JPH0357426A - Eyeground inspection device - Google Patents

Eyeground inspection device

Info

Publication number
JPH0357426A
JPH0357426A JP1191314A JP19131489A JPH0357426A JP H0357426 A JPH0357426 A JP H0357426A JP 1191314 A JP1191314 A JP 1191314A JP 19131489 A JP19131489 A JP 19131489A JP H0357426 A JPH0357426 A JP H0357426A
Authority
JP
Japan
Prior art keywords
light
fundus
eye
laser light
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1191314A
Other languages
Japanese (ja)
Inventor
Koji Kobayashi
幸治 小林
Shu Yoshizawa
周 吉澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kowa Co Ltd
Original Assignee
Kowa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kowa Co Ltd filed Critical Kowa Co Ltd
Priority to JP1191314A priority Critical patent/JPH0357426A/en
Publication of JPH0357426A publication Critical patent/JPH0357426A/en
Pending legal-status Critical Current

Links

Landscapes

  • Eye Examination Apparatus (AREA)

Abstract

PURPOSE:To eliminate a reflected light at the front eye part under an optimum condition with the luminous flux control means and to always obtain an eyeground image of a high contrast by receiving a reflected light from an eyeground scanned and illuminated with a first and a second optical deflectors, through a selected light shielding element. CONSTITUTION:The reflected light from an eyeground is reflected and led by an objective mirror 17, a mirror 16 and a galvanomirror 15, passes through a luminous flux separating means 12, and thereafter, is condensed onto the light receiving surface of a photodetector 21 such as a photoelectric multiplier by lenses 19, 20. Between the lenses 19, 20, a luminous flux control means 22 for eliminating an unnecessary reflected light by the front eye part of an eye 18 to be examined, and allowing only a reflected light from the eyeground to pass through is arranged. The luminous flux limiting means 22 has black spots of different sizes, etc., and can select arbitrarily one window plate by a turret type structure. Between the lens 20 and the photodetector 21, a detection opening 23 for eliminating an unnecessary scattered light from other part than the eyeground, and enhancing the contrast of an eyeground image is arranged, and also, in front of the photodetector 21, a filter 24 for allowing only a light beam of necessary wavelength to pass through is arranged. By the turret type structure, the filter of an arbitrary characteristic can be selected.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、眼底検査装置、特に光源としてレーザ光を用
い、そのビームを二次元的に偏向走査して被検眼の眼底
に照射し、眼底からの反射光を受光して充電変換して処
理することにより眼底情報を得る電子的な検眼装置に関
する6ので、特にその改良に関するものである. [従来の技術1 従来より、眼底を検査するためには検眼鏡と称される機
器を用いて医師が直接患者の眼底を観察する方法,およ
び眼底カメラという特殊カメラによって写真撮影する方
法が広く行なわれている.また、近年の電子技術の発達
に伴い、従来の眼底カメラの写真フィルムの代りに撮像
管などの光電変換素子を用いて眼底情報を直接電気信号
として取り出し、処理して記憶したり、TVモニタ上に
表示したりすることが行なわれている.そのような中で
、米国において最初に開発されたレーザ走査による電子
的な検眼装置(米国特許第4213678号およびアブ
ライド・オブティクス(Applied Optics
)  Vol.l9  (+980)  p.2991
−を参照)は極めて多くの特徴を有しており、注目され
ている. すなわち,古く試みられたC R T (Cathod
e−Ray Tube)による飛点走査型の眼底撮像装
置における光源4をレーザに置き換えたこと、および入
射光を瞳孔中心部の小さな領域に制限し,眼底からの反
射光を瞳孔周辺の広い領域から取り出し、光電変換して
増幅することによって低照度で高いSN比の眼底像をリ
アルタイムでTVモニタ上に映し出せるようにしたこと
、かつ蛍光眼底撮影において静注する蛍光剤の量を大幅
に低減できるようになったことである.また、照射する
走査光を変調することによって眼底像を観察しながら網
膜機能を検査する、いわば眼底視野・視覚検査として活
用できること,さらにレーザ光の深焦点深度、偏光によ
る角膜反射の除去、単色性の利用,治療機FfIi(コ
アギュレータ)への発展といった点できわめて優れた診
断装置となり得る可能性を提供している. この新しいタイプの検眼装置はその後各国の研究グルー
プによって多くの追試と改善が試みられたが、本出願人
は先にレベルの高いきわめて進歩的な検眼装置を発明開
発し、出願を行なっている(特開昭第64−58237
号公報を参照)。この発明によれば、眼底からの反射光
を検出する受光素子の前面にスリットを配置し、その検
出スリットと周辺光学系の採用によって不要散乱光の影
響が排除される。従って,高コントラスト、高SN比の
眼底画像が低照度の照明によって得られるとともに、信
頼性,操作性なども含めてきわめて優れたレーザ走査に
よる眼底検査装置を実現することができる. [発明が解決しようとする課題] しかし、本出願人によるその後の実験研究によれば、被
検者に特に角膜・水晶体などに混濁がある場合、この種
の装置は被検眼前眼部での反射光の影響を受けやすく、
得られる眼底画像のコントラストが低下する場合のある
ことがわかった.すなわち、この種の装置では入射レー
ザ光を瞳孔中心部の小さな領域に制限し、眼底からの反
射光を瞳孔と共役位置においてその中心部分を遮光し、
瞳孔周辺部分からの光のみを検出している.従って、被
検眼前眼部が充分に透明な被検者の場合、l艮底からの
反射光束の中心部を遮光する面積はかなり小さくてよい
が、前眼部混濁などのある被検者の場合、その面積は比
較的大きくしなければならない.また、前眼部からの反
射光といっても角膜部分からの反射光と水晶体部分から
の反射光とでは異なるため、そのいずれの部分からの反
射光も充分に遮光しなければならない。これら前眼部か
らの反射光の遮光が不充分な場合、その不要な反射光が
検出光に混入して眼底画像のコントラストが低下するこ
とになる. さらに、この遮光を行なうために必要な遮光面積はあく
までも被検眼瞳孔の散瞳状態とのかね合いで決めなけれ
ばならず、その面積は検出光量を減らしてSN比を低下
させないためにも最低の大きさであることが望ましい.
特開昭第64−58237号公報に示された装置の光学
系では、被検眼前眼部(瞳孔)と共役位置に置かれた小
さなミラーによって瞳孔の反射光を除去していた.とこ
ろが、このミラーは眼底への照射レーザ光と眼底からの
反射検出光とを分離する役割を果たしているため光学系
の制約が厳しく,被検眼前眼部の特性によって選択的か
つ柔軟に対応するということが困難だった6 一方,特開昭第64−58237号公報に示された装置
では最終的にレーザ光を対物レンズによって被検眼に照
射していたが,レンズであるため必然的にその表面から
の反射光が検出光に混入して、画像のコントラストを低
下させることになる.このため,黒点によってその反射
光の影響を除去していたが,この種の黒点は検出すべき
眼底からの信号光の一部をも遮ることになり、検出光量
の低下すなわちSN比の低下を招くとともに、その位置
決め調整も困難であるという欠点を有していた。
Detailed Description of the Invention [Industrial Field of Application] The present invention relates to an ophthalmoscopy device, in particular, which uses a laser beam as a light source, deflects and scans the beam two-dimensionally, and irradiates the fundus of the eye to be examined. This article relates to an electronic optometry device that obtains fundus information by receiving, charging, converting, and processing reflected light from the ophthalmoscope, and is particularly concerned with improvements thereto. [Conventional technology 1] Conventionally, in order to examine the fundus of the eye, a method has been widely used in which a doctor directly observes the fundus of a patient using an instrument called an ophthalmoscope, and a method in which the fundus is photographed using a special camera called a fundus camera. It is. In addition, with the recent development of electronic technology, it is now possible to directly extract fundus information as an electrical signal using a photoelectric conversion element such as an image pickup tube instead of the photographic film of a conventional fundus camera, process and store it, or display it on a TV monitor. It is also being displayed on the screen. Under such circumstances, electronic optometry devices using laser scanning that were first developed in the United States (US Pat. No. 4,213,678 and Applied Optics
) Vol. l9 (+980) p. 2991
-) has many characteristics and is attracting attention. That is, C R T (Cathod
The light source 4 in the flying spot scanning type fundus imaging device (e-Ray Tube) was replaced with a laser, and the incident light was limited to a small area in the center of the pupil, and the reflected light from the fundus was diverted from a wide area around the pupil. By taking it out, photoelectrically converting it, and amplifying it, it is now possible to display a fundus image with a high signal-to-noise ratio in low illumination on a TV monitor in real time, and it is also possible to significantly reduce the amount of fluorescent agent injected intravenously in fluorescence fundus photography. This is what happened. In addition, by modulating the scanning light to be irradiated, the retinal function can be examined while observing the fundus image, in other words, it can be used as a fundus visual field/visual test.In addition, the deep focal depth of the laser beam, the removal of corneal reflection due to polarization, and the monochromaticity. It offers the possibility of becoming an extremely excellent diagnostic device in terms of its use and development into a treatment device FfIi (coagulator). This new type of optometry device has since undergone many additional trials and improvements by research groups in various countries, but the applicant has previously invented and developed a highly advanced, highly advanced optometry device and has filed an application. Japanese Patent Publication No. 64-58237
(see publication). According to this invention, a slit is arranged in front of a light receiving element that detects reflected light from the fundus, and the influence of unnecessary scattered light is eliminated by employing the detection slit and a peripheral optical system. Therefore, it is possible to obtain a fundus image with high contrast and a high signal-to-noise ratio using low-intensity illumination, and to realize a fundus examination device using laser scanning that has excellent reliability and operability. [Problems to be Solved by the Invention] However, according to subsequent experimental research by the present applicant, this type of device has problems in the anterior segment of the subject's eye when the subject has opacity, particularly in the cornea or crystalline lens. susceptible to reflected light,
It was found that the contrast of the obtained fundus image may decrease. That is, in this type of device, the incident laser light is limited to a small area at the center of the pupil, and the reflected light from the fundus is blocked at the center at a position conjugate with the pupil.
Only light from the area around the pupil is detected. Therefore, in the case of a subject with a sufficiently transparent anterior segment of the subject's eye, the area that blocks the center of the reflected light flux from the base of the eye may be quite small, but in the case of a subject with anterior segment opacity, etc. In this case, the area must be relatively large. Furthermore, since the light reflected from the anterior segment of the eye is different from the light reflected from the cornea and from the crystalline lens, the light reflected from either of these parts must be sufficiently blocked. If the reflected light from the anterior segment of the eye is insufficiently blocked, the unnecessary reflected light will mix into the detected light, reducing the contrast of the fundus image. Furthermore, the light-shielding area necessary to perform this light-shielding must be determined in consideration of the mydriatic state of the pupil of the eye to be examined, and the area must be set to the minimum value in order to avoid reducing the amount of detected light and lowering the S/N ratio. It is desirable that the size be the same.
In the optical system of the device disclosed in Japanese Patent Application Laid-Open No. 64-58237, light reflected from the pupil is removed by a small mirror placed at a position conjugate with the anterior segment (pupil) of the subject's eye. However, since this mirror plays the role of separating the laser beam irradiated to the fundus of the eye and the detection light reflected from the fundus, there are severe restrictions on the optical system, and it is said that this mirror can be used selectively and flexibly depending on the characteristics of the anterior segment of the eye being examined. 6 On the other hand, in the device disclosed in Japanese Patent Application Laid-open No. 64-58237, the laser beam was ultimately irradiated onto the subject's eye using an objective lens, but since it was a lens, it was necessary to The reflected light from the sensor will mix into the detected light, reducing the contrast of the image. For this reason, the influence of the reflected light was removed by using sunspots, but this type of sunspots also block part of the signal light from the fundus that should be detected, resulting in a decrease in the amount of detected light and a decrease in the S/N ratio. In addition, the positioning adjustment is also difficult.

本発明の目的は、上記問題点を解決するためになされた
ちので、被検者の条件によって前眼部反射光の除去を最
適に調整することができ、検出光量の損失も少なく、角
膜,水晶体などの混濁のある患者でも高いコントラスト
の眼底画像が得られる新しい実用的なレーザ走査による
眼底検査装置を実現することにある. [課題を解決するための千段] 本発明は,このような課題を解決するために、レーザ光
源からのレーザ光を二次元的に走査して被検眼の眼底に
照射し、眼底からの反射光を受光素子により受光して光
電変換することにより眼底情報を得る眼底検査装置にお
いて、単一または複数の波長のレーザ光を発生するレー
ザ光源と、前記レーザ光を1方向に所定周波数で走査す
るための第1の光偏向器と、前記レーザ光を前記第1の
光偏向器の走査方向とは直交する方向に前記周波数より
も低い周波数で走査するための第2の光偏向器と,被検
眼前眼部と光学的にほぼ共役な位置にあり、それぞれが
遮光特性の異なる複数の選択可能な遮光素子からなる光
束制限手段とを設け、前記第1と第2の光偏向器によっ
て走査され照明された眼底からの反射光を前記選択され
た遮光素子を介して受光する構成を採用した. 更に、本発明では、レーザ光源からのレーザ光を二次元
的に走査して被検眼の眼底に照射し、眼底からの反射光
を受光素子により受光して光電変換することにより眼底
情報を得る眼底検査装置において、単一または複数の波
長のレーザ光を発生するレーザ光源と、前記レーザ光を
1方向に所定周波数で走査するための第1の光偏向器と
、前記レーザ光を前記第1の光偏向器の走査方向とは直
交する方向に前記周波数よりも低い周波数で走査するた
めの第2の光偏向器と、前記光偏向器によって生成され
た二次元的な走査光を被検眼眼底に照射するための対物
ミラーと、被検眼前眼部と光学的に共役またはほぼ共役
な位置にあり、それぞれが遮光特性の異なる複数の選択
可能な遮光素子を有する光束制限手段と、被検眼眼底と
光学的にほぼ共役な位置に配置された検出開口とを有す
る構成も採用した. また、レーザ光源からのレーザ光を二次元的に走査して
被検躍の眼底に照射し,眼底からの反射光を受光素子に
より受光して光電変換することにより明底情報を得る眼
底検査装置において、単一または複数の波長のレーザ光
を発生するレーザ光源と、前記レーザ光を1方向に所定
周波数で走査するための第1の光偏向器と、前記レーザ
光を前記第1の光偏向器の走査方向とは直交する方向に
前記周波数よりも低い周波数で走査するための第2の光
偏向器と、被検眼眼底への照射光と眼底からの反射光と
を互いに分離するための、それぞれが分離特性の異なる
?3f数の選択可能な光束分離素子からなる光束分離手
段と,眼底からの反射光を受光する受光素子の前面に配
置され、それぞれが異なる帯域特性を有する複数の選択
可能な光学フィルタとを有する構成も採用している.[
作 用] 以上の構成によれば、被検者の眼の特性に応じて前眼部
での反射光を光束制限手段によって最適な条件で排除で
きるため、常にコントラストの高い眼底画像が得られる
.また、撮像目的によって光束分離手段とフィルタを容
易に選択設定できるため、操作性も高い.さらに対物ミ
ラーを用いたことによって、対物レンズの場合のように
その表面反射除去のための黒点は不要であり、光学系の
効率が高く、検出開口の効果も含めてSNi5よびコン
トラストのよい高画質の撮像機能を実現することができ
る. [実施例] 以下、第1図〜第5図に示す実施例に基づき、本発明を
詳細に説明する. 第1図には本発明による傅底検査装置の光学系の全体的
な概略構成が示与されている6図において符号lで示す
ものはアルゴン(Ar”).ヘリウムネオン( H e
 − N e )または半導体などのレーザ光源である
.レーザ光源からのレーザ光束2はビームエキスバンタ
3によって所定の大きさに拡大された後ミラー4で折り
返され,レンズ5に入射する.レンズ5はそれに続く音
響光学偏向素子( Acousto−Optic De
flector ,以下AODという)6の矩形状開口
にレーザビームを整形して入射するためのもので、複数
の円筒レンズの組合せを含んでいる. AOD6の前後にはレーザビームに対するAODの入射
角および出射角の光波長依存性を補正するために、プリ
ズム7、8が配置される.ただし、このプリズムはレー
ザ光束として単色のもののみを利用する場合には必ずし
も必要ではない.AODは信号源6″に従って動作し、
例えば通常のテレビの水平走査に対応する15.75k
}lzの周波数でレーザビームを偏向走査する.AOD
によって一次元方向(水平方向)の偏向を受けたレーザ
光は、レンズ5と類似の構成を有するレンズ9によって
AODの開口に適した矩形状光束から本来の円形光束に
整形される.レンズ9より出射した走査光はレンズ10
、11を通過し、続く光束分離千段l2によってその一
部が反射され、一部は通過する。光束分離十段l2は後
に説明するように、平板型の無偏向ビームスブリッタま
たは偏向ビームスブリッタあるいはダイクロックミラー
などで構成され、そのいずれか1つをターレット式の構
造によって必要に応じて選択できるようになっている。
The purpose of the present invention has been made to solve the above-mentioned problems, so that it is possible to optimally adjust the removal of the anterior segment reflected light according to the conditions of the subject, there is little loss in the amount of detected light, and the cornea and crystalline lens are Our objective is to realize a new practical ophthalmoscopy device using laser scanning that can obtain high-contrast fundus images even in patients with opacity. [A Thousand Steps to Solve the Problems] In order to solve these problems, the present invention aims to two-dimensionally scan laser light from a laser light source, irradiate the fundus of the eye to be examined, and detect the reflection from the fundus. A fundus examination apparatus that obtains fundus information by receiving light with a light-receiving element and photoelectrically converting it, includes a laser light source that generates laser light of a single or multiple wavelengths, and scans the laser light in one direction at a predetermined frequency. a first optical deflector for scanning the laser beam at a frequency lower than the frequency in a direction perpendicular to the scanning direction of the first optical deflector; A light flux limiting means is provided which is located at a position optically substantially conjugate with the anterior segment of the eye and is composed of a plurality of selectable light shielding elements each having a different light shielding property, and is scanned by the first and second optical deflectors. A configuration was adopted in which the reflected light from the illuminated fundus of the eye was received through the selected light shielding element. Furthermore, in the present invention, the fundus of the eye is scanned two-dimensionally with laser light from a laser light source, and the fundus of the eye to be examined is irradiated, and the reflected light from the fundus is received by a light receiving element and photoelectrically converted, thereby obtaining fundus information. The inspection device includes: a laser light source that generates laser light of a single wavelength or a plurality of wavelengths; a first optical deflector that scans the laser light in one direction at a predetermined frequency; a second optical deflector for scanning at a frequency lower than the frequency in a direction perpendicular to the scanning direction of the optical deflector; and a two-dimensional scanning light generated by the optical deflector to the fundus of the eye to be examined. an objective mirror for irradiation; a light flux limiting means having a plurality of selectable light-shielding elements each having a different light-shielding property and located at a position optically conjugate or nearly conjugate with the anterior segment of the eye to be examined; and a fundus of the eye to be examined. We also adopted a configuration with a detection aperture located at an almost optically conjugate position. In addition, a fundus examination device that scans the laser light from a laser light source two-dimensionally and irradiates the fundus of the eye to be examined, and obtains bright fundus information by receiving the reflected light from the fundus with a light receiving element and photoelectrically converting it. a laser light source that generates laser light of a single wavelength or a plurality of wavelengths; a first optical deflector for scanning the laser light in one direction at a predetermined frequency; a second optical deflector for scanning at a frequency lower than the frequency in a direction perpendicular to the scanning direction of the instrument; and a second optical deflector for separating light irradiated onto the fundus of the eye to be examined and light reflected from the fundus from each other. Do they each have different separation characteristics? A configuration including a beam separation means consisting of a selectable beam separation element with a number of 3 f, and a plurality of selectable optical filters each having a different band characteristic and arranged in front of a light receiving element that receives reflected light from the fundus of the eye. is also adopted. [
Effect] According to the above configuration, the reflected light at the anterior segment of the eye can be eliminated under optimal conditions by the light flux limiting means according to the characteristics of the subject's eye, so a fundus image with high contrast can always be obtained. It also has high operability, as the beam separation means and filter can be easily selected and set depending on the imaging purpose. Furthermore, by using an objective mirror, there is no need for a black dot to remove surface reflections, as is the case with objective lenses, and the efficiency of the optical system is high, resulting in high image quality with SNi5 and good contrast, including the effect of the detection aperture. It is possible to realize the following imaging functions. [Example] Hereinafter, the present invention will be explained in detail based on the example shown in FIGS. 1 to 5. FIG. 1 shows the overall schematic configuration of the optical system of the bottom inspection device according to the present invention. In FIG.
- Ne) or a laser light source such as a semiconductor. A laser beam 2 from a laser light source is expanded to a predetermined size by a beam expander 3, then reflected by a mirror 4, and enters a lens 5. The lens 5 has an acousto-optic deflection element (acousto-optic deflection element) following it.
A reflector (hereinafter referred to as AOD) 6 is used to shape and input a laser beam into a rectangular aperture, and includes a combination of multiple cylindrical lenses. Prisms 7 and 8 are placed before and after the AOD 6 in order to correct the light wavelength dependence of the incident angle and output angle of the AOD with respect to the laser beam. However, this prism is not necessarily necessary when using only a monochromatic laser beam. The AOD operates according to signal source 6″;
For example, 15.75k, which corresponds to the horizontal scanning of a normal TV.
} Deflect and scan the laser beam at a frequency of lz. AOD
The laser beam that has been deflected in a one-dimensional direction (horizontal direction) is shaped by a lens 9 having a configuration similar to that of the lens 5 from a rectangular beam suitable for the aperture of the AOD to an original circular beam. The scanning light emitted from lens 9 is transmitted to lens 10.
, 11, part of it is reflected by the subsequent thousand light beam separation stages l2, and part of it passes through. As will be explained later, the ten-stage beam splitter l2 is composed of a flat plate type non-polarizing beam splitter, a polarizing beam splitter, a dichroic mirror, etc., and any one of them can be selected as necessary using a turret type structure. It has become.

光束分離千段l2を通過したレーザ光はフォトダイオー
ドなどの受光素子l3に入射し、その出力信号はレーザ
光量のモニタのために利用される.一方、光束分離手段
l2によって反射されたレーザ光はガルバノメータ14
に装着されたミラー(ガルバノミラー)15に導かれる
.ガルバノミラーl5は信号源14”に従って動作し、
例えばテレビの垂直走査に対応する60Hzの周波数で
レーザビームを偏向走査するもので,その走査方向はA
OD6による走査方向と直交している。従って、テレビ
の走査線に対応する二次元的なレーザラスターが形成さ
れ,それはミラーI6および対物ミラーl7によって反
射され、被検眼18の瞳孔中心部を通って眼底に投射さ
れる. 第1図に点線で示した眼底からの反射光は再び対物ミラ
ー17.  ミラー16、ガルバノミラ−15で反射さ
れて導かれ、光束分離千段12を通過した後レンズ19
.20によって光電子増倍管などの受光素子2lの受光
面上に集められる。対物ミラー17を用いたこのような
光学系においては、先に本出願人が特開昭第64−58
237号公報において示した光学系のように対物レンズ
の表面反射を除去するための黒点は不要であり、黒点に
よる光量損失や位置決めの問題が全くない。
The laser light that has passed through the thousand beam separation stages l2 enters a light receiving element l3 such as a photodiode, and its output signal is used to monitor the amount of laser light. On the other hand, the laser beam reflected by the beam separation means l2 is transmitted to the galvanometer 14.
guided by a mirror (galvano mirror) 15 attached to the Galvanometer mirror l5 operates according to signal source 14'';
For example, a laser beam is deflected and scanned at a frequency of 60Hz, which corresponds to the vertical scanning of a television, and the scanning direction is A.
It is perpendicular to the scanning direction by OD6. Therefore, a two-dimensional laser raster corresponding to the television scanning line is formed, which is reflected by the mirror I6 and the objective mirror I7, and is projected onto the fundus through the center of the pupil of the eye 18 to be examined. The reflected light from the fundus, indicated by the dotted line in FIG. 1, returns to the objective mirror 17. It is reflected by a mirror 16 and a galvanometer mirror 15 and guided, and after passing through a thousand light beam separation stages 12, a lens 19
.. 20, the electrons are collected on the light receiving surface of a light receiving element 2l such as a photomultiplier tube. In such an optical system using the objective mirror 17, the present applicant previously proposed Japanese Patent Application Laid-open No. 64-58.
Unlike the optical system shown in Japanese Patent No. 237, there is no need for a black dot to eliminate surface reflection of the objective lens, and there is no problem with light quantity loss or positioning due to a black dot.

レンズl9と20の間には被検眼18の前眼部での不要
反射光を除去し、眼底からの反射光のみを通過させるた
めの光束制限千段22が配置される.光束制限手段22
は後に説明するように大きさの異なる黒点などを有する
複数の透明な窓板で構成され、光束分離千段l2と同様
なターレット式の構造によって複数の中から1つの窓板
を任意に選択できるようになっている.レンズ20と受
光素子21の間には眼底以外からの不要散乱光を排除し
、眼底画像のコントラストを上げるための検出開口(ス
リット)23が配置され、また受光素子2lの前面には
必要な波長の光のみを通過させるためのフィルタ24が
配置される.フィルタ24は光束分離千段12i5よび
光東制限手段22と同様のターレット式構造によって、
任意の特性のフィルタを選択できるようになっている.
なお,第1図からも明らかなようにガルバノミラ−15
と光束制限手段2215よび受光素子l3は被検眼l8
の瞳孔と光学的に共役な位置に配置される.また、受光
素子2lの受光面は被検眼瞳孔と光学的に共役な位置、
あるいはその近くの位置におかれる. 第2図はすでに説明した第1図の光学系の、特に受光系
部分について、第1図よりもより現実の配置に近い形で
再現した構成図である.第2図においてAOD (第2
図では不図示)によって一次元(水平)方向に偏向され
たレーザ光はレンズ11に入射し、光束分離千段l2で
反射されてガルバノミラーl5に導かれる.ガルバノミ
ラl5はレーザ光をAODによる走査方向とは直交する
方向(垂直方向)に偏向し、二次元的なレーザラスター
が生成される.第2図においてAODによる走査方向(
水平方向)とは第2図の紙面に垂直であり、一方ガルバ
ノミラ−15による走査方向(垂直方向)とは第2図の
紙面に水平であることを意味する.ガルバノミラー15
で反射されたレーザ光はミラーl6、対物ミラー17に
よって導かれて被検眼l8の眼底に照射され、眼底から
の反射光(第2図では点線で図示)は入射光と同じ対物
ミラーl7、l6、15を通って返ってくる. 光束分離千段l2を通過して入射光と分離された眼底か
らの反射光は、レンズ19、光束制限手段22、レンズ
20、スリット23、フィルタ24を通過して受光素子
2lまで導かれ、そこで光電変換されて画像信号が得ら
れる。第2図においてガルバノミラ−15から受光素子
2lまでの点線で示された眼底からの反射光は水平方向
のみに走査される状態にあり、従って光束は光学系の中
心軸に沿った形で、あたかも走査されていないように描
かれている。この図から明らかなように,スリット23
は、被検眼18の眼底と光学的に共役な位置に配置され
,特に眼球光学系からの不要敗乱光を除去するという役
割を果たしている。すでに述べたように、光束分離手段
!2.光束制限手段22およびフィルタ24はいずれも
特性の異なる複数の光学部品を有するターレット式の構
造になっており、それぞれの回転軸12′22′、24
′を中心に回転し、必要に応じて最適な特性の光学部品
を容易に選択できるようになっている. 第3図は光束分離千段l2の構成を具体的に示したもの
である.第3図では3種類の光学部品が示されているが
、12aのグイクロックミラーは例えばArゝレーザの
4 8 8 nmの波長の光を光源として,蛍光眼底撮
影を行なう場合に利用するものである。このダイクロッ
クミラーは、およそ5 0 0 nm以下の波長の光を
99%以上反射し、それ以上の波長の光は90%以上透
過するような特性のものが望ましい.2番目の偏光ビー
ムスブリッタ12bは、例えばAr4レーザの514.
5nmの波長の光に対してS偏光成分を反射し、P偏光
成分を透過する特性のもので,これは眼底を単色で、特
に偏光特性を考慮して撮像する場合に利用する.3番目
の無偏光ビームスブリッタ12cは波長や偏光成分に関
係なく例えば約25%の光を反射し、約75%の光を透
過するような特性のものを用いる.
Between the lenses 19 and 20, a luminous flux limiting stage 22 is arranged to remove unnecessary reflected light from the anterior segment of the eye 18 to be examined and to allow only reflected light from the fundus to pass through. Luminous flux limiting means 22
As will be explained later, it is composed of multiple transparent window plates with sunspots etc. of different sizes, and one window plate can be arbitrarily selected from among the plurality using a turret-type structure similar to the 1,000-stage luminous flux separation l2. It looks like this. A detection aperture (slit) 23 is arranged between the lens 20 and the light receiving element 21 to eliminate unnecessary scattered light from sources other than the fundus and to increase the contrast of the fundus image. A filter 24 is arranged to allow only light to pass through. The filter 24 has a turret structure similar to the light beam separation stage 12i5 and the optical limiter 22,
Filters with arbitrary characteristics can be selected.
Furthermore, as is clear from Fig. 1, the galvanometer mirror 15
The light flux limiting means 2215 and the light receiving element l3 are connected to the eye to be examined l8.
It is placed at a position that is optically conjugate with the pupil of the eye. Further, the light receiving surface of the light receiving element 2l is located at a position optically conjugate with the pupil of the eye to be examined.
Or be placed nearby. FIG. 2 is a configuration diagram that reproduces the optical system shown in FIG. 1 already explained, especially the light receiving system, in a form closer to the actual arrangement than in FIG. 1. In Figure 2, AOD (second
The laser beam is deflected in a one-dimensional (horizontal) direction by a beam splitter (not shown), enters the lens 11, is reflected by a thousand beam separation stages l2, and is guided to a galvanometer mirror l5. The galvano mirror 15 deflects the laser beam in a direction (vertical direction) perpendicular to the scanning direction by the AOD, and a two-dimensional laser raster is generated. In Figure 2, the scanning direction by the AOD (
The term "horizontal direction" means perpendicular to the paper surface of FIG. 2, while the scanning direction (vertical direction) by the galvanometer mirror 15 means horizontal to the paper surface of FIG. Galvano mirror 15
The laser beam reflected by the fundus is guided by mirror l6 and objective mirror 17 and irradiated onto the fundus of the eye to be examined l8, and the reflected light from the fundus (indicated by dotted lines in FIG. 2) is guided by mirror l6 and objective mirror 17. , returns through 15. The reflected light from the fundus after passing through the thousand light beam separation stages l2 and being separated from the incident light passes through the lens 19, the light beam limiting means 22, the lens 20, the slit 23, and the filter 24, and is guided to the light receiving element 2l. An image signal is obtained through photoelectric conversion. In Fig. 2, the reflected light from the fundus of the eye, indicated by the dotted line from the galvanometer mirror 15 to the light receiving element 2l, is scanned only in the horizontal direction, so the light flux is aligned along the central axis of the optical system, as if It is depicted as unscanned. As is clear from this figure, the slit 23
is arranged at a position optically conjugate with the fundus of the eye 18 to be examined, and plays the role of specifically removing unnecessary scattered light from the ocular optical system. As already mentioned, luminous flux separation means! 2. Both the light flux limiting means 22 and the filter 24 have a turret-type structure having a plurality of optical components with different characteristics, and each of the light flux limiting means 22 and the filter 24 has a turret-type structure having a plurality of optical components having different characteristics.
It rotates around ′, making it easy to select optical components with optimal characteristics as needed. Figure 3 specifically shows the configuration of the 1,000-stage beam separation l2. In Fig. 3, three types of optical components are shown, and the google clock mirror 12a is used, for example, when performing fluorescence fundus photography using Ar laser light with a wavelength of 488 nm as a light source. be. This dichroic mirror preferably has characteristics such that it reflects 99% or more of light with a wavelength of about 500 nm or less, and transmits 90% or more of light with a wavelength longer than that. The second polarization beam splitter 12b is, for example, a 514.
It has the characteristic of reflecting the S-polarized component and transmitting the P-polarized component of light with a wavelength of 5 nm, and is used when imaging the fundus in a monochromatic manner, especially taking into account the polarization characteristics. The third non-polarizing beam splitter 12c has characteristics such that, for example, about 25% of the light is reflected and about 75% of the light is transmitted regardless of the wavelength or polarization component.

Claims (1)

【特許請求の範囲】 1)レーザ光源からのレーザ光を二次元的に走査して被
検眼の眼底に照射し、眼底からの反射光を受光素子によ
り受光して光電変換することにより眼底情報を得る眼底
検査装置において、 単一または複数の波長のレーザ光を発生するレーザ光源
と、 前記レーザ光を1方向に所定周波数で走査するための第
1の光偏向器と、 前記レーザ光を前記第1の光偏向器の走査方向とは直交
する方向に前記周波数よりも低い周波数で走査するため
の第2の光偏向器と、 被検眼前眼部と光学的にほぼ共役な位置にあり、それぞ
れが遮光特性の異なる複数の選択可能な遮光素子からな
る光束制限手段とを設け、前記第1と第2の光偏向器に
よって走査され照明された眼底からの反射光を前記選択
された遮光素子を介して受光することを特徴とする眼底
検査装置。 2)前記光束制限手段は、複数の遮光素子を周辺に所定
間隔隔てて配置した回転型の円板であり、円板の回転に
従って一つの遮光素子が光路に挿入されることを特徴と
する請求項第1項に記載の眼底検査装置。 3)前記遮光素子は、それぞれ大きさの異なる黒点を有
する透明な窓板から構成されることを特徴とする請求項
第1項または第2項に記載の眼底検査装置。 4)被検眼眼底への照射光と眼底からの反射光とを互い
に分離するための光束分離手段を設け、この光束分離手
段を光学特性の異なる複数の選択可能な光束分離素子か
ら構成することを特徴とする請求項第1項から第3項ま
でのいずれか1項に記載の眼底検査装置。 5)前記光束分離手段は、ダイクロイックミラー、偏光
ビームスプリッター及び無偏光ビームスプリッターの光
束分離素子を有することを特徴とする請求項第4項に記
載の眼底検査装置。 6)帯域特性の異なる複数の選択可能なフィルタ素子を
有するフィルタ手段を前記受光素子の前に配置し、選択
された光束分離素子に応じてフィルタ素子を選択するこ
とを特徴とする特許請求の範囲第1項から第5項までの
いずれか1項に記載の眼底検査装置。 7)レーザ光源からのレーザ光を二次元的に走査して被
検眼の眼底に照射し、眼底からの反射光を受光素子によ
り受光して光電変換することにより眼底情報を得る眼底
検査装置において、 単一または複数の波長のレーザ光を発生するレーザ光源
と、 前記レーザ光を1方向に所定周波数で走査するための第
1の光偏向器と、 前記レーザ光を前記第1の光偏向器の走査方向とは直交
する方向に前記周波数よりも低い周波数で走査するため
の第2の光偏向器と、 前記光偏向器によって生成された二次元的な走査光を被
検眼眼底に照射するための対物ミラーと、被検眼前眼部
と光学的に共役またはほぼ共役な位置にあり、それぞれ
が遮光特性の異なる複数の選択可能な遮光素子を有する
光束制限手段と、被検眼眼底と光学的にほぼ共役な位置
に配置された検出開口とを有することを特徴とする眼底
検査装置。 8)レーザ光源からのレーザ光を二次元的に走査して被
検眼の眼底に照射し、眼底からの反射光を受光素子によ
り受光して光電変換することにより眼底情報を得る眼底
検査装置において、 単一または複数の波長のレーザ光を発生するレーザ光源
と、 前記レーザ光を1方向に所定周波数で走査するための第
1の光偏向器と、 前記レーザ光を前記第1の光偏向器の走査方向とは直交
する方向に前記周波数よりも低い周波数で走査するため
の第2の光偏向器と、 被検眼眼底への照射光と眼底からの反射光とを互いに分
離するための、それぞれが分離特性の異なる複数の選択
可能な光束分離素子からなる光束分離手段と、 眼底からの反射光を受光する受光素子の前面に配置され
、それぞれが異なる帯域特性を有する複数の選択可能な
光学フィルタとを有することを特徴とする眼底検査装置
[Scope of Claims] 1) Two-dimensional scanning of laser light from a laser light source is applied to the fundus of the eye to be examined, and the reflected light from the fundus is received by a light-receiving element and photoelectrically converted to obtain fundus information. A fundus examination apparatus comprising: a laser light source that generates laser light of a single wavelength or a plurality of wavelengths; a first optical deflector that scans the laser light in one direction at a predetermined frequency; a second optical deflector for scanning at a frequency lower than the frequency in a direction perpendicular to the scanning direction of the first optical deflector; is provided with a light flux limiting means consisting of a plurality of selectable light shielding elements having different light shielding properties, and the light flux limiting means is configured to pass the reflected light from the fundus scanned and illuminated by the first and second light deflectors to the selected light shielding element. An ophthalmoscopy device characterized by receiving light through the ophthalmoscope. 2) The light flux limiting means is a rotating disc having a plurality of light shielding elements arranged at predetermined intervals around the periphery, and one light shielding element is inserted into the optical path as the disc rotates. The fundus examination device according to item 1. 3) The fundus examination apparatus according to claim 1 or 2, wherein the light shielding element is composed of a transparent window plate having sunspots of different sizes. 4) A light beam separating means is provided for separating the light irradiated onto the fundus of the eye to be examined and the light reflected from the fundus, and the light beam separating means is composed of a plurality of selectable light beam separating elements having different optical characteristics. The fundus examination apparatus according to any one of claims 1 to 3, characterized in that: 5) The fundus examination apparatus according to claim 4, wherein the beam separating means includes a beam separating element such as a dichroic mirror, a polarizing beam splitter, and a non-polarizing beam splitter. 6) A filter means having a plurality of selectable filter elements having different band characteristics is arranged in front of the light receiving element, and the filter element is selected according to the selected beam splitting element. The fundus examination device according to any one of Items 1 to 5. 7) In a fundus examination device that two-dimensionally scans a laser beam from a laser light source and irradiates the fundus of the eye to be examined, and obtains fundus information by receiving and photoelectrically converting the reflected light from the fundus with a light receiving element, a laser light source that generates laser light with a single wavelength or a plurality of wavelengths; a first optical deflector that scans the laser light in one direction at a predetermined frequency; a second optical deflector for scanning at a frequency lower than the frequency in a direction perpendicular to the scanning direction; and a second optical deflector for irradiating the fundus of the subject's eye with the two-dimensional scanning light generated by the optical deflector. an objective mirror; a light flux limiting means having a plurality of selectable light-shielding elements each having a different light-shielding property; A fundus examination device comprising a detection aperture arranged at a conjugate position. 8) In a fundus examination device that two-dimensionally scans laser light from a laser light source and irradiates the fundus of the eye to be examined, and obtains fundus information by receiving reflected light from the fundus with a light receiving element and photoelectrically converting it, a laser light source that generates laser light with a single wavelength or a plurality of wavelengths; a first optical deflector that scans the laser light in one direction at a predetermined frequency; a second optical deflector for scanning at a frequency lower than the frequency in a direction perpendicular to the scanning direction; and a second optical deflector for separating the irradiated light to the fundus of the examined eye and the reflected light from the fundus from each other. A beam separating means consisting of a plurality of selectable beam separating elements having different separation characteristics; and a plurality of selectable optical filters each having a different band characteristic and arranged in front of a light receiving element that receives reflected light from the fundus of the eye. An ophthalmoscopy device characterized by having the following.
JP1191314A 1989-07-26 1989-07-26 Eyeground inspection device Pending JPH0357426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1191314A JPH0357426A (en) 1989-07-26 1989-07-26 Eyeground inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1191314A JPH0357426A (en) 1989-07-26 1989-07-26 Eyeground inspection device

Publications (1)

Publication Number Publication Date
JPH0357426A true JPH0357426A (en) 1991-03-12

Family

ID=16272497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1191314A Pending JPH0357426A (en) 1989-07-26 1989-07-26 Eyeground inspection device

Country Status (1)

Country Link
JP (1) JPH0357426A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009022500A (en) * 2007-07-19 2009-02-05 Nidek Co Ltd Fundus imaging apparatus
JP2009095632A (en) * 2007-09-29 2009-05-07 Nidek Co Ltd Fundus imaging apparatus
JP2010220773A (en) * 2009-03-23 2010-10-07 Nidek Co Ltd Ophthalmic photographing device
JP2010243280A (en) * 2009-04-03 2010-10-28 Topcon Corp Optical image measuring apparatus
JP2017148097A (en) * 2016-02-22 2017-08-31 株式会社トプコン Ophthalmology imaging device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009022500A (en) * 2007-07-19 2009-02-05 Nidek Co Ltd Fundus imaging apparatus
JP2009095632A (en) * 2007-09-29 2009-05-07 Nidek Co Ltd Fundus imaging apparatus
JP2010220773A (en) * 2009-03-23 2010-10-07 Nidek Co Ltd Ophthalmic photographing device
JP2010243280A (en) * 2009-04-03 2010-10-28 Topcon Corp Optical image measuring apparatus
JP2017148097A (en) * 2016-02-22 2017-08-31 株式会社トプコン Ophthalmology imaging device

Similar Documents

Publication Publication Date Title
JP2618912B2 (en) Fundus examination device
US5949520A (en) Wide field of view scanning laser ophthalmoscope
US6350031B1 (en) Electro-optic binocular indirect ophthalmoscope
US5673097A (en) Portable scanning laser ophthalmoscope
US5455644A (en) Ophthalmologic apparatus having an examining system for examining the fundus of an eye
US4781453A (en) Ophthalmic examination apparatus
US5841509A (en) Electro-optic binocular indirect ophthalmoscope
US5349398A (en) Ophthalmometer system
JPH0357425A (en) Eyeground inspection device
US7819526B2 (en) Fundus camera
JPS62117524A (en) Double scanning optical apparatus
JPH11197109A (en) Scanning type laser ophthalmoscope
JPH0357426A (en) Eyeground inspection device
JPH07163613A (en) Light coagulator
JP2618925B2 (en) Scanning laser imaging device
JP7375323B2 (en) fundus imaging device
JP2019063243A (en) Ophthalmologic imaging apparatus
JP7355194B2 (en) fundus imaging device
JPH0751230A (en) Fundus camera
JPH07227380A (en) Eyeground camera
JPH0651025B2 (en) Fundus camera
JPH0515495A (en) Fundus oculi camera
JPH0651021B2 (en) Eye imager
JPH05317265A (en) Fundus camera
JP2003033326A (en) Ophthalmologic photographing device