difference current can be used.

(e3) 補償電流ihの変形 補償電流ihは(39)式のihのほか種々のもの
が利用可能である。すなわちすべての補償電流
を健全相中の1相の差電流より得ることが可能
であり、その一実施例を(67)式に示す。
(e3) Modification of compensation current i h Various types of compensation current i h can be used in addition to i h in equation (39). That is, all the compensation currents can be obtained from the differential current of one phase among the healthy phases, and one example thereof is shown in equation (67).

iha=K1bibsihb=K1cics、ihc=K1aias …(67) 但し、K1cおよびK1aは定数である。i ha = K 1b i bs i hb = K 1c i cs , i hc = K 1a i as ...(67) However, K 1c and K 1a are constants.

この実施例について検出電流idを(39)式のよ
うに零相差電流ipsとした場合について説明する。
この場合の補償誤差電流ie′は(47)式の関係か
ら次式となる。
In this embodiment, a case will be explained in which the detected current i d is set as the zero-sequence difference current i ps as shown in equation (39).
In this case, the compensation error current i e ' is given by the following equation from the relationship of equation (47).

iea′=2(△ipth−K1b△ibth) ieb′=2(△ipth−K1c△icth) iec′=2(△ipth−K1a△iath) …(68) (68)式の電流iea′は(34)式のiea′と同様で
ある。各定数を(69)式の値とし変化1および2
の場合の補償誤差電流ie′の大きさを(12)および
(14)式より求めると(70)式および(71)式の
値となる。
i ea ′=2(△i pth −K 1b △i bth ) i eb ′=2(△i pth −K 1c △i cth ) i ec ′=2(△i pth −K 1a △i ath ) …( 68) The current i ea ′ in equation (68) is the same as i ea ′ in equation (34). Changes 1 and 2 with each constant as the value of equation (69)
When the magnitude of the compensation error current i e ' in the case of is calculated from equations (12) and (14), the values are obtained from equations (70) and (71).

k1b=1.4 0゜、K1c=2.6 0゜、K1a=0.55 0゜ …(69) 〔変化1〕|iea′|=40〔A〕、|eb′|=105〔A〕、 |iec′=25〔A〕 …(70) 〔変化2〕|iea′|=1.67〔A〕、|eb′|=4.0〔A〕
、 |iec′=2.4〔A〕 …(71) (70)式および(71)式の最大値は105Aおよ
び4.0Aであり、動作値を従来装置に比べて充分
小さな値とすることができる。また(67)式で補
償電流ihbをc相電流icsではなくa相差電流ias
すれば、補償誤差電流ieb′はiec′と等しくなり、
更に高感度の保護が可能となる。
k 1b = 1.4 0°, K 1c = 2.6 0°, K 1a = 0.55 0° …(69) [Change 1] | i ea ′ | = 40 [A], | eb ′ | = 105 [A], | i ec ′=25 [A] …(70) [Change 2]|i ea ′|=1.67 [A], | eb ′|=4.0 [A]
, |i ec ′=2.4 [A] …(71) The maximum values of equations (70) and (71) are 105A and 4.0A, which allows the operating values to be sufficiently small compared to conventional devices. . In addition, in equation (67), if the compensation current i hb is the a-phase difference current i as instead of the c-phase current i cs , the compensation error current i eb ′ becomes equal to i ec ′,
Furthermore, highly sensitive protection becomes possible.

補償電流はまた健全2相の差電流の種々の合成
電流より得ることができる。その実施例を(72)
式に示す。
The compensation current can also be obtained from various composite currents of the difference currents of the healthy two phases. Examples (72)
As shown in the formula.

iha=K1bc(ibs+ics 60゜) ihb=K1ca(ics+ias 60゜) ihc=K1ab(ias+ibs 60゜) …(72) 但し、K1bc、K1caおよびK1abは定数である。 i ha = K 1bc (i bs + i cs 60°) i hb = K 1ca (i cs + i as 60°) i hc = K 1ab (i as +i bs 60°) …(72) However, K 1bc , K 1ca and K 1ab is a constant.

この実施例について、検出電流idを(39)式の
ように零相差電流ipsとした場合について説明す
る。この場合の補償誤差電流ie′は(47)式の関
係から次式となる。
Regarding this embodiment, a case will be described in which the detected current i d is set to a zero-sequence difference current i ps as shown in equation (39). In this case, the compensation error current i e ' is given by the following equation from the relationship of equation (47).

iea′=2{△ipth−K1bc(△ibth
△icth 60゜)} ieb′=2{△ipth−K1ca(△icth+△iath 60゜)} ieb′=2{△ipth−K1ca(△icth+△iath 60゜)} iec′=2{△ipth−K1ab(△iath+△icth 60゜)}
…(73) 変化1および変化2に於ける(73)式の右辺第
2項の電流値を求めると、各々(74)および
(75)式となる。
i ea ′=2{△i pth −K 1bc (△i bth +
△i cth 60°)} i eb ′=2{△i pth −K 1ca (△i cth +△i ath 60°)} i eb ′=2{△i pth −K 1ca (△i cth +△i ath 60゜)} i ec ′=2 {△i pth −K 1ab (△i ath +△i cth 60゜)}
...(73) When the current values of the second term on the right side of equation (73) in change 1 and change 2 are determined, equations (74) and (75) are obtained, respectively.

〔変化1〕 2(△ibth+△icth 60゜)=330A 166゜ 2(△icth+△iath 60゜)=566A 189゜ 2(△iath+△ibth 60゜)=610A 161゜…(74) 〔変化2〕 2(△ibth+△icth 60゜)=14.8A 44゜ 2(△icth+△iath 60゜)=39.2A 16゜ 2(△iath+△ibth 60゜)=41.2A 55゜…(75) (73)式の各定数の値を(76)式とし、変化1
および2の場合の補償誤差電流ie′の大きさを求
めると(77)および(78)式の値となる。
[Change 1] 2 (△i bth + △i cth 60°) = 330A 166°2 (△i cth + △i ath 60°) = 566A 189°2 (△i ath + △i bth 60°) = 610A 161°…(74) [Change 2] 2 (△i bth + △i cth 60°) = 14.8A 44°2 (△i cth + △i ath 60°) = 39.2A 16°2 (△i ath + △i bth 60゜) = 41.2A 55゜…(75) Let the value of each constant in formula (73) be formula (76), and change 1
The magnitude of the compensation error current i e ' in the case of 2 and 2 is determined by the values of equations (77) and (78).

K1bc=1.0 22゜、K1ca=0.47 48゜、K1ab=0.45 15゜
…(76) 〔変化1〕|iea′|=45A、|ieb′|=21A、|iec

=18A …(77) 〔変化2〕|iea′|=2.7A、|ieb′|=11A、|iec
|=1.6A …(78) (77)および(78)式の値により従来装置に対
して著しく高感度とすることができる。
K 1bc = 1.0 22°, K 1ca = 0.47 48°, K 1ab = 0.45 15°
…(76) [Change 1] |i ea ′|=45A, |i eb ′|=21A, |i ec

=18A...(77) [Change 2] |i ea ′|=2.7A, |i eb ′|=11A, |i ec
|=1.6A (78) The values of equations (77) and (78) allow significantly higher sensitivity than conventional devices.

以上の補償電流ihの各実施例は、いずれも健全
2相の同一相差電流の合成電流または健全相中の
1相の同一相差電流より補償電流を得るものであ
る。このため、これらの補償電流ihには、事故相
差電流成分が含まれず、その事故電流分ihfは零で
ある。したがつて、補償電流ihを上記の範囲で
種々異なつたものとした場合、(45)式で補償誤
差分ee′は異なつたものとなるが、他の項(idf
ihf)×vpには影響を生じない。補償誤差分ee′は、
前記のような補償誤差電流ie′が異なつた値とな
るために、異なつた値となるがいずれも従来装置
に対して充分な高感度を得ることができるもので
ある。また、以上の説明では検出電流idを零相差
電流ipsとした場合のみについて説明したが、(48)
および(56)式など他の検出電流に対しても、同
様に使用して効果を生ずるものである。
In each of the above embodiments of the compensation current i h , the compensation current is obtained from the composite current of the same phase difference current of two healthy phases or the same phase difference current of one phase among the healthy phases. Therefore, these compensation currents i h do not include the fault phase difference current component, and the fault current component i hf is zero. Therefore, if the compensation current i h is varied within the above range, the compensation error e e ' in equation (45) will be different, but the other term (i df
i hf ) × v p is not affected. The compensation error e e ′ is
Since the compensation error current i e ' has different values as described above, the values are different, but in each case, sufficiently high sensitivity can be obtained compared to the conventional device. In addition, in the above explanation, only the case where the detection current i d is the zero-sequence difference current i ps was explained, but (48)
The same effect can be obtained for other detection currents such as equation (56).

しかし、補償電流ihは上記に限らず、事故相差
電流を含む同一相差電流の合成電流より得ること
ができる。この場合補償電流中に事故電流分ihf
含むため、補償電流ih中の事故相差電流成分を検
出電流ihの事故相差電流成分より充分に小さくす
る必要はあるが、充分適用可能である。その一実
施例として検出電流を(56)式の逆相分差電流と
するものについて、補償電流ihを(79)式に示
す。
However, the compensation current i h is not limited to the above, and can be obtained from a composite current of the same phase difference current including the fault phase difference current. In this case, since the fault current i hf is included in the compensation current, it is necessary to make the fault phase difference current component in the compensation current i h sufficiently smaller than the fault phase difference current component in the detection current i h , but it is fully applicable. . As an example of this, where the detection current is the negative phase difference current of equation (56), the compensation current i h is shown in equation (79).

iha=K1oips ihb=aK1oips ihc=a2K1oips …(79) 但し、K1oは絶対値が1より充分に小さい定数
である。
i ha = K 1o i ps i hb = aK 1o i ps i hc = a 2 K 1o i ps (79) However, K 1o is a constant whose absolute value is sufficiently smaller than 1.

この場合の補償誤差電流ie′は次式となる。 The compensation error current i e ' in this case is expressed as follows.

iea′=2(△ia2th−K1o△ipth) ieb′=2(△ib2th−aK1o△ipth) iec′=2(△ic2th−a2K1o△ipth) …(80) 定数K1oを(81)式の値とし、変化1および2
の場合の補償誤差電流ie′の大きさを求めると
(82)および(83)式となる。
i ea ′=2(△i a2th −K 1o △i pth ) i eb ′=2(△i b2th −aK 1o △i pth ) i ec ′=2(△i c2th −a 2 K 1o △i pth ) …(80) Let the constant K 1o be the value of equation (81), and change 1 and 2
Calculating the magnitude of the compensation error current i e ' in the case of , results in equations (82) and (83).

K1o=0.43 9゜ …(81) 〔変化1〕|iea′|=|ieb′|=|iec′|=15.8A
…(82) 〔変化2〕|iea′|=|ieb′|=|iec′|=17.5A
…(83) (56)式の検出電流idには事故電流分が(58)
式のように含まれ、また補償電流ihに使用される
零相差電流ipsには事故相差電流成分の1/3が含ま
れ、その事故分差電流分はa、bまたはc相地絡
で各々1/3iaf、1/3ibfまたは1/3icfであるので、
(45)式の右辺第1項の電流idf−ihf(演算量eeに用
いられる事故電流分で以下事故分演算電流と称
し、記号iefで表わす)を求めると次式となる。
K 1o =0.43 9゜ …(81) [Change 1] |i ea ′|= |i eb ′|= |i ec ′|=15.8A
…(82) [Change 2]|i ea ′|=|i eb ′|=|i ec ′|=17.5A
...(83) The detected current i d in equation (56) includes the fault current (58)
The zero-sequence difference current i ps included as shown in the equation and used for the compensation current i h includes 1/3 of the fault phase difference current component, and the fault difference current component is a, b, or c phase ground fault. are respectively 1/3i af , 1/3i bf or 1/3i cf , so
The current i df −i hf (the fault current used for the calculation amount e e , hereinafter referred to as the fault calculation current and represented by the symbol i ef ) of the first term on the right side of equation (45) is calculated as follows.

但し、iefa、iefbおよびiefcは各々演算量eea、eeb
およびeecに用いられる事故分演算電流iefである。
However, i efa , i efb and i efc are the calculation amounts e ea , e eb
and the fault calculation current i ef used for e ec .

定数K1oを(81)式の値として(84)式を整理
すると、(85)式となる。
If we rearrange equation (84) using the constant K 1o as the value of equation (81), we get equation (85).

このように事故分演算電流iefは各相で相異し、
a相のiefaでは補償電流ihに事故電流分ihfを含まな
い場合の値1/3iafの0.58倍に減少する。この場合、
(82)または(83)式の値で定まる動作値に対し
て、事故分演算電流iefの値が一般の場合の0.58倍
となるわけであり、事故分演算電流を一般の場合
の1/3iafで考えると、補償誤差電流ie′の大きさは
実質的に(82)および(83)式の値の1/0.58倍、
すなわち変化1で27.3〔A〕、変化2で3.02〔A〕とな
る。しかし、この値でも従来装置に対して充分高
感度な保護が可能となる。
In this way, the fault calculation current i ef is different for each phase,
The i efa of the a phase is reduced to 0.58 times the value 1/3i af when the compensation current i h does not include the fault current i hf . in this case,
For the operating value determined by the value of equation (82) or (83), the value of the fault calculation current i ef is 0.58 times the normal case, and the fault calculation current is 1/1 of the normal case. Considering 3i af , the magnitude of the compensation error current i e ′ is essentially 1/0.58 times the value of equations (82) and (83),
That is, change 1 is 27.3 [A] and change 2 is 3.02 [A]. However, even with this value, protection with sufficiently high sensitivity compared to conventional devices is possible.

以上のように補償電流ihは事故相差電流成分が
検出電流idの事故相差電流成分より充分に小さい
限りにおいて同一相差電流またはその合成電流よ
り得ることができる。
As described above, the compensation current i h can be obtained from the same phase difference current or a composite current thereof, as long as the fault phase difference current component is sufficiently smaller than the fault phase difference current component of the detected current i d .

(e4) 極性電圧vpの変形 極性電圧vpは(39)式の例に限らず、被保護
系統の1相地絡発生の前後での変化が僅かであ
る電圧すなわち(42)式が成立つ電圧である限
りに於いて種々変形実施可能である。
(e4) Modification of polarity voltage v p The polarity voltage v p is not limited to the example of equation (39), but is a voltage that changes only slightly before and after the occurrence of a one-phase ground fault in the protected system, that is, equation (42) holds true. Various modifications can be made as long as the voltage is the same.

(39)式の電圧は(20)式のZ2≪Z0の条件な
しに、Z2=Z1の条件のみで(42)式の関係が成
立つものであるが、Z2≪Z0の条件が成立すれば
種々の電圧で(42)式の関係が成立つ。すなわ
ち、Z2≪Z0では(18)式のa相1相地絡時の電
圧は次のように変形される。
For the voltage in equation (39), the relationship in equation (42) holds only under the condition of Z 2 = Z 1 without the condition of Z 2 ≪ Z 0 in equation (20), but if Z 2 ≪ Z 0 If the conditions are met, the relationship in equation (42) holds true at various voltages. That is, when Z 2 << Z 0 , the voltage at the time of the a-phase 1-phase ground fault in equation (18) is transformed as follows.

このため、事故点に於いて次の関係を生ずる。 Therefore, the following relationship occurs at the accident point.

VaF−Va0F=Va1F+Va2F≒Ea1F VbF−Va0F=a2Va1F+Va2F≒Ea1F VcF−Va0F=aVa1F+Va2F≒aEa1F VcaF=aVa1F+a2Va2F−Va1F−Va2F≒(a−1)Ea1F VabF=Va1F−a2Va1F−aVa2F≒(1−a2)Ea1F …(87) 但し、VaF、VbF、VcF、VcaFおよびVabFは各々
事故点に於けるa、bおよびc相とca相および
ab相間の電圧である。
V aF −V a0F =V a1F +V a2F ≒E a1F V bF −V a0F =a 2 V a1F +V a2F ≒E a1F V cF −V a0F =aV a1F +V a2F ≒aE a1F V caF =aV a1F +a 2 V a2F −V a1F −V a2F ≒(a−1)E a1F V abF =V a1F −a 2 V a1F −aV a2F ≒(1−a 2 )E a1F …(87) However, V aF , V bF , V cF , V caF and V abF are the a, b and c phases, the ca phase and the ca phase at the fault point, respectively.
This is the voltage between the a and b phases.

また、(36)式の電圧Va1Fおよび(87)式のす
べての電圧は事故前後で変化が僅かである。事故
点で事故前後の変化が僅かである電圧は、他の地
点での電圧変化が僅かであるので、継電器設置点
での同様の電圧が極性電圧として使用し得る。検
出量eeに使用される検出量edおよび補償量ehの演
算が(38)式の外積演算の場合、Z2≪Z0の条件で
使用し得る極性電圧vpの例は次のものである。
In addition, the voltage V a1F in equation (36) and all the voltages in equation (87) show slight changes before and after the accident. A voltage with a small change before and after the fault at the fault point has a small change in voltage at other points, so a similar voltage at the relay installation point can be used as the polarity voltage. When the calculation of the detected quantity e d and the compensation quantity e h used for the detected quantity e e is the cross product calculation of equation (38), an example of the polarity voltage v p that can be used under the condition of Z 2 ≪ Z 0 is as follows. It is something.

vpa=va1 90゜、(va−vp) 90゜、
(vb−vp 30゜、 (vc−vp) 150゜、vca 120°またはvab 120゜ vpb=vb1 90゜、(vb−vp) 90゜、(vc−vp 30゜、 (va−vp) 150゜、vab 120°またはvbc 120゜ vpc=vc1 90゜、(vc−vp) 90゜、(va−vp 30゜、 vpc=vc1 90゜、(vc−vp) 90゜、(va−vp 30゜、 (vb−vp) 150゜vbc 120°またはvca 120゜…(
88) 以上の各極性電圧は(86)および(87)式の関
係から説明されるようにいずれも(39)式の極性
電圧vpと同位相であり、全く同様に使用し得る。
尚零相電圧vpは基準相がどの相でも同一であるの
で基準相記号を省略して示す。
v pa = v a1 90°, (v a − v p ) 90°,
(v b −v p 30°, (v c −v p ) 150°, v ca 120° or v ab 120°v pb = v b1 90°, (v b −v p ) 90°, (v c − v p 30°, (v a −v p ) 150°, v ab 120° or v bc 120°v pc = v c1 90°, (v c −v p ) 90°, (v a −v p 30° , v pc = v c1 90°, (v c − v p ) 90°, (v av p 30°, (v b − v p ) 150° v bc 120° or v ca 120°…(
88) As explained from the relationship in equations (86) and (87), each of the above polar voltages is in phase with the polar voltage v p in equation (39), and can be used in exactly the same way.
Since the zero-phase voltage v p is the same regardless of the reference phase, the reference phase symbol is omitted from the illustration.

極性電圧vpはまた、以上のように必らずしも系
統電圧から得るものに限らない。すなわち、周波
数が系統周波数に同期するように制御された正弦
波交流電圧を生ずる発振器の電圧も事故前後で変
化しないので使用可能である。また、極性電圧vp
のかわりに電流も事故発生前後で変化しないもの
であれば極性電流ipは前記の極性電圧vpとして使
用し得る電圧を一定インピーダンに加えて得るこ
とができ、また周波数が系統周波数に同期するよ
う制御された正弦波交流電流を生ず発振器の電流
より得ることができる。
The polarity voltage v p is also not necessarily limited to that obtained from the grid voltage as described above. That is, the voltage of an oscillator that generates a sinusoidal AC voltage whose frequency is controlled to be synchronized with the system frequency does not change before and after the accident, so it can be used. Also, the polarity voltage v p
Instead, if the current does not change before and after the accident occurs, the polar current i p can be obtained by adding a voltage that can be used as the polar voltage v p to a constant impedance, and the frequency is synchronized with the grid frequency. A controlled sinusoidal alternating current can be generated from the oscillator current.

(f) 演算内容の変形 以上の説明では演算をすべて(38)式のように
外積を演算するようにした。しかし、これは外積
に限らず種々の関数の演算とすることができる。
これらについて説明する。(89)式は検出量ed
よび補償量ehの演算の一変形実施例である。
(f) Modification of calculation contents In the above explanation, all calculations were performed to calculate the cross product as shown in equation (38). However, this is not limited to the cross product, and can be performed using various functions.
These will be explained below. Equation (89) is a modified example of calculation of the detection amount e d and the compensation amount e h .

ed=id・vp−idM・vpM eh=ih・vp−ihM・vpM …(89) 但し、上式はすべて内積であり、以下記号
(・)で内積を示す。
e d =i d・v p −i dM・v pM e h =i h・v p −i hM・v pM …(89) However, all of the above equations are inner products, and below the symbol (・) is used to express inner products. show.

(89)式は演算を外積とするかわりに内積とす
るものである。この場合検出電流idおよび補償電
流ihに対する極性電圧vpの位相関係を相対的に90゜
進ませることにより、外積を用いた場合と同様の
結果が得られる。したがつて、例えば(39)式ま
たは(88)式の極性電圧vpを90゜進めたものとす
る必要がある。この場合、例えば極性電圧vpa
電圧va1またはva−vpを用いれば(88)式のよう
に90゜位相を遅らせる必要が無く、演算が簡略化
される。
Equation (89) uses an inner product instead of an outer product. In this case, by relatively advancing the phase relationship of the polarity voltage v p with respect to the detection current i d and the compensation current i h by 90°, the same result as when using the outer product can be obtained. Therefore, for example, the polarity voltage v p in equation (39) or equation (88) needs to be advanced by 90°. In this case, for example, if the voltage v a1 or v a −v p is used as the polarity voltage v pa , there is no need to delay the phase by 90° as in equation (88), and the calculation is simplified.

(90)式は検出量edおよび補償量ehの演算の第
2の変形実施例である。
Equation (90) is a second modified example of calculation of the detection amount e d and the compensation amount e h .

(90)式は演算を商とするものである。この場
合、ステツプS7に於ける判定結果を(89)式の
演算と(40)および(41)式の判定を用いた実施
例と同様の結果とするには、極性電圧vpを(39)
または(88)式を90゜進めたものとするとともに
ステツプS7−1およびS7−2に於ける判定を
各々(91)および(92)式とする。
Equation (90) uses the operation as a quotient. In this case, in order to make the judgment result in step S7 similar to the example using the calculation of equation (89) and the judgment of equations (40) and (41), the polarity voltage v p must be set as (39).
Alternatively, the equation (88) is advanced by 90 degrees, and the determinations in steps S7-1 and S7-2 are made into equations (91) and (92), respectively.

eeの有効分>K2/|vp| …(91) −eeの有効分>K2/|vp| …(92) また、(90)式の演算の各項を単純な商では無
く、商の有効分とすれば(93)および(94)式の
ように、単純にee値で判定して同様な結果が得ら
れる。
e Effective component of e >K 2 / | v p | …(91) −e Effective component of e >K 2 /|v p | …(92) Also, each term of the operation in equation (90) can be expressed as a simple quotient. If we use the effective part of the quotient instead, we can obtain similar results by simply determining the value of e as in equations (93) and (94).

ee>K2/|vp| …(93) −eeK2/|vp| …(94) また、(90)式の演算の各項を商の無効分とす
れば(39)または(88)式の極性電圧vpと(93)
および(94)式の判定を用いて同様な結果が得ら
れる。
e e > K 2 / | v p | … (93) −e e K 2 / | v p | … (94) Also, if each term in the operation of equation (90) is the invalid part of the quotient, (39) Or the polarity voltage v p of equation (88) and (93)
Similar results can be obtained using the determination of equation (94).

(95)式は検出量edおよび補償量ehの演算の更
に異なる変形実施例を示すものである。
Equation (95) shows a further modified embodiment of the calculation of the detection amount e d and the compensation amount e h .

ed=id×vp−|K4id・vp|−(idM×vpM−|K4idM ・vpM|) eh=ih×vp−|K4ih・vp|−(ihM×vpM−|K4ihM ・vpM|) (95) 但しK4は定数である。e d =i d ×v p −|K 4 i d・v p |−(i dM ×v pM −|K 4 i dM・v pM |) e h =i h ×v p −|K 4 i h・v p |−(i hM ×v pM − |K 4 i hM・v pM |) (95) However, K 4 is a constant.

これについて説明する。(95)式を用いた演算
量eeを整理すると、(38)式のee=ed−ehの関係
から次のようになる。
This will be explained. If we rearrange the amount of calculation e e using equation (95), we get the following from the relationship e e = e d − e h in equation (38).

ee=(id−ih)×vp−|K4(id−ih) ・vp|−{(idM−ihM×vpM −|K4(idM−ihM)・vpM|} …(96) (96)式でvp=vpMとすると次のようになる。e e = (i d −i h )×v p − |K 4 (i d −i h ) ・v p |−{(i dM −i hM ×v pM −|K 4 (i dM −i hM )・v pM |} …(96) If v p = v pM in equation (96), the following is obtained.

ee=ie×vp−|K4ie・vp| …(97) 但し、ieを演算電流を呼び次式で表わされる。e e = i e ×v p − | K 4 i e・v p | (97) However, i e is the calculated current and is expressed by the following equation.

ie=(id−idM)−(ih−ihM) …(98) (97)式の演算量eeを(40)式で判定する場合
の動作特性を演算電流ieの動作範囲で示すと第6
図の折れ線イとする。すなわち電流ieの電圧vp
対する同位相または逆位相成分が零で、|K4ie
vp|の値が零のときは電流ieの進み無効分がK2
とき動作するが、|K4ie・vp|が大きくなるに従
つて電流ieの進み無効分が大きくならないと動作
せずイの特性となる。このような折れ線特性は通
常の地絡回線選択継電器に屡々用いられる特性で
ある。
i e = (i d − i dM ) − (i h − i hM ) …(98) The operation characteristics when the calculation amount e e of equation (97) is determined by equation (40) are expressed as the operation of the calculation current i e 6th in terms of range
Let it be the polygonal line A in the figure. In other words, the in-phase or anti-phase component of current i e with respect to voltage v p is zero, and |K 4 i e
When the value of v p | is zero, it operates when the leading reactive component of current i e is K 2 , but as |K 4 i e・v p | increases, the leading reactive component of current i e increases. Otherwise, it will not work and will have the characteristics of A. Such a polygonal line characteristic is often used in ordinary ground fault line selection relays.

これに対して(38)式の演算のものは第6図の
直線ロで動作範囲が示される。すなわち(38)式
の演算量eeを検出電流idおよび極性電圧vpで表わ
すと、 ee=(id−ih)×vp−(idM−ihM)×vpM …(99) (94)式でVp=vpMとし(98)式の演算電流ie
で表わすと、 ee=ie×vp …(100) となり、(40)式で判定する場合、演算電流je
極性電圧vpに対する進み無効分が一定値K2より
大きいとき動作する。このような直線特性は通常
の地絡回線選択継電器で一般に用いられる特性で
ある。
On the other hand, for the calculation of equation (38), the operating range is shown by the straight line RO in FIG. In other words, when the calculation amount e e in equation (38) is expressed by the detection current i d and the polarity voltage v p , e e = (i d − i h ) × v p − (i dM − i hM ) × v pM … ( 99) In equation (94), set V p = v pM , and calculate current i e in equation (98).
Expressed as: e e =i e ×v p (100), and when judged using equation (40), it operates when the leading reactive component of the calculation current j e with respect to the polarity voltage v p is larger than a constant value K 2 . Such a linear characteristic is a characteristic generally used in ordinary ground fault line selection relays.

以上までの説明では(38)、(89)、(90)および
(96)式に示すように、ステツプS4およびステツ
プS6の演算で検出電流idと極性電圧vpとの外積、
内積または商などの関数と、補償電流ihと極性電
圧vpとの同様の関数を別個に算出した後、各々の
事故変化分の差を求めて検出量edおよび補償量eh
とし、両者の差ed−ehを演算量eeを求めるように
した。しかし、必らずしもこのような手段のみに
よることなく全く同様の演算内容を種々変形して
実施し得るものである。
In the above explanation, as shown in equations (38), (89), (90), and (96), the cross product of the detected current i d and the polarity voltage v p is calculated in steps S4 and S6.
After separately calculating a function such as an inner product or quotient and a similar function of compensation current i h and polarity voltage v p , the difference in each accident change is calculated to calculate the detected amount e d and the compensation amount e h
The calculation amount e e is calculated from the difference e d −e h between the two. However, it is not necessary to use only such means, and the same calculation contents can be implemented with various modifications.

この例は(96)および(99)式に示されてい
る。すなわち、(96)式ではステツプS4で次式の
記憶量eMを記憶する。
An example of this is shown in equations (96) and (99). That is, in equation (96), the storage amount e M of the following equation is stored in step S4.

eM=(idM−ihM)×vpM …(101) この場合、事故検出前に於いて検出電流と補償
電流の差idM−ihMを先ず算出し、この差電流と極
性電圧vpMの外積を算出し記憶する。ステツプS6
では事故検出後に於いては検出電流と補償電流の
差id−ihを先ず算出し、この差電流と極性電圧vp
の外積を算出した後に記憶量eMとの差を算出して
演算量eeとする。
e M = (i dM − i hM ) × v pM … (101) In this case, before detecting the fault, first calculate the difference i dM − i hM between the detected current and the compensation current, and then calculate this difference current and polarity voltage v Calculate and store the cross product of pM . Step S6
After fault detection, first calculate the difference i d −i h between the detected current and the compensation current, and then calculate this difference current and polarity voltage v p
After calculating the cross product of , calculate the difference from the storage amount e M and set it as the calculation amount e e .

(96)式では記憶量eMは次式で表わされる。 In equation (96), the memory amount e M is expressed by the following equation.

eM=(idM−ihM)×vpM−|K3(idM−ihM)・VpM
…(102) この場合も、差電流idM−ihMの算出を先ず行な
つた後に外積および内積の演算を行ない、しかる
後に記憶量eMを算出する。
e M = (i dM −i hM )×v pM − |K 3 (i dM −i hM )・V pM
(102) Also in this case, the difference current i dM −i hM is first calculated, then the outer product and inner product are calculated, and then the storage amount e M is calculated.

以上のように前記各実施例は、事故検出前に於
いて検出電流、補償電流および極性電圧(または
極性電流)の関数の値を記憶し、事故検出後に於
て前記検出電流、補償電流および極性電圧(また
は極性電流)の関数の値の前記の記憶された値に
対する変化分を求め、この変化分により地絡事故
回線を検出するものである。
As described above, in each of the above embodiments, the values of the functions of the detection current, compensation current, and polarity voltage (or polarity current) are stored before an accident is detected, and the values of the detection current, compensation current, and polarity are stored after the accident is detected. The amount of change in the value of the voltage (or polarity current) function with respect to the stored value is determined, and a ground fault line is detected based on this amount of change.

(g) サンプル値の記憶 以上の各実施例は検出電流、補償電流および
極性電圧(または極性電流)の関数の値を記憶
するものであるが、本発明は必らずしも関数の
値を記憶することなく実施し得るものである。
この場合ステツプS4では電流のサンプル値を
記憶する。この場合演算量eeは(98)式の演算
電流ieを用いて例えば次式で表わされる。
(g) Storage of sample values Although each of the above embodiments stores the values of the functions of the detection current, compensation current, and polarity voltage (or polarity current), the present invention does not necessarily store the values of the functions. It can be carried out without memorization.
In this case, the sample value of the current is stored in step S4. In this case, the calculation amount e e is expressed, for example, by the following equation using the calculation current i e of equation (98).

ee=ie×vp …(103) (98)式の検出電流および補償電流の事故変
化分id−idMおよびih−ihMは事故検出後に於ける
各々のサンプル値と事故検出前であり且つ各電
流の周期の整数倍の時間前に記憶された各々の
サンプル値の差より算出される。これにより算
出された演算電流ieと極性電圧vpの外積により
演算書eeを求めて事故回線を検出する。
e e = i e ×v p … (103) The fault change portions i d −i dM and i h −i hM of the detection current and compensation current in equation (98) are the respective sample values after the fault detection and the fault detection It is calculated from the difference between the respective sample values stored before and an integral multiple of the period of each current. A calculation report e e is obtained by the cross product of the calculation current i e and the polarity voltage v p thus calculated, and a faulty line is detected.

以上のようにして算出された演算電流ieは通
常の地絡回線選択継電器と同様に使用すること
ができ、極性電圧vp(または極性電流)は1相
地絡事故発生の前後での変化が僅かである必要
が無い。このため(39)および(38)式以外の
電圧も極性電圧vpとして使用できる。この代表
的な例が零相電圧vpである。
The calculated current i e calculated as above can be used in the same way as a normal ground fault line selection relay, and the polarity voltage v p (or polarity current) changes before and after the occurrence of a one-phase ground fault fault. need not be small. Therefore, voltages other than equations (39) and (38) can also be used as the polarity voltage v p . A typical example of this is the zero-sequence voltage v p .

a相1相地絡時事故点に於ける零相電圧VapF
は(86)式で、Z0およびRGがともにリアクタ
ンス分が小さく抵抗分の大きいインピーダンス
であるため電圧Ea1Fとほぼ逆位相となる。した
がつて(21)式の直角電圧VbcFに対して電圧
VapFはほぼ90゜遅れである。抵抗接地系の1相
地絡では事故電流が小さいため、事故点と継電
器設置点の電圧の差は僅かであり零相電圧vp
直角電圧vbcに対してほぼ90゜遅れである関係は
崩れない。この関係は他相の事故でも成立し、
零相電圧を90゜進ませた電圧vp90゜が(39)式の
極性電圧vpと同様に(103)式の演算量eeの演
算に使用し得る。また零相電圧の符号を変えた
電圧−vpを極性電圧vpとして使用するときは、
演算量eeは次式のように内積の演算で求めるこ
とができる。
Zero-sequence voltage V apF at the fault point when a-phase 1-phase ground fault occurs
is equation (86), and since both Z 0 and R G are impedances with a small reactance component and a large resistance component, they are almost in opposite phase to the voltage E a1F . Therefore, for the quadrature voltage V bcF in equation (21), the voltage
V apF lags by almost 90°. In a one-phase ground fault in a resistance grounding system, the fault current is small, so the difference in voltage between the fault point and the relay installation point is small, and the relationship in which the zero-phase voltage v p lags the quadrature voltage v bc by approximately 90° is as follows. It won't collapse. This relationship holds true even in accidents involving other phases,
The voltage v p 90° obtained by advancing the zero-sequence voltage by 90° can be used to calculate the calculation amount e e in equation (103), similarly to the polarity voltage v p in equation (39). Also, when using the voltage −v p with a different sign of the zero-sequence voltage as the polarity voltage v p ,
The calculation amount e e can be obtained by calculating the inner product as shown in the following equation.

ee=ie×Vp …(104) 演算電流ieを求めるための演算法は前記実施
例に限らず種々変形実施し得るものである。す
なわち、(105)式の記憶電流iMのサンプル値を
記憶し(106)式の演算により演算電流ieを求
めても全く同様の結果が得られる。
e e = i e ×V p (104) The calculation method for determining the calculation current i e is not limited to the above embodiment, and can be implemented in various modifications. That is, even if the sample value of the storage current i M of equation (105) is stored and the calculated current i e is calculated by the calculation of equation (106), exactly the same result can be obtained.

iM=idM−ihM …(105) ie=id−ih−iM …(106) また、補償電流の事故変化分(ih−ihM)を算
出する場合には、例えば(39)式の補償電流ih
の場合、各相差電流およびその合成電流ibs
よびics+iasに定数K1bおよびK1caを乗ずること
無くサンプル値を記憶し、各々の事故変化分を
算出した後定数を乗じても全く同様の結果が得
られる。
i M = i dM −i hM … (105) i e = i d −i h −i M … (106) In addition, when calculating the fault change in compensation current (i h −i hM ), for example, Compensation current i h in equation (39)
In the case of , the sample values are memorized without multiplying each phase difference current and their combined current i bs and i cs + i as by the constants K 1b and K 1ca , and after calculating each fault change, the result is exactly the same even if multiplied by the constant. The result is obtained.

以上の実施例は電流のサンプル値を用いて直
接演算電流ieを算出しこれと極性電圧との関係
により事故回線を検出する手段の僅かな実施例
を示すに過ぎず、種々変形実施し得るものであ
る。
The embodiments described above are only a few examples of means for directly calculating the calculated current i e using current sample values and detecting a faulty line based on the relationship between this and the polarity voltage, and various modifications can be made. It is something.

以上のように本発明は検出電流の事故変化分
と補償電流の事故変化分との差と極性電圧(ま
た極性電流)の関係により事故回線を識別する
ものであり、前記した関数を記憶するものはそ
の一手段と考えられるものである。
As described above, the present invention identifies a fault line based on the relationship between the difference between the fault change amount of the detected current and the fault change amount of the compensation current and the polarity voltage (also polarity current), and stores the above-mentioned function. is considered to be one way to do so.

(h) 事故の回線検出手段(ステツプ7)の変形 ステツプ7に於ける事故回線検出手段は必ら
ずしも(40)、(41)、(93)および(94)式の手
段に限定されるものでは無い。これらの手段は
いずれも感度が極性電圧vpの大きさの影響を受
けず最も理想的なものと考えられているもので
ある。しかし、(39)および(88)式の極性電
圧vpはいずれも1相地絡事故では常時運転時に
対する変化が僅かなものである。従つて大きさ
の変化は常時運転中の変化と殆んど等しく変動
範囲が例えば±10%程度のものである。したが
つて、電圧vpの項を省略しステツプS7−1お
よびS7−2での判定条件を各々(107)および
(108)式としても、感度の変化は小さく、実用
上の支障は殆んど生じない。
(h) Modification of fault line detection means (Step 7) The fault line detection means in Step 7 is not necessarily limited to the means of formulas (40), (41), (93), and (94). There is nothing that can be done. All of these means are considered to be the most ideal, as their sensitivity is unaffected by the magnitude of the polarity voltage vp . However, in both the polarity voltages v p of equations (39) and (88), there is a slight change in the case of a one-phase ground fault accident compared to that during normal operation. Therefore, the change in size is almost the same as the change during constant operation, and the range of variation is, for example, about ±10%. Therefore, even if the term of voltage v p is omitted and the judgment conditions in steps S7-1 and S7-2 are set to equations (107) and (108), respectively, the change in sensitivity is small and there is almost no problem in practical use. It won't happen.

ee>K2 …(107) −ee>K2 …(108) このようにステツプS7の判定条件も種々変
更実施し得るものである。
e e >K 2 (107) −e e >K 2 (108) In this way, the judgment conditions in step S7 can be changed in various ways.

(i) 抑制作用の付加 以上の実施例はいずれも従来装置に対して著
しい高感度を実現し得るものである。しかし、
変化1を対象とする場合は補償誤差電流ie′の
大きさは例えば(36)式で最大40Aとなり、こ
の場合、動作値をこの値より小さくすることは
できない。本発明は変化1のような場合にも外
部事故では誤動作すること無く、通常の内部事
故または変化2のような場合の内部事故で高感
度の保護を可能にする対策を用意するものであ
る。
(i) Addition of suppression effect All of the above embodiments can achieve significantly higher sensitivity than conventional devices. but,
When the target is change 1, the magnitude of the compensation error current i e ' is, for example, a maximum of 40 A in equation (36), and in this case, the operating value cannot be made smaller than this value. The present invention provides a measure that enables high-sensitivity protection in a normal internal accident or an internal accident as in change 2, without malfunctioning due to an external accident even in the case of change 1.

この対策は同一相差電流または同一相差電流
の合成電流より得られる電流を抑制電流とし、
抑制電流の事故変化分の大きさまたはその関数
により抑制作用を行なわせるものである。抑制
電流の条件はその大きさが補償誤差電流ie′の
大きさとほぼ比例関係にあることである。
This countermeasure is to use the current obtained from the same phase difference current or the composite current of the same phase difference current as the suppression current,
The suppression effect is performed depending on the magnitude of the fault change in the suppression current or its function. The condition for the suppression current is that its magnitude is approximately proportional to the magnitude of the compensation error current i e '.

本発明の構成は第1図と全く同様である。演
算フローは第7図に示される。第7図で第5図
と同一部分は同一記号で示す。第7図の第5図
との相異点はステツプS6のかわりにステツプ
S8が用いられている点である。ステツプS8の
ステツプS8−1、S8−2およびS8−3では
各々演算量eea、eebおよびeecのほか抑制量|era
|、|erb|および|erc|を算出する。この演算
量eeおよび抑制量|er(|era|、|erb|および
|erc|のうち演算に使用されるもの)がステ
ツプS7での判定に使用される。
The configuration of the present invention is exactly the same as that shown in FIG. The calculation flow is shown in FIG. In FIG. 7, the same parts as in FIG. 5 are indicated by the same symbols. The difference between Fig. 7 and Fig. 5 is that step S6 is replaced by step S6.
This is because S8 is used. In steps S8-1, S8-2, and S8-3 of step S8, in addition to the calculation amounts e ea , e eb , and e ec , the suppression amount | e ra
|, |e rb | and |e rc | are calculated. The calculation amount e e and the suppression amount | er (the one used for the calculation among | era |, | erb |, and | erc |) are used for the determination in step S7.

抑制量|er|の例を(109)式に示す。電圧
|vp|の項は演算量eeが電圧vpと演算電流ie
積の形で表わされる場合に、電圧vpの大きさの
影響を除くためのものであり、この影響が差支
えないときは一定定数となし得る。
An example of the amount of suppression | er | is shown in equation (109). The term voltage |v p | is used to remove the effect of the magnitude of voltage v p when the calculation amount e e is expressed as the product of voltage v p and calculation current i e , and this effect is If there is no problem, it can be set as a fixed constant.

|er|=|ir−irM||vp| …(109) 但し、irは抑制電流で演算に使用されるもの
であり、irMはirの事故前の値の記憶値である。
|e r |=|i r −i rM ||v p | …(109) However, i r is the suppression current used for calculation, and i rM is the memorized value of i r before the accident. It is.

(109)式の|ir−irM|は抑制電流irの事故変
化分ir−irMの大きさを示す。ir−irMは事故検出
後に於けるサンプル値と事故検出前におけるサ
ンプル値の差より算出される。
|i r −i rM | in equation (109) indicates the magnitude of the fault change i r −i rM in the suppression current i r . i r −i rM is calculated from the difference between the sample value after the accident is detected and the sample value before the accident is detected.

ステツプS7−1およびS7−2での判定条件
は、各々例えば(110)および(111)式とす
る。
The determination conditions in steps S7-1 and S7-2 are, for example, equations (110) and (111), respectively.

ee>Mx〔K2|vp|、|er〕 …(110) ee>Mx〔K2|vp|、|er〕 …(111) 但し、Xx〔K2|vp|、|er|〕は、K2|vp
と|er|の最大値で、以下同様の記号で最大値
を示す。抑制電流irの具体例を(112)式に示
す。
e e >M x [K 2 |v p |, |e r 〕 …(110) e e >M x 〔K 2 |v p |, |e r 〕 …(111) However, X x 〔K 2 | v p |, |e r |] is K 2 |v p |
is the maximum value of |e r |, and the maximum value is indicated by a similar symbol below. A specific example of the suppression current i r is shown in equation (112).

ira=irc=K5bibs irb=K5ca(ics+ias …(112) 但し、ira、irbおよびircは各々抑制量era、erb
よびercに用いられる抑制電流ir、K5bおよびK5ca
は定数である。
i ra = i rc = K 5b i bs i rb = K 5ca (i cs + i as …(112) where i ra , i rb and i rc are the suppression amounts used for the suppression amounts e ra , e rb and e rc , respectively. Current i r , K 5b and K 5ca
is a constant.

(112)式の抑制電流は事故相差電流を含まな
いので循環電流の事故変化分のみであり、次式の
ようになる。
The suppression current in equation (112) does not include the fault phase difference current, so it is only the fault change in the circulating current, and is expressed as the following equation.

ira−iraM=irc−ircM=2K5b△ibth irb−irbM=2K5ca(△icth+△iath) …(113) (113)式の定数K5bおよびK5caと(110)およ
び(111)式のK2を(114)式の値とする。
i ra −i raM = i rc −i rcM = 2K 5b △i bth i rb −i rbM = 2K 5ca (△i cth + △i ath ) …(113) The constants K 5b and K 5ca in equation (113) Let K 2 in equations (110) and (111) be the value of equation (114).

K5b=0.2、K5ca=0.03、K2=1A …(114) この場合の抑制電流の事故変化分の大きさを(12)
および(14)式より求めると、(115)および
(116)式となる。
K 5b = 0.2, K 5ca = 0.03, K 2 = 1A...(114) The magnitude of the fault change in the suppression current in this case is (12)
When calculated from equation (14), equations (115) and (116) are obtained.

〔変化1〕 |△ira|=|△irc|=46.4〔A〕 |△irb|=18.7〔A〕 …(115) 〔変化2〕 |△ira|=|△irc|=2.3〔A〕 |△irb|=1.2〔A〕 …(116) 但し、△ira、△irbおよび△ircは各々ira、ira
よびircの事故変化分であり、次式で表わさる。
[Change 1] |△i ra |= |△i rc |=46.4 [A] |△i rb |=18.7 [A] …(115) [Change 2] |△i ra |= |△i rc |= 2.3 [A] |△i rb |=1.2 [A] …(116) However, △i ra , △i rb and △i rc are the accident changes of i ra , i ra and i rc , respectively, and the following equation It is expressed as

△ira=ira−iraM △irb=irb−irbM △irc=irc−ircM …(117) (115)および(116)式の|△ir|(△irは△
ira、△irbおよび△ircのうち演算に使用されるも
の)の値は各々(36)および(37)式の補償誤差
電流の大きさ|ie′|より同一相で大きい。この
ため、この抑制量を用いた演算量eeが(3)〜(5)式す
なわち(38)および(39)式で表わされ判定条件
が(110)および(111)式で表わされる実施例
は、外部事故で補償誤差電流で誤動作することは
無い。
△i ra = i ra −i raM △i rb = i rb −i rbM △i rc = i rc −i rcM …(117) |△i r | (△i r is △
The values of i ra , △i rb and △i rc used in the calculation are larger than the magnitude of the compensation error current |i e ′| in equations (36) and (37), respectively, in the same phase. Therefore, the calculation amount e e using this suppression amount is expressed by equations (3) to (5), that is, equations (38) and (39), and the judgment conditions are expressed by equations (110) and (111). For example, there will be no malfunction due to compensation error current due to an external accident.

通常の内部事故で起誘導送電線の状況に変化の
無い場合は、循環電流の事故変化分が零のため、
抑制量|erも零であり、動作値は(114)式のK2
の値に等しい1Aとなる。また、起誘導送電線の
状況が変化した場合には変化1では感度は最悪
46.4Aとなるが、起誘導送電線の事故がしや断さ
れ変化2の状態になれば感度は最悪2.3Aに回復
する。以上のように同一相差電流より得られた抑
制電流irの事故変化分の大きさ|ir−irMに対応し
た抑制量|er|を用いることにより起誘導送電線
の事故などで循環電流の事故変化分が著しく大き
い場合の誤動作を防止しつつ、循環電流の事故変
化分が小さい場合に、高感度の保護を行なうこと
ができる。
If there is no change in the condition of the induced transmission line due to a normal internal accident, the accidental change in circulating current is zero, so
The amount of suppression | e r is also zero, and the operating value is K 2 in equation (114)
It becomes 1A, which is equal to the value of . In addition, if the situation of the induced power transmission line changes, the sensitivity will be the worst in change 1.
The sensitivity will be 46.4A, but if the fault in the induced power transmission line is eventually severed and the situation changes to change 2, the sensitivity will recover to 2.3A at worst. As described above, by using the suppression amount |e r | corresponding to the magnitude of the fault change in the suppression current i r obtained from the same phase difference current | While preventing malfunctions when the faulty change in current is extremely large, highly sensitive protection can be provided when the faulty change in circulating current is small.

(j) 抑制量演算の変形例 以上の実施例は抑制電流irをそのサンプル値
で記憶し抑制電流の事故変化分△ir=ir−irM
求めてこれより抑制量|er|を得るものであ
る。このようなサンプル値記憶形は演算量ee
サンプル値記憶で得られるものと組み合わせて
用いると、記憶値を共用し得る利点がある。こ
れに対して演算量が関数記憶により得られるも
のには、抑制量も関数記憶で得られることが同
様な理由で好ましい。
(j) Modified example of calculation of suppression amount In the above embodiment, the suppression current i r is stored as its sample value, the fault change in suppression current △i r = i r −i rM is calculated, and from this the suppression amount | e r | is obtained. When such a sample value storage type is used in combination with the calculation amount e e obtained by sample value storage, there is an advantage that the stored values can be shared. On the other hand, if the amount of calculation can be obtained by storing the function, it is preferable for the same reason that the amount of suppression can also be obtained by storing the function.

以下、この手法を述べる。(118)式は抑制量
|er|を関数記憶により得る手段の一実施例を
示すものである。
This method will be described below. Equation (118) shows an example of means for obtaining the suppression amount | er | by function storage.

|er|=√(r×prM×pM2
rprMpM2…(118) すなわち抑制電流irと極性電圧vpの外積および
内積の事故変化分を求め、各々の2乗の和の平方
根を抑制量|er|とするものである。(118)式
で、vp=vpMとすると、 |er|=√{(rrM×p2+{(r
rM)・p2=|ir−irM||vp|…(119) となり、(109)式と等しい抑制量となる。
|e r |=√( r × prM × pM ) 2
( rprMpM ) 2 … (118) In other words, find the fault change of the outer product and inner product of the suppression current i r and the polarity voltage v p , and calculate the square root of the sum of the squares of each as the suppression amount | e r | That is. In equation (118), if v p = v pM , |e r |=√{( rrM × p } 2 + {( r
rM )・p } 2 = |i r −i rM | | v p |...(119), and the amount of suppression is equal to equation (109).

(120)式は抑制量|er|を関数記憶により得
る手段の第2の実施例を示すものである。
Equation (120) shows a second embodiment of the means for obtaining the suppression amount | er | by function storage.

|er|=Mx〔|ir×vp−irM×vpM|、|ir
・vp−irM・vpM|、 |ir×vp−irM×vpM|+|ir
・vp−irM・vipM|/√2〕…(120) すなわち、抑制電流irと極性電圧vpの外積およ
び内積の事故変化分の絶対値および(各々の絶対
値の和)/√2のうちの最大値を抑制量|er|と
する。第8図は(120)式を説明するベクトル図
である。電圧vp(=vpM)および電流irMが図示の
ベクトルであるとする。いま、(120)式の第1項
|ir×vp−irM×vpM|が一定値K6と等しい場合の
電流irの軌跡を求めると直線イおよびロとなる。
また、第2項|ir・vp−irM・vpM|が一定値K6
等しいときの軌跡は直線ハおよびニとなる。また
第3項(|ir×vp−irM×vpM|+ir×vp−irM・vpM
|)/√2が一定値K6と等しいときの軌跡は正
方形ホとなる。したがつて、これらの各項の最大
値が一定値K6に等しいときの電流irの軌跡は実線
で示す正8角形上にある。このため、抑制量|er
|が一定値K6に等しい場合の電流irの事故変化分
の大きさ|ir−iM|は、電流irMのベクトルの頭と
実線正八角形との距離となる。この距離はir−iM
の位相角に応じてK6〜K8/cos22.5゜の間すなわち
K6〜1.08K6の間で変動する。したがつて|ir−irM
||vp|が等しく位相角が変化した場合の抑制量
|er|は1~1/1.08の間で変化する。この誤差は
中心値を1/1.04で考えると約±4%の誤差に相当
する。すなわち、(120)式の抑制量|er|は約4
%の誤差で|ir−irM|vp|を実現するものであ
り、(109)および(118)式の抑制量とほぼ同様
に使用し得るものである。(118)および(120)
式の抑制量は演算量が(38)、(89)(95)式のよ
うに極性電圧Vpの積で算出されるものに適する。
|e r |=M x 〔|i r ×v p −i rM ×v pM |, |i r
・v p −i rM・v pM |, |i r ×v p −i rM ×v pM |+|i r
・v p −i rM・vi pM |/√2〕…(120) In other words, the absolute value of the fault change of the outer product and inner product of the suppression current i r and the polarity voltage v p and (the sum of the respective absolute values)/ Let the maximum value of √2 be the suppression amount | er |. FIG. 8 is a vector diagram explaining equation (120). Assume that the voltage v p (=v pM ) and the current i rM are the vectors shown. Now, when the first term |i r ×v p −i rM ×v pM | of equation (120) is equal to a constant value K 6 , the locus of the current i r becomes straight lines A and B.
Further, when the second term |i r ·v p −i rM ·v pM | is equal to the constant value K 6 , the locus becomes straight lines C and D. Also, the third term (|i r ×v p −i rM ×v pM |+i r ×v p −i rM・v pM
When |)/√2 is equal to the constant value K 6 , the locus becomes a square E. Therefore, the locus of the current i r when the maximum value of each of these terms is equal to the constant value K 6 lies on the regular octagon shown by the solid line. For this reason, the amount of suppression | e r
The magnitude of the accidental change in the current i r when | is equal to a constant value K 6 | i r −i M | is the distance between the head of the vector of the current i rM and the solid line regular octagon. This distance is i r −i M
between K 6 and K 8 /cos22.5°, depending on the phase angle of
Varies between K6 and 1.08K6 . Therefore |i r −i rM
When ||v p | is equal and the phase angle changes, the amount of suppression | er | changes between 1 and 1/1.08. This error corresponds to an error of approximately ±4% when the center value is considered to be 1/1.04. In other words, the amount of suppression |e r | in equation (120) is approximately 4
It realizes |i r −i rM |v p | with an error of %, and can be used almost in the same way as the suppression amounts in equations (109) and (118). (118) and (120)
The amount of suppression in the equation is suitable for those in which the amount of calculation is calculated by the product of the polarity voltages V p , as in equations (38), (89), and (95).

(121)式は関数記憶により抑制量|er|を得
る手段の第3の実施例を示すものである。
Equation (121) shows a third embodiment of the means for obtaining the suppression amount | er | by function storage.

|er|=|ir/vp−irM/vpM| …(121) これは抑制電流irの極性電圧vpに対する商の
事故変化分の大きさを抑制量|er|とするもの
で、演算量を(90)式のように電圧vpに対する
商の形で演算するものに適する。(121)式でvp
=vpMとすると |er|=|ir−irM/vp| …(122) となり、(90)式を用いた演算量eeのものに対
して、他の実施例の場合と同様に補償誤差電流
ie′の大きさより抑制電流の事故変化分の大き
さ|ir−irM|が大きいようにして用いられる。
この場合この場合のステツプS7−1およびS7
−2の判定条件は例えば各々(123)および
(124)式となる。
|e r |=|i r /v p −i rM /v pM | … (121) This means that the magnitude of the fault change in the quotient of the suppression current i r with respect to the polarity voltage v p is expressed as the suppression amount | e r | This is suitable for calculating the amount of calculation in the form of a quotient for the voltage v p , as in equation (90). In equation (121), v p
= v pM , |e r |=|i r −i rM /v p | ...(122) For the calculation amount e e using equation (90), the calculation amount e is different from that of other embodiments. Similarly, the compensation error current
It is used so that the magnitude of the fault change in the suppression current |i r −i rM | is larger than the magnitude of i e ′.
In this case, steps S7-1 and S7
-2 determination conditions are, for example, equations (123) and (124), respectively.

ee>Mx〔K2/|vp|、|er|〕 …(123) −ee>Xx〔K2/|vp、|er|〕 …(124) 以上のように、抑制電流irと極性電圧vp(ま
たは極性電流)の関数の事故変化分を用いて抑
制電流の事故変化分の大きさ|ir−irM|に関係
した抑制量|er|を得ることができる。
e e >M x [K 2 /|v p |, |e r |] …(123) −e e >X x [K 2 /|v p , |e r |] …(124) As above , the suppression amount |e r | related to the magnitude of the fault change in the suppression current |i r −i rM | is calculated using the fault change in the function of the suppression current i r and the polarity voltage v p (or polarity current). Obtainable.

(k) 抑制電流の変形例 (112)式は抑制電流irの一実施例に過ぎな
い。抑制電流に使用し得る電流は、同一相差電
流または同一相差電流の合成電流より得られる
電流のうち事故分差電流の成分irfが、演算電流
ieの事故分差電流の成分iefより充分小さいもの
である。この成分irfが成分iefに対して大きな割
合となると、事故分差電流による抑制作用が加
わり、その分感度が低下するので好ましくな
い。
(k) Modification of suppression current Equation (112) is only one example of suppression current i r . The current that can be used as the suppression current is that the component i rf of the fault difference current among the currents obtained from the same phase difference current or the composite current of the same phase difference current is the calculated current
This is sufficiently smaller than the fault difference current component i ef of i e . If this component i rf becomes a large proportion of the component i ef , the suppression effect due to the fault differential current will be added, and the sensitivity will decrease accordingly, which is not preferable.

以上の点から、健全相差電流およびその合成
電流より得た電流は事故相差電流成分を含ま
ず、したがつて事故分差電流の成分を含まない
ので抑制電流に最も適したものである。このよ
うな条件の抑制電流irの例を(125)および
(126)式に示す。
From the above points, the current obtained from the healthy phase difference current and its composite current does not contain the fault phase difference current component, and therefore does not contain the fault difference current component, and is therefore most suitable for the suppression current. Examples of the suppression current i r under such conditions are shown in equations (125) and (126).

ira=K5bibs、irb=irc=K5aias …(125) ira=K5bc(ibs+ics 60゜) irb=K5ca(ics+ias 60゜) irc=K5ab(ibs+ics 60゜) …(126) 但し、K5a、K5b、K5bc、K5caおよびK5abは定数
である。
i ra = K 5b i bs , i rb = i rc = K 5a i as …(125) i ra = K 5bc (i bs + i cs 60°) i rb = K 5ca (i cs + i as 60°) i rc =K 5ab (i bs + i cs 60°) ...(126) However, K 5a , K 5b , K 5bc , K 5ca and K 5ab are constants.

これらの抑制電流irの事故変化分は循環電流の
事故変化分が大きく、補償誤差電流ie′が大きい
ときにはほぼ比例して大きくなるので、抑制電流
として使用し得る。
These fault changes in the suppressing current i r can be used as suppressing currents because the fault changes in the circulating current are large, and when the compensation error current i e ' is large, they increase almost proportionally.

また、抑制電流irと補償電流ihの電流項を等し
くすると、サンプル値または関数値の記憶値を両
者で共用できる利点がある。しかし、これは必ら
ずしも両者を等しくする必要はなく、各々の電流
項の種々の組合わせでほぼ同様の効果を示すもの
である。これらについては簡単のため数値例の説
明は省略する。
Furthermore, when the current terms of the suppression current i r and the compensation current i h are made equal, there is an advantage that the stored values of sample values or function values can be shared by both. However, it is not necessary to make the two equal, and various combinations of the respective current terms exhibit approximately the same effect. For the sake of simplicity, description of numerical examples will be omitted.

抑制電流はirはまた事故相差電流成分を有する
ものでも、事故相差電流成分が検出電流idの事故
相差電流成分より充分に小さい限りに於いて適用
可能である。その例を(127)式に示す。
Even if the suppression current i r also has a fault phase difference current component, it can be applied as long as the fault phase difference current component is sufficiently smaller than the fault phase difference current component of the detection current i d . An example is shown in equation (127).

ira=irb=irc=K5oips …(127) 但し、K5oは絶対値が1より充分に小さい定数
である。
i ra = i rb = i rc = K 5o i ps (127) However, K 5o is a constant whose absolute value is sufficiently smaller than 1.

この抑制電流を(38)および(39)式の演算量
のものに対して適用した場合について説明する。
(127)式の抑制電流irの事故変化分は(16)式よ
り(128)式のようになる。
A case will be described in which this suppression current is applied to the calculation amount of equations (38) and (39).
The fault change in the suppression current i r in equation (127) is expressed as equation (128) from equation (16).

△ira=△irb=△irc=K5o(ipf+2△ipth …(128) 外部事故ではipf=0のため、抑制電流irは2△
ipthに等しい。この条件でK5oの値を(129)式と
し変化1および2の抑制電流の大きさを算出する
と各々(130)および(131)式となる。
△i ra = △i rb = △i rc = K 5o (i pf + 2△i pth … (128) Since i pf = 0 in an external fault, the suppression current i r is 2△
i is equal to pth . Under these conditions, when the value of K 5o is set to equation (129) and the magnitude of the suppressing current for changes 1 and 2 is calculated, equations (130) and (131) are obtained, respectively.

K5o=0.2 …(129) 〔変化1〕 |△ira|=|△irb|=|△irc|=57A
…(130) 〔変化2〕 |△ira|=|△irb|=|△irc|=3.5A
…(131) (130)および(131)式の値は各々(36)およ
び(37)式の補償誤差電流の値より大きく、外部
事故で誤動作することは無い。しかも、(131)式
の値は3.5Aであり、充分小さな値である。
K 5o =0.2 …(129) [Change 1] |△i ra |=|△i rb |=|△i rc |=57A
…(130) [Change 2] |△i ra |=|△i rb |=|△i rc |=3.5A
...(131) The values of equations (130) and (131) are larger than the compensation error current values of equations (36) and (37), respectively, and no malfunction will occur due to external faults. Moreover, the value of equation (131) is 3.5A, which is a sufficiently small value.

内部事故の場合は抑制電流にK5oipf=0.2ipfが加
算される。この分だけ感度は低下するが、演算電
流ieには零相事故分差電流ipfが流れこの値は0.2ipf
の5倍であるので、感度は(130)または(131)
式の値より若干低下するが充分な高感度で保護可
能である。このような感度の若干の低下は好まし
いものではないが、充分使用に耐えるものであ
る。
In the case of an internal fault, K 5o i pf = 0.2i pf is added to the suppression current. The sensitivity decreases by this amount, but the zero-sequence fault difference current i pf flows in the calculation current i e , and this value is 0.2i pf.
, so the sensitivity is (130) or (131)
Although it is slightly lower than the value of the formula, it is sufficiently sensitive and can protect. Although such a slight decrease in sensitivity is not desirable, it is sufficient to withstand use.

以上のように抑制電流irは種々の同一相差電流
または同一相差電流の合成電流より得ることがで
きる。
As described above, the suppression current i r can be obtained from various same phase difference currents or a composite current of the same phase difference currents.

(l) 抑制量の用い方の変形 (110)、(111)、(123)および(124)式は、
抑制量|er|を用いる判定条件の若干の実施例
を示すに過ぎない。抑制量|er|を用いての判
定条件は種々変形実施し得るものであり、以下
にその例を示す。
(l) Variations in how to use the suppression amount Equations (110), (111), (123) and (124) are
These are merely some examples of determination conditions using the suppression amount | er |. The determination condition using the suppression amount | er | can be modified in various ways, examples of which are shown below.

ee>K2|vp|+|er| …(132) −ee>K2|vp|+|er| …(133) (132)および(133)式は(110)および
(111)式ではK2|vp|とer|の最大値を右辺に用
いたのに対して、両者の和を用いるものである。
こ場合も|er|に対しeeまたは−eeが大きくない
と動作せず、(110)および(111)式の実施例と
同様の効果を有するものである。
e e >K 2 |v p |+|e r | …(132) −e e >K 2 |v p |+|e r | …(133) Equations (132) and (133) are In formula (111), the maximum values of K 2 |v p | and e r | are used on the right side, whereas the sum of the two is used.
In this case as well, it does not work unless e e or -e e is large with respect to | er |, and has the same effect as the embodiments of equations (110) and (111).

また、例えば(110)および(111)式のように
演算量eeと抑制量|er|を比較するのではなく、
演算電流ieの大きさ|ie|と抑制電流irの事故変
化分の大きさ|ir−irM|を(134)式のように比
較し、これを条件に事故回線の検出を行なうよう
にすることもできる。
Also, instead of comparing the calculation amount e e and the suppression amount |e r | as in equations (110) and (111), for example,
The magnitude of the calculation current i e |i e | and the magnitude of the fault change in the suppression current i r |i r −i rM | are compared as shown in equation (134), and a fault line can be detected under this condition. You can also do it.

|ie|>|ir−irM| …(134) すなわち、(110)式に於いて抑制量|er|は例
えば(109)式、演算量eeは例えば(104)式であ
り、抑制電流irの事故変化分の大きさ|ir−irM
が演算電流ieのうちの補償誤差電流ie′の大きさ|
ie′|より大きいようにして、補償誤差電流ie′に
よる誤動作を防止している。したがつて、この作
用は(104)および(109)式のような関数を用い
て行なう必要はなく、(134)式のように直接比較
しても補償誤差電流ie′による誤動作を防止し且
つ循環電流の事故変化分の小さい時に高感度に保
護するという目的を達し得る。
|i e |>|i r −i rM | (134) That is, in equation (110), the amount of suppression | e r | is, for example, equation (109), and the amount of calculation e e is, for example, equation (104). , the magnitude of the fault change in the suppression current i r | i r −i rM |
is the magnitude of the compensation error current i e ′ out of the calculation current i e |
i e ′| is set to be larger than i e ′ to prevent malfunctions caused by the compensation error current i e ′. Therefore, it is not necessary to perform this action using functions such as equations (104) and (109), and even direct comparison as shown in equation (134) will prevent malfunctions due to the compensation error current i e '. In addition, it is possible to achieve the purpose of highly sensitive protection when the accidental change in circulating current is small.

尚、(134)式を用いる場合は、(134)式が成立
することを条件に、例えば(40)および(41)式
など抑制電流を用いない判定条件により事故回線
を検出する。
When formula (134) is used, a faulty line is detected using determination conditions such as formulas (40) and (41) that do not use suppressing current, provided that formula (134) holds true.

以上のように本発明の抑制は抑制電流irの事故
変化分ir−irMにより抑制作用を生じさせるあらゆ
る手段を含むものである。尚、この抑制以外に更
に他の電圧・電流例えば零相電圧および健全相差
電流の事故中の値などに応じた抑制作用を付加し
得ることは勿論である。
As described above, the suppression of the present invention includes all means for producing a suppression effect by the fault change amount i r −i rM of the suppression current i r . In addition to this suppression, it is of course possible to add other suppression effects depending on the values of other voltages and currents, such as zero-sequence voltage and normal phase-difference current during an accident.

(m) 補償電流ihを用いない場合の抑制作用の
付加。
(m) Addition of suppression effect when compensation current i h is not used.

以上の抑制作用は演算量eeに補償電流ihを用
いない場合にも感度向上に有効である。この手
段は、すでに出願ずみであるが、本発明では抑
制電流の関数の事故変化分を用いることにより
サンプル値を記憶することなく抑制電流irの事
故変化分の大きさに対応した抑制作用を行なわ
せることができる。
The above suppressing effect is effective in improving sensitivity even when the compensation current i h is not used for the calculation amount e e . This method has already been applied for, but in the present invention, by using the fault variation of the function of the suppression current, the suppression effect corresponding to the magnitude of the fault variation of the suppression current i r can be obtained without storing sample values. I can make you do it.

ee=ed …(135) この場合演算量eeは(135)式で表わされ、
検出量edは(38)および(39)式で示される。
また抑制量|er|は例えば(112)式の抑制電
流irにより(118)式で演算され、ステツプS7
の判定条件は(110)および(111)式で示され
る。この場合、検出電流id(=ips)の事故変化
分は循環電流の事故変化分の影響をそのままう
け、その大きさは変化1では285A、変化2で
は17.5Aとなる。また、(112)式および(110)
式の定数K5b、K5caおよびK5を(136)式の値
とすると、抑制電流の事故変化分の大きさは
(137)および(138)式となる。
e e = e d …(135) In this case, the amount of calculation e e is expressed by equation (135),
The detected amount e d is expressed by equations (38) and (39).
In addition, the suppression amount | er | is calculated by equation (118) using the suppression current i r of equation (112),
The determination conditions are shown by equations (110) and (111). In this case, the fault change in the detected current i d (= ips ) is directly affected by the fault change in the circulating current, and the magnitude is 285 A for change 1 and 17.5 A for change 2. Also, equation (112) and (110)
If the constants K 5b , K 5ca and K 5 in the equations are taken as the values in equation (136), then the magnitude of the fault change in the suppression current is given by equations (137) and (138).

K5b=2、K5ca=0.6、K2=1〔A〕 …(136) 〔変化1〕|△ira|=|△irc|=374〔A〕、 |△irb|=464〔A〕 …(137) 〔変化2〕|△ira|=|△irc|=24.4〔A〕、 |△irb|=23.0〔A〕 …(138) このように抑制電流の事故変化分の大きさ|
ir|は検出電流idの循環電流分の事故変化分の
大きさより大きく、循環電流の変化で誤動作す
ることは無い。また〔変化2〕の状態では感度
は24.4A循環電流の変化が無い場合は1Aとな
り、従来装置で変化1での誤動作を防止し得る
感度285〔A〕に対して著しく高感度度となる。
K 5b = 2, K 5ca = 0.6, K 2 = 1 [A] …(136) [Change 1] |△i ra |= |△i rc |=374 [A], |△i rb |=464 A] …(137) [Change 2] |△i ra |= |△i rc |=24.4 [A], |△i rb |=23.0 [A] …(138) In this way, the fault change in the suppression current size |
i r | is larger than the fault change in the circulating current of the detected current i d , and malfunctions will not occur due to changes in the circulating current. Further, in the state of [Change 2], the sensitivity is 24.4A.If there is no change in the circulating current, the sensitivity is 1A, which is significantly higher than the sensitivity of 285 [A], which can prevent malfunctions in the conventional device under Change 1.

このような感度の向上は(48)および(56)
式などの他の検出電流を用いた検出量edをその
まま演算量eeとして用いるもの、(125)および
(126)式などの他の抑制電流を用いて抑制量er
を算出するもの、検出量edの算出に(89)およ
び(90)式などの他の演算原理を用いるものお
よび抑制量|er|の算出に(120)および
(121)式などの他の演算原理を用いるものの
種々の組み合わせについて同様の効果を示すも
のである。
Such increased sensitivity is due to (48) and (56)
One uses the detection amount e d as the calculation amount e e using other detection currents such as the equation (125) and one that uses the suppression amount e r using other suppression currents such as equations (126).
, those that use other calculation principles such as equations (89) and (90) to calculate the detected amount e d , and those that use other calculation principles such as equations (120) and (121) to calculate the suppression amount |e r | Similar effects are shown for various combinations of methods using the same calculation principle.

以上のように検出電流の事故変化分と極性電
圧(または極性電流)の関係により事故回線を
識別する地絡回線選択継電器に、抑制電流と極
性電圧(または極性電流)の関数の事故変化分
を用いて抑制電流の事故変化分の大きさに関係
する抑制量を求め、これによる抑制作用を付加
することにより、感度を向上させることができ
る。
As described above, the fault change in the function of the suppression current and polarity voltage (or polarity current) is applied to the ground fault line selection relay that identifies the fault line based on the relationship between the fault change in the detected current and the polarity voltage (or polarity current). Sensitivity can be improved by determining the amount of suppression related to the magnitude of the fault change in the suppression current and adding a suppression effect based on this.

(n) 6回線併架送電線への適用 以上の説明はすべて4回線併架の送電線に対
する説明であり、6回線併架の送電線に適用す
る場合には新な問題を生ずる。以下、これを説
明する。第9図は6回線併架送電線の電線配置
の例を示す図で、第5図と同一部分は同一記号
で示す。a5,b5,c5,a6,b6および
c6は各々送電線5Lおよび6Lのa,b,c
各相の電線である。図の電線配置では、平行送
電線3Lと4Lは平行送電線1Lと2Lおよび
5Lと6Lよりの誘導を大きく受ける。これに
対して平行送電線1Lと2Lおよび5Lと6L
は近傍の平行送電線3Lと4Lよりの誘導を大
きく受け、他よりの誘導は比較的小さい。した
がつて2つの平行送電線よりの誘導を大きく受
ける送電線3Lと4Lを被保護送電線、他を起
誘導送電線として説明する。
(n) Application to transmission lines with 6 circuits The above explanations are all for transmission lines with 4 circuits, and new problems arise when applied to transmission lines with 6 circuits. This will be explained below. FIG. 9 is a diagram showing an example of the wire arrangement of a six-circuit parallel transmission line, and the same parts as in FIG. 5 are indicated by the same symbols. a5, b5, c5, a6, b6 and c6 are a, b, c of power transmission lines 5L and 6L, respectively
These are the electric wires for each phase. In the wire arrangement shown in the figure, parallel power transmission lines 3L and 4L are largely guided by parallel power transmission lines 1L and 2L and 5L and 6L. On the other hand, parallel transmission lines 1L and 2L and 5L and 6L
receives a large amount of induction from the nearby parallel power transmission lines 3L and 4L, and the induction from other sources is relatively small. Therefore, the power transmission lines 3L and 4L, which receive a large amount of induction from the two parallel power transmission lines, will be described as protected power transmission lines, and the others will be described as induced induction transmission lines.

送電線1Lと2Lよりの誘導による送電線3
Lと4Lの循環電流の変化分には(13)および
(15)式のような関係があり、起誘導送電線の
種々の状態変化に対して近似的に(139)式の
関係が成立する。
Power transmission line 3 guided by transmission lines 1L and 2L
There is a relationship between the changes in the circulating currents of L and 4L as shown in equations (13) and (15), and the relationship shown in equation (139) holds approximately for various state changes of the induced transmission line. .

△iath≒R1a△I、△ibth≒R1b△I、△icth ≒R1c△I、△ipth≒R1o△I …(139) 但し、R1a、R1b、R1cおよびR1oは定数であ
り、△Iは送電線1Lおよび2Lの起誘導電流
(特定の電流を示すものではなく循環電流の基
準を与える電流である)Iの事故変化分であ
る。
△i ath ≒R 1a △I, △i bth ≒R 1b △I, △i cth ≒R 1c △I, △i pth ≒R 1o △I … (139) However, R 1a , R 1b , R 1c and R 1o is a constant, and ΔI is a fault change in the induced current (which does not indicate a specific current but provides a reference for circulating current) I in the power transmission lines 1L and 2L.

一方送電線5Lおよび6Lよりの誘導による
循環電流の事故変化分は(140)式の近似式で
示される。
On the other hand, the accidental change in circulating current due to induction from the power transmission lines 5L and 6L is expressed by an approximate expression (140).

△iath≒R2a△I′、△ibth≒R2b△I′、△icth =R2c△I′、△ipth=R2o△I′ …(140) 但し、R2a、R2b、R2cおよびR2oは定数であ
り、△I′は送電線5Lおよび6Lの起誘導電流
I′の事故変化分である。
△i ath ≒R 2a △I′, △i bth ≒R 2b △I′, △i cth = R 2c △I′, △i pth = R 2o △I′ …(140) However, R 2a , R 2b , R 2c and R 2o are constants, and △I′ is the induced current in transmission lines 5L and 6L.
This is the accident change in I′.

各相の循環電流の事故変化分は(139)およ
び(140)式を重畳したものなり次式となる。
The fault change in the circulating current of each phase is the superposition of equations (139) and (140), and is given by the following equation:

△iath≒R1a△I+R2a△I′ △ibth≒R1b△I+R2b△I′ △icth≒R1c△I+R2c△I′ △ipth≒R1o△I+R2o△I′ …(141) この式で各定数の関係は、起誘導送電線との距
離の関係からR1a>R1b>R1cおよびR2a<R2b<R2c
の関係があり、各循環電流の事故変化分の関係は
起誘導電流の事故変化分△Iおよび△I′の大きさ
の関係により異なる。
A ( _ _ _ _ _ _ _ _ _ 141) In this formula, the relationship between each constant is R 1a > R 1b > R 1c and R 2a < R 2b < R 2c from the relationship with the distance to the induced power transmission line.
The relationship between the fault changes in each circulating current differs depending on the relationship between the magnitudes of the fault changes ΔI and ΔI′ in the induced current.

このため、例えば検出電流idを(39)式とし、
補償電流ihを(67)式とするような補償を行なつ
ても、適切な補償が得られず、また抑制電流ir
(125)式とするような抑制を行なつても適切な抑
制が行なえない。以下、このような場合に適切な
補償および抑制を行ない得る一実施例を説明す
る。
For this reason, for example, the detection current i d is expressed as (39),
Even if compensation is performed such that compensation current i h is expressed as equation (67), appropriate compensation cannot be obtained, and even if suppression is performed such that suppression current i r is expressed as equation (125), appropriate compensation cannot be obtained. It cannot be suppressed. An embodiment that can perform appropriate compensation and suppression in such a case will be described below.

ida=idb=idc=ips …(142) iia=K6aiha、irb=K6bihb、irc=K6cihc …(144) 但し、K6a、K6bおよびK6cは定数であり、Ya
YbおよびYcは次式で示される。
i da = i db = i dc = i ps …(142) i ia = K 6a i ha , i rb = K 6b i hb , i rc = K 6c i hc …(144) However, K 6a , K 6b and K 6c are constants, and Y a ,
Y b and Y c are expressed by the following formulas.

上記の(143)式で、各補償電流iha、ihbおよび
ihcの各々について2つの式が示されているが、
これは例えば電流ihaでは |ibs/ics|>K6 …(146) 但しK6は正の定数である。
In the above equation (143), each compensation current i ha , i hb and
Two equations are shown for each of i hc ;
For example, for current i ha , |i bs /i cs |>K 6 ...(146) However, K 6 is a positive constant.

のときは電流ibsを用いた式を用い、(146)式
が成立しないときは電流icsを用いた式を用い
る。これをibsおよびicsの一方が著しく小さいと
き、小さい電流を用いると誤差が大きくなるの
で、これを避けるためである。電流ihbおよび
ihcでも同様に各式の電流項の大きさの比に従
つて、演算に用いる式を選択する。
When , an equation using the current i bs is used, and when equation (146) does not hold, an equation using the current i cs is used. This is to avoid the fact that when one of i bs and i cs is extremely small, errors will become large if a small current is used. current i hb and
Similarly, for i hc , the formula used for calculation is selected according to the ratio of the magnitudes of the current terms in each formula.

以上の実施例の作用をa相地絡を例に説明す
る。(141)式の△ibthおよび△icthの式より、 となり、この式を解くと △I/△I′=R2b△icth−R2c△ibth/R1c△ibth−R1b
△icth…(148) となる。a相1相地絡では、△ibs=2△ibth
△ics=2△icthであるので、(145)式の比Ya
△I/△I′に等しい。このため(141)式の△
ibth、△icthおよび△ipthは次式となる。
The operation of the above embodiment will be explained using an a-phase ground fault as an example. From the expressions of △i bth and △i cth in equation (141), So, solving this equation gives △I/△I′=R 2b △i cth −R 2c △i bth /R 1c △i bth −R 1b
△i cth …(148). For a-phase 1-phase ground fault, △i bs = 2△i bth ,
Since △i cs =2△i cth , the ratio Y a in equation (145) is equal to △I/△I'. Therefore, △ in equation (141)
i bth , △i cth and △i pth are as follows.

△ibth=(R1bYa+R2b△I′ △icth=(R1cYa+R2c△I′ △ipth=(R1oYa+R2o△I′ …(149) したがつて、(143)式の補償電流ihaの事故変
化分△ihaは、△ibs=2△ibth、△ics=2△icthの関
係と(149)式より、電流ibsまたはicsを用いる式
のうちのどの式でも、 △iha=2△ipth …(150) となり、補償電流の事故変化分△ihaにより検出
電流idaの事故変化分のうち零相循環電流の事故
変化分に起因する2△ipthが補償される。また、
抑制電流irは補償電流ihに比例した電流とし、補
償誤差電流による誤動作を防止する。
△i bth = (R 1b Y a +R 2b △I′ △i cth = (R 1c Y a +R 2c △I′ △i pth = (R 1o Y a +R 2o △I′ …(149) Therefore, The fault change △i ha in the compensation current i ha in equation (143) is calculated from the relationship between △i bs = 2△i bth and △i cs = 2△i cth and from equation (149), the current i bs or i cs In any of the equations using 2△i pth caused by the change is compensated. Also,
The suppression current i r is a current proportional to the compensation current i h to prevent malfunctions due to compensation error current.

以上のように健全2相の差電流の事故変化分の
関係より補償電流ihまたは抑制電流irに使用する
係数を求めることにより6回線併架送電線への適
用を容易にすることができる。尚、上記実施例は
このような手段の一実施例に示すに過ぎず、補償
電流ihおよび抑制電流irの電流項を健全2相の差
電流より合成された電流とするなど種々変形して
用い得るものである。
As described above, by determining the coefficient to be used for the compensation current i h or the suppression current i r from the relationship of the fault change in the difference current between two healthy phases, it is possible to easily apply it to a 6-circuit parallel transmission line. . The above embodiment is merely an example of such a means, and various modifications may be made, such as making the current terms of the compensation current i h and the suppression current i r a current synthesized from the difference current of two healthy phases. It can be used in many ways.

(o) 総合的な効果 以上のように本発明では検出電流の事故変化
分中の循環電流分を補償電流の事故変化分で補
償する手段および抑制電流の事故変化分で抑制
する手段の一方または双方により、従来の検出
電流の事故変化分のみを用いるものに対して著
しい高感度を得ることができるものである。ま
た、補償電流または抑制電流の一方または双方
の算出する係数を健全2相の差電流の関係を用
いて算出する手段によ6回線併架の送電線への
適用を容易にするものである。
(o) Overall effect As described above, in the present invention, the circulating current component in the fault variation of the detection current is compensated by the fault variation of the compensation current, or the means of suppressing it by the fault variation of the suppression current. With both, it is possible to obtain significantly higher sensitivity than the conventional method which uses only the fault change amount of the detection current. Furthermore, the present invention can be easily applied to a power transmission line with six circuits, by means of which a coefficient for calculating one or both of the compensation current and the suppression current is calculated using the relationship between the difference currents of two healthy phases.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成を示す回路図、第2図は
本発明の演算フローを示すフロー図、第3図は第
2図のステツプS4の演算フローを示すフロー図、
第4図は多回線併架送電線を示す系統図、第5図
は4回線併架送電線の電線配置を示す配置図、第
6図は本発明の特性の例を示す特性図、第7図は
本発明の他の実施例の演算フローを示すフロー
図、第8図は本発明の一実施例の応動を説明する
ブロツク図、第9図は6回線併架送電線の電線配
置を示す配置図である。 4…しや断器、9…入力変換器、10…サンプ
ルホールド回路、11…マルチプレクサ、12…
AD変換器、13…計算機。
FIG. 1 is a circuit diagram showing the configuration of the present invention, FIG. 2 is a flow diagram showing the calculation flow of the invention, and FIG. 3 is a flow diagram showing the calculation flow of step S4 in FIG.
Fig. 4 is a system diagram showing a multi-circuit parallel transmission line, Fig. 5 is a layout diagram showing the wire arrangement of a four-circuit parallel transmission line, Fig. 6 is a characteristic diagram showing an example of the characteristics of the present invention, and Fig. 7 is a system diagram showing a multi-circuit parallel transmission line. Figure 8 is a flowchart showing the calculation flow of another embodiment of the present invention, Figure 8 is a block diagram explaining the response of one embodiment of the invention, and Figure 9 shows the wire arrangement of a 6-circuit parallel transmission line. It is a layout diagram. 4...Shipping breaker, 9...Input converter, 10...Sample hold circuit, 11...Multiplexer, 12...
AD converter, 13...calculator.

Claims (1)

【特許請求の範囲】 1 多回線併架の平行3相送電線から得られる検
出電流の事故変化分を、補償電流の事故変化分で
補償した電流で、1相地絡事故回線を検出する地
絡回線選択継電器であつて、前記検出電流を平行
送電線の事故相差電流(または事故相差電流を含
む同一相差電流の合成電流)より得た電流、前記
補償電流を平行送電線の同一相差電流(または同
一相差電流の合成電流)より得た電流とし、補償
電流中の事故相差電流成分を検出電流中の事故相
差電流より小さくすることを特徴とする地絡回線
選択継電器。 2 前記補償電流を事故相が除かれた同一相差電
流または複数の事故相が除かれた同一相差電流の
合成電流に比例する電流とすることを特徴とする
特許請求の範囲第1項記載の地絡回線選択継電
器。 3 前記検出電流を3相の各相の同一相差電流の
逆相分とし、前記補償電流を3相の各相の同一相
差電流の零相分に絶対値が1未満の係数を乗じた
ものとすることを特徴とする特許請求の範囲第1
項記載の地絡回線選択継電器。 4 検出電流、補償電流(またはこれらに用いら
れる電流)と極性電圧(または極性電流)の関数
の事故変化分の値を用いることを特徴とする特許
請求の範囲第1項記載の地絡回線選択継電器。 5 多回線併架の平行3相送電線から得られる検
出電流の事故変化分を、補償電流の事故変化分で
補償した電流で1相地絡事故回線を検出し、前記
検出電流は平行送電線の事故相差電流(または事
故相差電流を含む同一相差電流の合成電流)より
得た電流であり、前記補償電流は平行送電線の同
一相差電流(または同一相差電流の合成電流)よ
り得た電流であるとともに、補償電流中の事故相
差電流成分が検出電流中の事故相差電流より小さ
い地絡回線選択継電器において、平行送電線の同
一相差電流(または同一相差電流の合成電流)よ
り得た電流を抑制電流とし、この抑制電流の事故
変化分により抑制作用を行うとともに、抑制電流
中の事故相差電流成分を検出電流中の事故相差電
流成分より小さくすることを特徴とする地絡回線
選択継電器。 6 前記補償電流および抑制電流を事故相が除か
れた同一相差電流または複数の事故相が除かれた
同一相差電流の合成電流に比例する電流とするこ
とを特徴とする特許請求の範囲第5項記載の地絡
回線選択継電器。 7 前記検出電流を3相の各相の同一相差電流の
逆相分とし、前記補償電流および抑制電流を3相
の各相の同一差電流の零相分に絶対値が1未満の
係数を乗じたものとすることを特徴とする特許請
求の範囲第5項記載の地絡回線選択継電器。 8 検出電流、補償電流、抑制電流(またはこれ
らに用いられる電流)と極性電圧(または極性電
流)の関数の事故変化分の値を用いることを特徴
とする特許請求の範囲第5項記載の地絡回線選択
継電器。 9 多回線併架の平行3相送電線の事故相差電流
(または事故相差電流を含む同一相差電流の合成
電流)より得た検出電流で地絡事故回線を検出す
る地絡回線選択継電器において、前記平行送電線
の同一相差電流(または同一相差電流の合成電
流)を抑制電流とし、この抑制電流(またはこれ
に用いる電流)と極性電圧(または極性電流)の
関数の事故変化分を用いた抑制作用を付加すると
ともに、抑制電流中の事故相差電流成分を検出電
流中の事故相差電流成分より小さくすることを特
徴とする地絡回線選択継電器。
[Scope of Claims] 1. A ground fault circuit for detecting a single-phase ground fault line with a current obtained by compensating the fault change in the detected current obtained from a parallel three-phase power transmission line with multiple circuits installed by the fault change in the compensation current. The fault line selection relay is such that the detection current is a current obtained from the fault phase difference current of the parallel transmission line (or a composite current of the same phase difference current including the fault phase difference current), and the compensation current is obtained from the same phase difference current (of the fault phase difference current) of the parallel transmission line. or a composite current of the same phase difference current), and makes the fault phase difference current component in the compensation current smaller than the fault phase difference current in the detection current. 2. The compensation current according to claim 1, wherein the compensation current is a current proportional to the same phase difference current from which a fault phase is removed or a composite current of the same phase difference current from which a plurality of fault phases are removed. Fault line selection relay. 3 The detection current is the negative phase portion of the same phase difference current of each of the three phases, and the compensation current is the zero phase portion of the same phase difference current of each of the three phases multiplied by a coefficient whose absolute value is less than 1. Claim 1 characterized in that
Ground fault line selection relay as described in section. 4. Ground fault line selection according to claim 1, characterized in that the value of the fault change in the function of the detection current, the compensation current (or the current used for these) and the polarity voltage (or the polarity current) is used. relay. 5. A one-phase ground fault line is detected using a current obtained by compensating the fault change in the detected current obtained from the parallel three-phase transmission line with multiple circuits by the fault change in the compensation current, and the detected current is The compensation current is a current obtained from the same phase difference current (or a composite current of the same phase difference current) of the parallel transmission line. In addition, in a ground fault line selection relay where the fault phase difference current component in the compensation current is smaller than the fault phase difference current in the detection current, the current obtained from the same phase difference current (or composite current of the same phase difference current) of the parallel transmission line is suppressed. A ground fault line selection relay characterized in that it performs a suppressing action based on a fault change in the suppressing current, and makes a fault phase difference current component in the suppressing current smaller than a fault phase difference current component in the detection current. 6. Claim 5, characterized in that the compensation current and the suppression current are currents that are proportional to the same phase difference current from which a fault phase has been removed or to a composite current of the same phase difference current from which a plurality of fault phases have been removed. Ground fault line selection relay as described. 7 The detection current is the negative phase portion of the same phase difference current of each of the three phases, and the compensation current and suppression current are the zero phase portion of the same phase difference current of each of the three phases multiplied by a coefficient whose absolute value is less than 1. 6. The ground fault line selection relay according to claim 5, wherein the ground fault line selection relay is characterized in that: 8. The method according to claim 5, characterized in that the value of the accidental change in the function of the detection current, compensation current, suppression current (or current used for these) and polarity voltage (or polarity current) is used. Fault line selection relay. 9 In a ground fault line selection relay that detects a ground fault fault line using a detection current obtained from a fault phase difference current (or a composite current of the same phase difference current including the fault phase difference current) of a parallel three-phase transmission line with multiple circuits installed, the above-mentioned A suppression effect that uses the same phase difference current (or composite current of the same phase difference current) of parallel transmission lines as the suppression current, and uses the fault change of the function of this suppression current (or the current used for this) and polarity voltage (or polarity current). What is claimed is: 1. A ground fault line selection relay characterized in that the fault phase difference current component in the suppression current is made smaller than the fault phase difference current component in the detection current.
JP14174381A 1981-09-10 1981-09-10 Ground-fault channel selecting relay Granted JPS5846832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14174381A JPS5846832A (en) 1981-09-10 1981-09-10 Ground-fault channel selecting relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14174381A JPS5846832A (en) 1981-09-10 1981-09-10 Ground-fault channel selecting relay

Publications (2)

Publication Number Publication Date
JPS5846832A JPS5846832A (en) 1983-03-18
JPH0357691B2 true JPH0357691B2 (en) 1991-09-03

Family

ID=15299161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14174381A Granted JPS5846832A (en) 1981-09-10 1981-09-10 Ground-fault channel selecting relay

Country Status (1)

Country Link
JP (1) JPS5846832A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2505414A1 (en) 2011-03-29 2012-10-03 Honda Motor Co., Ltd. Motorcycle having an anti-slit device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2558884B2 (en) * 1989-08-17 1996-11-27 九州電力株式会社 Distribution line ground fault protection device
JP2558885B2 (en) * 1989-08-17 1996-11-27 九州電力株式会社 Distribution line ground fault protection device
JP2530963B2 (en) * 1991-12-27 1996-09-04 日立機装株式会社 Press equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2505414A1 (en) 2011-03-29 2012-10-03 Honda Motor Co., Ltd. Motorcycle having an anti-slit device

Also Published As

Publication number Publication date
JPS5846832A (en) 1983-03-18

Similar Documents

Publication Publication Date Title
US7319576B2 (en) Apparatus and method for providing differential protection for a phase angle regulating transformer in a power system
US7660088B2 (en) System, apparatus and method for compensating the sensitivity of a sequence element in a line current differential relay in a power system
CA1247225A (en) Protective relaying apparatus for providing fault- resistance correction
WO2006130722A2 (en) An apparatus and method for determining a faulted phase of a three-phase ungrounded power system
CN110320432B (en) Single-phase line-breaking fault detection and protection method and system
US20150124358A1 (en) Feeder power source providing open feeder detection for a network protector by shifted neutral
JPH0357691B2 (en)
JP2005039956A (en) Protective relay device
CN109546631B (en) Distance protection method suitable for cross-voltage grade cross-line fault of same-tower four-circuit line
Alexander et al. Ground distance relaying: Problems and principles
JPH01190215A (en) Phase selector
JP2997525B2 (en) Disconnection / open phase detection device
JP3234913U (en) Selection of zero-phase current flowing through the ground wire of high-voltage cable
WO2024057442A1 (en) Transformer protection relay and transformer protection method
Phyu Study and Analysis of Double-Line-To-Ground Fault
Makwana et al. Digital distance relaying scheme for parallel transmission lines during inter-circuit faults
JPH0332285B2 (en)
JP2577364B2 (en) 1-line ground fault detection relay system
JP2594682B2 (en) Transformer protection relay
Hoang et al. Development of a Directional Element for Solar Inverter-Rich Distribution Networks
Wang et al. A Communication-Assisted Distance Protection for AC Microgrids considering the Fault-Ride-Through Requirements of Distributed Generators
CN110346689A (en) The detection method of ground fault in neutral point non-direct grounding system
JPH0437650B2 (en)
JPH02266817A (en) Power system-protective relay
JPH0517772B2 (en)