JPH0357422B2 - - Google Patents

Info

Publication number
JPH0357422B2
JPH0357422B2 JP21260285A JP21260285A JPH0357422B2 JP H0357422 B2 JPH0357422 B2 JP H0357422B2 JP 21260285 A JP21260285 A JP 21260285A JP 21260285 A JP21260285 A JP 21260285A JP H0357422 B2 JPH0357422 B2 JP H0357422B2
Authority
JP
Japan
Prior art keywords
sample
container
acid
acid solution
storage container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21260285A
Other languages
Japanese (ja)
Other versions
JPS6273137A (en
Inventor
Hideki Matsunaga
Naoyuki Hirate
Akira Okada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP21260285A priority Critical patent/JPS6273137A/en
Publication of JPS6273137A publication Critical patent/JPS6273137A/en
Publication of JPH0357422B2 publication Critical patent/JPH0357422B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、各種試料を酸によつて分解するため
の装置及びその分解方法に関し、更に詳しくは、
シリコン結晶、ガリウムヒ素結晶のような半導体
結晶中の極微量の不純物を分析するための試料溶
液を調製することを目的として用いる試料分解装
置及びその分解方法に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to an apparatus and a decomposition method for decomposing various samples with acid, and more specifically,
The present invention relates to a sample decomposition device used for the purpose of preparing a sample solution for analyzing minute amounts of impurities in semiconductor crystals such as silicon crystals and gallium arsenide crystals, and a decomposition method thereof.

[発明の技術的背景とその問題点] シリコン結晶やガリウムヒ素結晶は半導体素子
基板として使用されているが、しかし、この結晶
の中にナトリウム(Na)、カリウム(K)、鉄
(Fe)などの不純物が存在すると、たとえその量
が極微量であつたとしても素子の電気特性に大き
な影響を与える。したがつて、素子の特性を高め
るためには、これら不純物の含有量を可能な限り
低くすることが必要である。
[Technical background of the invention and its problems] Silicon crystals and gallium arsenide crystals are used as semiconductor device substrates, but these crystals contain sodium (Na), potassium (K), iron (Fe), etc. The presence of such impurities, even if the amount thereof is extremely small, has a significant effect on the electrical characteristics of the device. Therefore, in order to improve the characteristics of the device, it is necessary to reduce the content of these impurities as much as possible.

このための処置をとる前提として、結晶中の不
純物の濃度を正確に分析することが不可欠にな
る。
As a prerequisite for taking such measures, it is essential to accurately analyze the concentration of impurities in the crystal.

従来、その分析方法としてはフレームレス原子
吸光分析法が広く適用されている。この方法にお
いて、分析装置にかける試料溶液は概ね次のよう
にして調製されている。すなわち、例えば、シリ
コン結晶の場合、結晶試料をフツ化水素酸と硝酸
と硫酸との混合酸溶液に溶解せしめて直接分解
し、得られた分解溶液を蒸発乾固して残渣を得、
この残渣を純水で一定容量に稀釈するという方法
である。ガリウムヒ素結晶の場合には、塩酸と硝
酸との混合酸液を用いることが異なるだけであ
る。
Conventionally, flameless atomic absorption spectrometry has been widely applied as an analysis method. In this method, the sample solution to be applied to the analyzer is generally prepared as follows. That is, for example, in the case of a silicon crystal, a crystal sample is directly decomposed by dissolving it in a mixed acid solution of hydrofluoric acid, nitric acid, and sulfuric acid, and the resulting decomposed solution is evaporated to dryness to obtain a residue.
This method involves diluting this residue with pure water to a certain volume. In the case of gallium arsenide crystals, the only difference is that a mixed acid solution of hydrochloric acid and nitric acid is used.

しかしながら、このような試料溶液の調製法に
あつては、用いる各試薬からの汚染が極めて大き
い。
However, in such a method of preparing a sample solution, contamination from each reagent used is extremely large.

例えば、これら試薬は非沸とう蒸留法やイオン
交換法などで精製したものであつても通常Na、
Kなどの不純物を0.1ppb以上含有している。した
がつて、このような試薬を用いた場合、得られた
試料溶液では、5ppb以下の不純物の分析は極め
て困難であつた。
For example, even if these reagents are purified by non-boiling distillation or ion exchange methods, they usually contain Na.
Contains 0.1 ppb or more of impurities such as K. Therefore, when such a reagent is used, it is extremely difficult to analyze impurities of 5 ppb or less in the obtained sample solution.

[発明の目的] 本発明は、上記した問題点を解消し、試料の分
解用試薬又は環境からの汚染がほとんどない分析
用試料溶液を調製するための装置及びその方法の
提供を目的とする。
[Object of the Invention] An object of the present invention is to solve the above-mentioned problems and to provide an apparatus and method for preparing an analysis sample solution with almost no contamination from a sample decomposition reagent or the environment.

[発明の概要] 本発明の試料分解装置は、密閉容器;該密閉容
器内に配設された少なくとも1個の酸液貯蔵容
器;該密閉容器内に配設され、内部には試料と純
水が収納されている収納容器;該酸液貯蔵容器を
加熱する加熱手段;並びに該酸液貯蔵容器に磁気
力を及ぼす磁界発生手段を具備することを特徴と
し、その分解方法は、密閉容器の中で、試料分解
用の酸液を磁界中で蒸発させ、該酸蒸気を試料が
浸漬されている純水に吸収させ、得られた高純度
酸液で該試料を分解することを特徴とする。
[Summary of the Invention] The sample decomposition device of the present invention includes: a sealed container; at least one acid solution storage container disposed within the sealed container; disposed within the sealed container, and containing a sample and pure water. is characterized by comprising a storage container in which the acid solution storage container is stored; a heating means for heating the acid solution storage container; and a magnetic field generation means that exerts a magnetic force on the acid solution storage container; The method is characterized in that an acid solution for sample decomposition is evaporated in a magnetic field, the acid vapor is absorbed into pure water in which the sample is immersed, and the sample is decomposed with the obtained high-purity acid solution.

本発明の装置を図示した例に基づいて説明す
る。図で1は密閉容器であり、この中で試料の分
解が行なわれる。容器1を構成する材質として
は、後述の酸蒸気などに侵蝕されず、またある程
度耐熱性を有する材質であれば何であつてもよ
く、とくに、半導体結晶の分解の場合にはフツ化
水素酸などが用いられるので、例えば、テフロン
などは好適である。
The apparatus of the present invention will be explained based on an illustrated example. In the figure, 1 is a closed container in which the sample is decomposed. The material constituting the container 1 may be any material as long as it is not corroded by acid vapor, which will be described later, and has a certain degree of heat resistance.In particular, in the case of decomposing semiconductor crystals, hydrofluoric acid, etc. may be used. For example, Teflon is suitable.

密閉容器1の中には、2種類の容器が配設され
る。1つは、試料分解用の酸液が収納された酸液
貯蔵容器2であり、他の種類は、分解すべき試料
とそれを浸漬する純水が収納された収納容器3で
ある。これら容器の材質には、容器1の場合と同
様な性状が必要であることは言をまたない。
Two types of containers are arranged in the closed container 1. One type is an acid solution storage container 2 that stores an acid solution for sample decomposition, and the other type is a storage container 3 that stores a sample to be decomposed and pure water for immersing it. Needless to say, the materials of these containers must have properties similar to those of the container 1.

容器2に収納する酸液は試料4の種類によつて
任意に選択される。また、容器2の数は2個であ
つてもよいし、複数個であつてもよく制限を受け
るものではない。例えば、試料4がシリコンウエ
ハーの場合、フツ化水素酸、硝酸を別々の容器2
に収納してもよいし、混酸にして1つの容器に収
納しておいてもよい。
The acid solution stored in the container 2 is arbitrarily selected depending on the type of sample 4. Furthermore, the number of containers 2 may be two or more, without any limitation. For example, if the sample 4 is a silicon wafer, the hydrofluoric acid and nitric acid are placed in separate containers 2.
It may be stored in a container, or it may be mixed acid and stored in one container.

容器3には試料4と純水5が収納されている。
用いる純水としては脱イオン水、蒸留水など、不
純物を除去して得た精製水がよい。試料4の分解
を円滑に行なわせるために、例えば容器3の底に
は図のような凸部6を設けて試料を点支持するこ
とが好ましい。
A sample 4 and pure water 5 are stored in the container 3.
The pure water used is preferably purified water obtained by removing impurities, such as deionized water or distilled water. In order to smoothly decompose the sample 4, it is preferable to provide a convex portion 6 as shown in the figure on the bottom of the container 3, for example, to support the sample at a point.

また、図では容器3が1つであるが、同時に多
数の試料を分解するためには、例えばこの容器3
を複数個積みあげたり、、又は1つの容器内を複
数室に間仕切りすればよい。
In addition, although there is only one container 3 in the figure, in order to decompose many samples at the same time, for example, this container 3
You can pile up multiple containers, or partition one container into multiple rooms.

更には、容器3は上面開口することなく通気孔
を例えば側壁に具備する蓋で覆えば、容器1の天
井等から滴下する酸溶液からの汚染を防止し得て
有効である。
Furthermore, it is effective to cover the ventilation hole with a lid provided on the side wall of the container 3 without opening the top surface, since it is possible to prevent contamination from the acid solution dripping from the ceiling of the container 1 or the like.

7は酸液貯蔵容器の加熱手段であつて、これは
容器2内の酸液を蒸発させて酸蒸気を発生させる
ために配設される。電気抵抗加熱等その加熱手段
の種類は問わない。これら加熱手段は汚染防止の
観点から容器1の外部に配設されることが好まし
い。また、必要に応じては、容器3を加熱するた
めに設けてもよい。
Reference numeral 7 denotes heating means for the acid liquid storage container, which is provided to evaporate the acid liquid in the container 2 and generate acid vapor. The type of heating means, such as electric resistance heating, does not matter. These heating means are preferably disposed outside the container 1 from the viewpoint of preventing contamination. Further, if necessary, it may be provided to heat the container 3.

8は酸液貯蔵容器に磁気力を及ぼす磁界発生手
段である。ここでいう磁気力とは容器2名の酸液
中のFe、Ni等の強磁性物質が蒸発しないように
強磁性物質を吸引する力であつて、蒸発防止のた
めに磁界発生手段が配設される。その種類は永久
磁石、電磁石のいずれでもよい。これら磁界発生
手段は汚染防止の観点から容器1の外部に配設さ
れることが好ましい。しかしながら、耐酸化性、
耐薬品性、耐熱性にすぐれたもの例えばテフロン
で被覆された磁界発生手段8であるならば容器
1,2内に配設してもよい。
8 is a magnetic field generating means that applies magnetic force to the acid liquid storage container. The magnetic force referred to here is the force that attracts ferromagnetic substances such as Fe and Ni in the acid solution in the container to prevent them from evaporating, and a magnetic field generating means is provided to prevent evaporation. be done. The type may be either a permanent magnet or an electromagnet. These magnetic field generating means are preferably disposed outside the container 1 from the viewpoint of preventing contamination. However, oxidation resistance,
If the magnetic field generating means 8 is coated with a material having excellent chemical resistance and heat resistance, for example, Teflon, it may be placed inside the containers 1 and 2.

この装置において、容器2内の酸液は加熱手段
7によつて加熱されて蒸発し、酸蒸気となつて容
器1内を満たす。蒸発に際しては、Fe、Ni等強
磁性物質からなる不純物は磁界発生手段の磁気力
により吸引されて蒸発しないため酸蒸気の純度は
より高くなる。
In this device, the acid liquid in the container 2 is heated by the heating means 7 and evaporated, turning into acid vapor and filling the container 1. During evaporation, impurities made of ferromagnetic substances such as Fe and Ni are attracted by the magnetic force of the magnetic field generating means and do not evaporate, resulting in higher purity of the acid vapor.

酸蒸気は矢線のように移動して容器3の純水5
に吸収され高純度は酸液に復元する。かくして、
試料はこの高純度酸液によつて分解され、全体と
して外部汚染のない試料溶液が得られる。
The acid vapor moves like the arrow and reaches the pure water 5 in the container 3.
The high purity is absorbed into the acid solution and restored. Thus,
The sample is decomposed by this high-purity acid solution, resulting in a sample solution that is totally free of external contamination.

なお、以上の説明は試料が半導体結晶である場
合を主眼にして行なつたが、この装置及び方法は
これに限定されるものではなく、要するに、各種
の試料(例えばWSix、MoSixのような金属シリ
サイド、InSb、InAsのような化合物半導体)と
それを分解する能力を有する酸液とを組合せたい
かなる場合であつても適用できることは、その原
理からして極めて明瞭である。
Although the above explanation has focused on the case where the sample is a semiconductor crystal, this apparatus and method are not limited to this. It is very clear from its principle that it can be applied to any combination of a compound semiconductor (such as silicide, InSb, or InAs) and an acid solution capable of decomposing it.

[発明の実施例] 実施例 1 比抵抗1.5Ωcm、厚み436μmのリンドープシリコ
ンウエハーを用意した。これを脱イオン水50mlと
ともに容器3に収納した。酸液としてそれぞれ50
%フツ化水素酸400mlと60%硝酸400mlを選びそれ
ぞれを別々に容器2に収納した。容器1の空間体
積は約8500cm3であつた。なお、磁界発生手段とし
てテフロンコートされた永久磁石8(60mm×60mm
×5mm、5kGauss)を容器2の下に置いた。いず
れの容器もテフロン製のものを用意した。
[Examples of the Invention] Example 1 A phosphorus-doped silicon wafer having a specific resistance of 1.5 Ωcm and a thickness of 436 μm was prepared. This was stored in container 3 along with 50 ml of deionized water. 50 each as acid solution
% hydrofluoric acid and 400 ml of 60% nitric acid were selected and stored separately in container 2. The spatial volume of container 1 was approximately 8500 cm 3 . In addition, a Teflon-coated permanent magnet 8 (60 mm x 60 mm) is used as a magnetic field generating means.
×5 mm, 5 kGauss) was placed under container 2. Both containers were made of Teflon.

加熱手段(ヒータプレート)を作動して、各酸
液を210℃で150分間加熱した。ウエハーの溶解が
確認された。
The heating means (heater plate) was activated to heat each acid solution at 210°C for 150 minutes. Wafer melting was confirmed.

得られた試料溶液をフレームレス原子吸光装置
にかけNa、K、Fe、Crの分析を行なつた。測定
条件は以下の通りである。
The obtained sample solution was applied to a flameless atomic absorption spectrometer to analyze Na, K, Fe, and Cr. The measurement conditions are as follows.

乾燥:120℃で30秒、灰化:Naは600℃、Kは
700℃、FeとCrは1000℃でそれぞれ30秒間。原子
化:Naは2500℃、Kは2700℃、FeとCrは2800℃
でそれぞれ8秒間。キヤリアガス:アルゴンで
300ml/分、ただし原子化のときは通流しない。
測定波長:Naは589.0nm、Kは766.5nm、Feは
248.3nm、Crは359.4nm。妨害吸収補正用光源:
Na、Kのときはハロゲンタングステンランプ、
Fe、Crのときは重水素ランプを使用。
Drying: 30 seconds at 120℃, Ashing: 600℃ for Na, K for
700℃, Fe and Cr at 1000℃ for 30 seconds each. Atomization: 2500℃ for Na, 2700℃ for K, 2800℃ for Fe and Cr
for 8 seconds each. Carrier gas: with argon
300ml/min, but no flow during atomization.
Measurement wavelength: Na: 589.0nm, K: 766.5nm, Fe:
248.3nm, Cr is 359.4nm. Light source for interference absorption correction:
For Na and K, use a tungsten halogen lamp.
For Fe and Cr, use a deuterium lamp.

以上の結果、Na:3ppb、K:1ppb、Fe:
7ppb、Cr:0.5ppbであつた。
As a result, Na: 3ppb, K: 1ppb, Fe:
7ppb, Cr: 0.5ppb.

比較例 1−1 永久磁石8を使わないことを除いては、実施例
1と同様な条件で分析した。Naは3ppb、Kは
1ppb、Crは0.5ppbと分析できたが、試料分解時
のFeの汚染量が11ppbであつたので、Feは分析
できなかつた。
Comparative Example 1-1 Analysis was conducted under the same conditions as in Example 1, except that the permanent magnet 8 was not used. Na is 3ppb, K is
1ppb and Cr was analyzed as 0.5ppb, but Fe could not be analyzed because the amount of Fe contamination at the time of sample decomposition was 11ppb.

比較例 1−2 50%フツ化水素酸10ml、60%硝酸5ml、96%硫
酸0.1ml及び純水5mlから成る混酸に、実施例1
で用いたシリコンウエハーを浸漬し、これを約50
℃で20分間かけて分解した。得られた溶液を約
160℃で120分間加熱して蒸発乾固したのち、純水
で5mlに稀釈した。
Comparative Example 1-2 Example 1 was added to a mixed acid consisting of 10 ml of 50% hydrofluoric acid, 5 ml of 60% nitric acid, 0.1 ml of 96% sulfuric acid, and 5 ml of pure water.
Soak the silicon wafer used in
Digested for 20 minutes at °C. The resulting solution is approx.
After heating at 160°C for 120 minutes and evaporating to dryness, it was diluted to 5 ml with pure water.

実施例1と同一の測定条件で分析したところ、
試料分解時の不純物汚染量がそれぞれNa
14ppb、K 9ppb、Fe 26ppb、Cr 6ppbであつ
たので、いずれの元素も分析できなかつた。
When analyzed under the same measurement conditions as Example 1,
The amount of impurity contamination during sample decomposition is Na
14 ppb, K 9 ppb, Fe 26 ppb, and Cr 6 ppb, so none of the elements could be analyzed.

実施例 2 シリコンウエハーが比抵抗6.9Ωcm、厚み320μm
のホウ素をドープしたものであつたこと、脱イオ
ン水が40mlであつたこと、酸液の加熱時間が130
分であつたことを除いては、実施例1と同様にし
て試料容液を調製し、同一の測定条件でフレーム
レス原子吸光分析を行なつた。
Example 2 Silicon wafer has a specific resistance of 6.9Ωcm and a thickness of 320μm
The amount of deionized water was 40 ml, and the heating time of the acid solution was 130 ml.
A sample solution was prepared in the same manner as in Example 1, except that the temperature was 30 minutes, and flameless atomic absorption spectrometry was performed under the same measurement conditions.

Na:2ppb、K:1ppb、Fe:2ppb、Cr:
0.4ppbの結果が得られた。
Na: 2ppb, K: 1ppb, Fe: 2ppb, Cr:
A result of 0.4ppb was obtained.

比較例 2−1 永久磁石8を使わないことを除いては、実施例
2と同様な条件で分析した。Naは2ppb、Kは
1ppb、Crは0.4ppbと分析できたが、試料分解時
のFeの汚染量が13ppbであつたので、Feは分析
できなかつた。
Comparative Example 2-1 Analysis was conducted under the same conditions as in Example 2, except that the permanent magnet 8 was not used. Na is 2ppb, K is
1ppb and Cr was analyzed as 0.4ppb, but Fe could not be analyzed because the amount of Fe contamination at the time of sample decomposition was 13ppb.

比較例 2−2 50%フツ化水素酸10ml、60%硝酸5ml、96%硫
酸0.1ml及び純水5mlから成る混酸に、実施例2
で用いたシリコンウエハーを浸漬し、これを約50
℃で20分間かけて分解した。得られた溶液を約
160℃で120分間加熱して蒸発乾固した後、純水で
5mlに希釈した。実施例2と同一の条件で分析し
た。試料分解時の不純物汚染量がNa 14ppb、K
9ppb、Fe 26ppb、Cr 6ppbであつたので、い
ずれの元素も分析できなかつた。
Comparative Example 2-2 Example 2 was added to a mixed acid consisting of 10 ml of 50% hydrofluoric acid, 5 ml of 60% nitric acid, 0.1 ml of 96% sulfuric acid, and 5 ml of pure water.
Soak the silicon wafer used in
Digested for 20 minutes at °C. The resulting solution is approx.
After heating at 160°C for 120 minutes and evaporating to dryness, it was diluted to 5 ml with pure water. The analysis was performed under the same conditions as in Example 2. The amount of impurity contamination during sample decomposition was Na 14ppb, K
9ppb, Fe 26ppb, and Cr 6ppb, so none of the elements could be analyzed.

実施例 3 試料が、LEC法による厚み470μmのガリウムヒ
素ウエハーであつたこと、酸液が35%塩酸400ml、
60%硝酸400mlであつたこと、酸液の加熱時間が
140分であつたことを除いては、実施例1と同様
の方法で分析用試料溶液を調製した。
Example 3 The sample was a gallium arsenide wafer with a thickness of 470 μm obtained by the LEC method, the acid solution was 400 ml of 35% hydrochloric acid,
400ml of 60% nitric acid was added, and the heating time of the acid solution was
An analytical sample solution was prepared in the same manner as in Example 1, except that the heating time was 140 minutes.

得られた試料溶液をフレームレス原子吸光装置
にかけてFe、Cr、Niの分析をなつた。測定条件
は次の通りである。
The obtained sample solution was applied to a flameless atomic absorption spectrometer to analyze Fe, Cr, and Ni. The measurement conditions are as follows.

乾燥:120℃で30秒。灰化:Feは1250℃、Crは
1350℃、Niは1200℃でそれぞれ60秒間。原子
化:いずれも2800℃でそれぞれ8秒間。キヤリア
ガス:アルゴンで300ml/分、ただし原子化のと
きは通流しない。測定波長:Feは248.3nm、Crは
359.4nm、Niは232.0nm。妨害吸収補正用光源:
重水素ランプを使用。
Drying: 30 seconds at 120℃. Ashing: 1250℃ for Fe, Cr
1350℃ and 1200℃ for Ni for 60 seconds each. Atomization: 8 seconds each at 2800℃. Carrier gas: Argon at 300ml/min, but not during atomization. Measurement wavelength: 248.3nm for Fe, 248.3nm for Cr
359.4nm, Ni 232.0nm. Light source for interference absorption correction:
Uses a deuterium lamp.

Fe:8ppb、Cr:2ppb、Ni:3ppbに結果が得
られた。
Results were obtained for Fe: 8ppb, Cr: 2ppb, and Ni: 3ppb.

比較例 3−1 永久磁石8を使わないことを除いては、実施例
3と同様な条件で分析した。Crは2ppbと分析で
きたが、試料分解時のFe、Niの汚染量が13ppb、
7ppbであつたので、Fe、Niは分析できなかつ
た。
Comparative Example 3-1 Analysis was conducted under the same conditions as in Example 3, except that the permanent magnet 8 was not used. Cr was analyzed to be 2 ppb, but the amount of Fe and Ni contamination during sample decomposition was 13 ppb.
Since the concentration was 7 ppb, Fe and Ni could not be analyzed.

比較例 3−2 35%塩酸10ml、60%硝酸5mlの混酸で実施例3
のウエハーを分解したのち純水で100mlに稀釈し
た。この溶液を実施例3と同様の条件で分析し
た。試料分解時の不純物汚染量がFe 24ppb、Cr
7ppb、Ni 14ppbであつたので、いずれの元素も
分析できなかつた。
Comparative Example 3-2 Example 3 with a mixed acid of 10 ml of 35% hydrochloric acid and 5 ml of 60% nitric acid
After disassembling the wafer, it was diluted to 100ml with pure water. This solution was analyzed under the same conditions as in Example 3. The amount of impurity contamination during sample decomposition was Fe 24ppb, Cr
7ppb and Ni 14ppb, so neither element could be analyzed.

[発明の効果] 以上の説明及び分析結果からも明らかなよう
に、本発明の装置を用いて調製した試料溶液は、
従来のように、試薬、環境等からの汚染が抑制さ
れるので、得られた分析結果は極めて高感度であ
り、例えばシリコンウエハーの場合には約100倍、
ガリウムヒ素の場合には約5倍であり、その有用
性は極めて大きい。
[Effect of the invention] As is clear from the above explanation and analysis results, the sample solution prepared using the apparatus of the present invention has the following effects:
Unlike conventional methods, contamination from reagents, the environment, etc. is suppressed, so the analysis results obtained are extremely sensitive; for example, in the case of silicon wafers, it is approximately 100 times more sensitive.
In the case of gallium arsenide, it is about five times as large, making it extremely useful.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明装置の1例を示す模式図である。 1…密閉容器、2…酸液貯蔵容器、3…試料及
び純水の収納容器、4…試料、5…純水、6…凸
部、7…加熱手段、8…磁界発生手段。
The figure is a schematic diagram showing an example of the device of the present invention. DESCRIPTION OF SYMBOLS 1... Airtight container, 2... Acid solution storage container, 3... Sample and pure water storage container, 4... Sample, 5... Pure water, 6... Convex part, 7... Heating means, 8... Magnetic field generation means.

Claims (1)

【特許請求の範囲】 1 密閉容器;該密閉容器内に配設された少なく
とも1個の酸液貯蔵容器;該密閉容器内に配設さ
れ、内部には試料と純水が収納されている収納容
器;該酸液貯蔵容器を加熱する加熱手段;並びに
該酸液貯蔵容器に磁気力を及ぼす磁界発生手段を
具備することを特徴とする試料分解装置。 2 該試料が半導体結晶ウエハーである特許請求
の範囲第1項記載の試料分解装置。 3 該収納容器が蓋付き容器である特許請求の範
囲第1項記載の試料分解装置。 4 密閉容器の中で、試料分解用の酸液を磁界中
で蒸発させ、該酸蒸気を試料が浸漬されている純
水に吸収させ、得られた高純度酸液で該試料を分
解することを特徴とする試料分解方法。 5 該試料が半導体結晶ウエハーであり、該酸液
が硝酸並びにフツ化水素酸若しくは塩酸である特
許請求の範囲第4項記載の方法。
[Claims] 1. A sealed container; at least one acid solution storage container disposed within the sealed container; a storage container disposed within the sealed container and containing a sample and pure water; A sample decomposition device comprising: a container; heating means for heating the acid liquid storage container; and magnetic field generating means for exerting a magnetic force on the acid liquid storage container. 2. The sample decomposition device according to claim 1, wherein the sample is a semiconductor crystal wafer. 3. The sample decomposition device according to claim 1, wherein the storage container is a container with a lid. 4. Evaporate the acid solution for sample decomposition in a closed container in a magnetic field, absorb the acid vapor into the pure water in which the sample is immersed, and decompose the sample with the resulting high-purity acid solution. A sample decomposition method characterized by: 5. The method according to claim 4, wherein the sample is a semiconductor crystal wafer and the acid solution is nitric acid, hydrofluoric acid, or hydrochloric acid.
JP21260285A 1985-09-27 1985-09-27 Sample decomposing apparatus and sample decomposing method using said apparatus Granted JPS6273137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21260285A JPS6273137A (en) 1985-09-27 1985-09-27 Sample decomposing apparatus and sample decomposing method using said apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21260285A JPS6273137A (en) 1985-09-27 1985-09-27 Sample decomposing apparatus and sample decomposing method using said apparatus

Publications (2)

Publication Number Publication Date
JPS6273137A JPS6273137A (en) 1987-04-03
JPH0357422B2 true JPH0357422B2 (en) 1991-09-02

Family

ID=16625408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21260285A Granted JPS6273137A (en) 1985-09-27 1985-09-27 Sample decomposing apparatus and sample decomposing method using said apparatus

Country Status (1)

Country Link
JP (1) JPS6273137A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0795021B2 (en) * 1988-03-17 1995-10-11 株式会社東芝 Semiconductor disassembly device
JP2720622B2 (en) * 1991-03-15 1998-03-04 日本電気株式会社 Chemical analysis method

Also Published As

Publication number Publication date
JPS6273137A (en) 1987-04-03

Similar Documents

Publication Publication Date Title
JP3051023B2 (en) Processing method and apparatus for high-precision analysis of impurities in siliconaceous analysis sample
EP0137409B1 (en) Resolution device for semiconductor thin films
Eksperiandova et al. Analysis of waste water by x‐ray fluorescence spectrometry
Edmond Heat treatment of gallium arsenide
JPH07176510A (en) Method of impurity analysis
Kozlov et al. TlBr crystal growth, purification and characterisation
JPH0357422B2 (en)
JPH0530209B2 (en)
Takeda et al. Determination of ultra-trace impurities in semiconductor-grade water and chemicals by inductively coupled plasma mass spectrometry following a concentration step by boiling with mannitol
Claes et al. Controlled deposition of organic contamination and removal with ozone-based cleanings
JP3753805B2 (en) Semiconductor sample decomposition apparatus and sample decomposition method
Ishiwari et al. Development of evaluation method for organic contamination on silicon wafer surfaces
Seddon et al. Optical properties of dilute metal-solvent systems
Kuzishchin et al. Surface-assisted laser desorption/ionization of trinitrotoluene on porous silicon under ambient conditions
JP3414976B2 (en) Impurity analysis sample container and sample storage member used therein
JPH07333116A (en) Sample decomposing apparatus and sample decomposing method
JPH06160256A (en) Method and apparatus for decomposing sample
Piechotka et al. Mass spectrometric investigation of the vapor of nonstoichiometric and doped mercuric iodide
JPS61144545A (en) Device for dissolving thin film or thin sheet
Lu et al. Evaluation of cleaning efficiency with a radioactive tracer and development of a microwave digestion method for semiconductor processes
JPH0525068B2 (en)
Koshel’ et al. Arc atomic emission analysis of rare earth metals and their oxides with preliminary sorption concentration of impurities
JPS63195540A (en) Dissolving device for semiconductor thin film
Tanaka et al. Highly sensitive impurity analysis of GaAs using SIMS and chemical preparation
Amsel et al. Handling, purification and recovery of isotopically enriched water or gases for isotopic tracing experiments with ion beam analysis in electrochemistry and physics