JPH0357370A - Semiconductor light receiving device - Google Patents

Semiconductor light receiving device

Info

Publication number
JPH0357370A
JPH0357370A JP1193496A JP19349689A JPH0357370A JP H0357370 A JPH0357370 A JP H0357370A JP 1193496 A JP1193496 A JP 1193496A JP 19349689 A JP19349689 A JP 19349689A JP H0357370 A JPH0357370 A JP H0357370A
Authority
JP
Japan
Prior art keywords
voltage
light receiving
signal
receiving device
semiconductor light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1193496A
Other languages
Japanese (ja)
Other versions
JP2530226B2 (en
Inventor
Hiroshi Konakano
浩志 向中野
Kojin Kawahara
河原 行人
Satoshi Machida
聡 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP1193496A priority Critical patent/JP2530226B2/en
Priority to EP19900307945 priority patent/EP0410653A3/en
Priority to US07/557,089 priority patent/US5109155A/en
Priority to KR1019900011234A priority patent/KR100250697B1/en
Publication of JPH0357370A publication Critical patent/JPH0357370A/en
Application granted granted Critical
Publication of JP2530226B2 publication Critical patent/JP2530226B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N3/00Scanning details of television systems; Combination thereof with generation of supply voltages
    • H04N3/10Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical
    • H04N3/14Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical by means of electrically scanned solid-state devices
    • H04N3/15Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical by means of electrically scanned solid-state devices for picture signal generation
    • H04N3/1581Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical by means of electrically scanned solid-state devices for picture signal generation using linear image-sensor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/701Line sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/709Circuitry for control of the power supply
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/766Addressed sensors, e.g. MOS or CMOS sensors comprising control or output lines used for a plurality of functions, e.g. for pixel output, driving, reset or power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N3/00Scanning details of television systems; Combination thereof with generation of supply voltages
    • H04N3/10Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical
    • H04N3/14Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical by means of electrically scanned solid-state devices
    • H04N3/15Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical by means of electrically scanned solid-state devices for picture signal generation
    • H04N3/1575Picture signal readout register, e.g. shift registers, interline shift registers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/617Noise processing, e.g. detecting, correcting, reducing or removing noise for reducing electromagnetic interference, e.g. clocking noise

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Facsimile Heads (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

PURPOSE:To lower a noise voltage of a signal line, to obtain a high S/N and low power consumption and to attain a wide dynamic range by decreasing a drive voltage of a read circuit. CONSTITUTION:In the case of reading a signal, the signal of a photodetector S1 is outputted through a transmission gate TR 1 operated through the reception of the output of a shift register SR 1. The signal is amplified by an operational amplifier 3 and outputted externally. A data of the shift register SR 1 is moved to the next stage and the signal of the photodetector is sequentially outputted. The power voltage for a readout circuit and a photodetector is supplied from a voltage regulator 4, which is driven by a power voltage VDD1, then the voltage is made the same as the power voltage of the operational amplifier 3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光照射された原稿からの反射光を受けて電気
信号に変換する半導体受光装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor light receiving device that receives reflected light from a document irradiated with light and converts it into an electrical signal.

〔発明の概要〕[Summary of the invention]

本発明は、一導電型の単結晶基板上に光電変換用半導体
受光素子(以下、受光素子と称す。)及び前記受光素子
の出力信号を順次読み出す読み取り回路及び前記出力信
号を電圧変換する増幅回路及び定電圧を供給するボルテ
ージレギュレーターが形成された半導体受光装置であり
、読み取り回路で発生するスイッチングノイズを小さく
する為に、読み取り回路及び受光素子は、内蔵されたボ
ルテージレギュレーターから供給された低電圧で駆動さ
れるものである。スイッチングノイズが減ることにより
、半導体受光装置のS/N比が向上する。更に読み取り
回路を低電圧で駆動するために低消費電流となる。
The present invention provides a semiconductor light-receiving element for photoelectric conversion (hereinafter referred to as a light-receiving element) on a single-crystal substrate of one conductivity type, a reading circuit that sequentially reads output signals of the light-receiving element, and an amplifier circuit that converts the output signal into voltage. This semiconductor photodetector is equipped with a voltage regulator that supplies a constant voltage and a constant voltage.In order to reduce switching noise generated in the reading circuit, the reading circuit and photodetector are equipped with a low voltage supplied from the built-in voltage regulator. It is driven. By reducing switching noise, the S/N ratio of the semiconductor light receiving device is improved. Furthermore, since the reading circuit is driven at a low voltage, current consumption is low.

〔従来の技術〕[Conventional technology]

第2図は、従来の半導体受光装置の回路図である。半導
体受光装置に入射した光は、受光素子群1により、電気
信号に変換される。しかしながら、受光素子群1で変換
された電気信号は微弱である為、読み取り回路2で発生
する雑音の影響を受けやすい。
FIG. 2 is a circuit diagram of a conventional semiconductor light receiving device. Light incident on the semiconductor light receiving device is converted into an electrical signal by the light receiving element group 1. However, since the electrical signal converted by the light receiving element group 1 is weak, it is easily affected by noise generated in the reading circuit 2.

アナログスイッチをMOSトランジスタTGnで形成し
た場合、ゲート・ドレイン間の寄生容量を介して過疫応
答時のスパイク雑きが受光素子Snの信号に変動を与え
る。この雑音は、高い電源電圧でMOSトランジスタT
Gnを駆動する程大きくなる。
When the analog switch is formed of a MOS transistor TGn, spike noise during a transient response causes fluctuations in the signal of the light receiving element Sn via the parasitic capacitance between the gate and drain. This noise is caused by the MOS transistor T at high power supply voltage.
It becomes larger as Gn is driven.

出力電圧が外部負荷容量及び外部負荷抵抗による低下を
防ぐ為に受光素子群1の電気信号を電圧変換する方式が
拡く用いられている。電圧変換には、一般にソースフオ
ロア回路、演算増幅回路(以下Tfp  Ampと称す
。)が使用されている。
In order to prevent the output voltage from decreasing due to external load capacitance and external load resistance, a method of converting the electric signal of the light receiving element group 1 into voltage is widely used. A source follower circuit and an operational amplifier circuit (hereinafter referred to as Tfp Amp) are generally used for voltage conversion.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、σp  Ampは、受光素子の信号出力
を歪みなく伝送するために、広いダイナミックレンジが
必要である。Up  Ampのダイナミックレンジは、
電源電圧の大きさにより変化する。電源電圧が高い程、
ダイナミックレンジは広くとれる。一方、読み取り回路
の電源電圧を高くすると、前述のように、寄生容量及び
ゲート・ドレイン容量を介して、信号線に飛び込む雑音
が大きくなり、S/N比の低下になってしまう。つまり
、従来の半導体受光装置を駆動する電源電圧が高いと、
雑音が増し、低いとダイナミックレンジが狭くなり、満
足な特性が得られなかった。
However, σp Amp requires a wide dynamic range in order to transmit the signal output of the light receiving element without distortion. The dynamic range of Up Amp is
Varies depending on the power supply voltage. The higher the power supply voltage,
The dynamic range is wide. On the other hand, if the power supply voltage of the reading circuit is increased, as described above, the noise that enters the signal line through the parasitic capacitance and gate-drain capacitance increases, resulting in a decrease in the S/N ratio. In other words, if the power supply voltage that drives a conventional semiconductor photodetector is high,
Noise increased, and when it was low, the dynamic range narrowed, making it impossible to obtain satisfactory characteristics.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために、本発明は、σpArnpと
読み取り回路を異った2つの電源電圧で駆動できるよう
にしたものである。電源電圧値はUp  Ampの方を
高くする。また、読み取り回路及び受光素子の電源電圧
は、同一単結晶基板に形成されたボルテージレギュレー
ターから与えられるようにした。前記ボルテージレギュ
レーターは、前記Tfp  Ampの電源電圧を使用す
るため、半導体受光装置に与える電圧は1つである。前
記ボルテージレギュレーターは形戒する為に製造プロセ
スの変更はない。
In order to solve the above problems, the present invention enables the σpArnp and the reading circuit to be driven with two different power supply voltages. The power supply voltage value is set higher for Up Amp. Further, the power supply voltage for the reading circuit and the light receiving element is supplied from a voltage regulator formed on the same single crystal substrate. Since the voltage regulator uses the power supply voltage of the Tfp Amp, only one voltage is applied to the semiconductor photodetector. There is no change in the manufacturing process of the voltage regulator as it is a formal product.

〔作用〕[Effect]

上記の様に受光素子、読み取り回路、σpAmp及びボ
ルテージレギュレーターを同一単結晶基板に形成するこ
とにより、広いダイナミックレンジを有し、雑音が少な
く、高いS/N比も有する半導体受光装置が得られる。
By forming the light receiving element, reading circuit, σpAmp, and voltage regulator on the same single crystal substrate as described above, a semiconductor light receiving device having a wide dynamic range, low noise, and a high S/N ratio can be obtained.

また読み取り回路を従来よりも低い電源電圧で駆動する
ので、低消費電流となる。
Furthermore, since the reading circuit is driven with a lower power supply voltage than conventional ones, current consumption is low.

〔実施例〕〔Example〕

以下、本発明について実施例により詳細に説明する。 Hereinafter, the present invention will be explained in detail with reference to Examples.

第1図は、本発明の半導体受光装置の一実施例の回路図
である。一導電型単結晶半導体基板に受光素子1、読み
取り回路2、Tfp  Amp3及びボルテージレギュ
レータ4を形成する。読み取り回路2は、リセットトラ
ンジスタTRn,}ランスミッションゲートTGn,及
びシフトレジスタSRn等で構成されている。リセット
トランジスタTRnは、各受光素子を一定電圧にリセッ
トするものである。
FIG. 1 is a circuit diagram of an embodiment of the semiconductor light receiving device of the present invention. A light receiving element 1, a reading circuit 2, a Tfp Amp 3, and a voltage regulator 4 are formed on a single conductivity type single crystal semiconductor substrate. The reading circuit 2 includes a reset transistor TRn, a transmission gate TGn, a shift register SRn, and the like. The reset transistor TRn resets each light receiving element to a constant voltage.

信号の読み出しは、以下のように行なわれる。Signal reading is performed as follows.

シフトレジスタSRIの出力を受けて動作状態になった
トランスミッションゲートTRIを通して、受光素子S
1の信号が出力される。信号はσpAmp3で増幅され
外部へ出力される。シフトレジスタSRIのデータが次
段へ移動し、受光素子の信号は、順次出力されていく。
The light-receiving element S
1 signal is output. The signal is amplified by σpAmp3 and output to the outside. The data in the shift register SRI is moved to the next stage, and the signals of the light receiving elements are sequentially output.

読み出し回路及び受光素子の電源電圧V DD2は、内
蔵されたボルテージレギュレーター4から供給されてい
る。前記ボルテージレギュレーター4は、電源電圧vD
D1で駆動されている。この電圧は、?TpAmp3の
電源電圧と同じにすることが設計可能であるため、半導
体受光装置に供給する電圧は1つだけでよい。また本発
明を実施するには、VDDI>VDD2とする。
The power supply voltage VDD2 for the readout circuit and the light receiving element is supplied from a built-in voltage regulator 4. The voltage regulator 4 has a power supply voltage vD
It is driven by D1. What is this voltage? Since it is possible to design the voltage to be the same as the power supply voltage of TpAmp3, only one voltage is required to be supplied to the semiconductor light receiving device. Further, in order to implement the present invention, it is assumed that VDDI>VDD2.

尚、本発明は、C−MσSトランジスタにより、読み取
り回路を構威した実施例を示したが、バイボーラトラン
ジスタ等で構成することも可能である。また、σp  
Amp3ボルテージレギュレーター4も、CMσSトラ
ンジスタ、あるいは、バイボーラトランジスタでも作成
できることは、明らかである。したがって、従来と製造
プロセスを変更する必要もなく、本発明を実施するため
に工程が増すこともない。
Although the present invention has shown an embodiment in which the reading circuit is made up of C-MσS transistors, it is also possible to use bibolar transistors or the like. Also, σp
It is clear that the Amp3 voltage regulator 4 can also be made of a CMσS transistor or a bibolar transistor. Therefore, there is no need to change the conventional manufacturing process, and no additional steps are required to implement the present invention.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によれば、読み取り回路の駆動電
圧を低くすることにより、信号線の雑音が小さくなり、
高いS/N比が得られ、低消費電流であり広いダイナミ
ックレンジを持つ半導体受光装置が得られるという効果
がある。
As described above, according to the present invention, by lowering the drive voltage of the reading circuit, noise in the signal line is reduced.
This has the effect of providing a semiconductor light receiving device that has a high S/N ratio, low current consumption, and a wide dynamic range.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の半導体受光装置の一実施例を示した回
路図。第2図は、従来の半導体受光装置を示した回路図
である。 ・受光素子群 ・読み取り回路 ●Tfp  Amp ●ボルテージレギュレーター 以 上
FIG. 1 is a circuit diagram showing an embodiment of the semiconductor light receiving device of the present invention. FIG. 2 is a circuit diagram showing a conventional semiconductor light receiving device.・Light receiving element group ・Reading circuit ●Tfp Amp ●Voltage regulator or higher

Claims (1)

【特許請求の範囲】[Claims] 光電変換素子及び前記光電変換素子の出力信号を順次読
み出す読み取り回路とがそれぞれ複数個と前記出力信号
を電圧変換する増幅回路及び定電圧を供給するボルテー
ジレギュレーターとが一導電型半導体基板に形成された
半導体受光装置であって、前記光電変換素子及び前記読
み取り回路は、前記ボルテージレギュレーターから供給
される電圧で駆動されることを特徴とする半導体受光装
置。
A plurality of photoelectric conversion elements and a reading circuit that sequentially reads output signals of the photoelectric conversion element, an amplifier circuit that converts the output signal into voltage, and a voltage regulator that supplies a constant voltage are formed on a single conductivity type semiconductor substrate. 1. A semiconductor light receiving device, wherein the photoelectric conversion element and the reading circuit are driven by a voltage supplied from the voltage regulator.
JP1193496A 1989-07-25 1989-07-25 Semiconductor light receiving device Expired - Lifetime JP2530226B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1193496A JP2530226B2 (en) 1989-07-25 1989-07-25 Semiconductor light receiving device
EP19900307945 EP0410653A3 (en) 1989-07-25 1990-07-20 Semi-conductor image sensing device
US07/557,089 US5109155A (en) 1989-07-25 1990-07-23 Semiconductor image sensor with an integrated voltage regulator
KR1019900011234A KR100250697B1 (en) 1989-07-25 1990-07-24 Semiconductor image sensing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1193496A JP2530226B2 (en) 1989-07-25 1989-07-25 Semiconductor light receiving device

Publications (2)

Publication Number Publication Date
JPH0357370A true JPH0357370A (en) 1991-03-12
JP2530226B2 JP2530226B2 (en) 1996-09-04

Family

ID=16309012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1193496A Expired - Lifetime JP2530226B2 (en) 1989-07-25 1989-07-25 Semiconductor light receiving device

Country Status (4)

Country Link
US (1) US5109155A (en)
EP (1) EP0410653A3 (en)
JP (1) JP2530226B2 (en)
KR (1) KR100250697B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993025005A1 (en) * 1992-05-22 1993-12-09 Indiana University Foundation Area-efficient implication circuits for very dense lukasiewicz logic arrays
US5781233A (en) * 1996-03-14 1998-07-14 Tritech Microelectronics, Ltd. MOS FET camera chip and methods of manufacture and operation thereof
EP0899946A3 (en) * 1997-08-26 2001-08-16 Eastman Kodak Company Image sensor electronics
US7418032B2 (en) * 2005-03-15 2008-08-26 International Business Machines Corporation Altering power consumption in communication links based on measured noise

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63136763A (en) * 1986-11-27 1988-06-08 Mitsubishi Electric Corp Image sensor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59201586A (en) * 1983-04-28 1984-11-15 Canon Inc Image pickup device
JPS61124171A (en) * 1984-11-20 1986-06-11 Seiko Instr & Electronics Ltd Semiconductor device
FR2593343B1 (en) * 1986-01-20 1988-03-25 Thomson Csf MATRIX OF PHOTOSENSITIVE ELEMENTS AND ITS MANUFACTURING METHOD, READING METHOD THEREOF, AND APPLICATION OF THIS MATRIX TO IMAGE TAKING
JPS6333075A (en) * 1986-07-26 1988-02-12 Olympus Optical Co Ltd Solid-state image pickup device
JPS63127656A (en) * 1986-11-17 1988-05-31 Ricoh Co Ltd Image sensor driving circuit
JPH084129B2 (en) * 1986-11-19 1996-01-17 キヤノン株式会社 Photoelectric conversion device
DE3710986A1 (en) * 1987-04-01 1988-10-20 Messerschmitt Boelkow Blohm LIGHT SENSITIVE DETECTOR DEVICE

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63136763A (en) * 1986-11-27 1988-06-08 Mitsubishi Electric Corp Image sensor

Also Published As

Publication number Publication date
KR100250697B1 (en) 2000-04-01
JP2530226B2 (en) 1996-09-04
EP0410653A2 (en) 1991-01-30
US5109155A (en) 1992-04-28
EP0410653A3 (en) 1992-02-12
KR910004013A (en) 1991-02-28

Similar Documents

Publication Publication Date Title
TWI386890B (en) Analog buffer, display device having the same, and method of driving the same
JP5175168B2 (en) Current sampling method and circuit
CN1293863A (en) Active linear sensor
KR20010039849A (en) Self compensating correlated double sampling circuit
JP2000338461A (en) Driving circuit, driving circuit system, biasing circuit, and driving circuit device
JP3179350B2 (en) Level shift circuit
CN100514850C (en) Amplifier
JPH0357370A (en) Semiconductor light receiving device
US11153517B2 (en) Dynamic vision sensor device including buffer
JP2001238133A (en) Cmos image sensor
US6600513B1 (en) Charge transfer device
JPH0671202B2 (en) Liquid crystal drive
CN1196252C (en) Gate biasing arrangement
US10574923B2 (en) Image capturing device and driving method thereof
EP0551910B1 (en) Output circuit with offset detection
JP2585067B2 (en) ECL signal converter
US6297492B1 (en) Fast BICMOS active-pixel sensor cell with fast NPN emitter-follower readout
JP2004165911A (en) Method of driving transistor
EP0642219B1 (en) Amplifier
CN100492910C (en) Level converter using base bias
US7858912B2 (en) Ultra low voltage CMOS image sensor architecture
CN112532899A (en) Photoelectric conversion circuit, driving method, photoelectric detection substrate, and photoelectric detection device
US7468500B2 (en) High performance charge detection amplifier for CCD image sensors
JPH09163247A (en) Boosting circuit, solid-state image pickup device mounted with the circuit and bar code reader and camera using the device
US11971298B1 (en) Pixel circuit and temperature sensing circuit adjusting signals in the same

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080614

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090614

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100614

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100614

Year of fee payment: 14