JPH0357285A - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device

Info

Publication number
JPH0357285A
JPH0357285A JP19151189A JP19151189A JPH0357285A JP H0357285 A JPH0357285 A JP H0357285A JP 19151189 A JP19151189 A JP 19151189A JP 19151189 A JP19151189 A JP 19151189A JP H0357285 A JPH0357285 A JP H0357285A
Authority
JP
Japan
Prior art keywords
modulation
phase
light absorption
light
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19151189A
Other languages
Japanese (ja)
Inventor
Haruhisa Soda
晴久 雙田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP19151189A priority Critical patent/JPH0357285A/en
Publication of JPH0357285A publication Critical patent/JPH0357285A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0265Intensity modulators

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To improve an optical transmission characteristic by integrating a semiconductor laser section, a light absorption modulation section, and a phase modulator section on the same substrate. CONSTITUTION:On the same substrate are integrated a semiconductor laser section LD which has a laser light generation active layer, and a drive current electrode PS1, a light absorption type modulation section MD-EA, which has a light absorption layer adjoining this active layer, and a modulation voltage electrode PS2, a phase modulator MD-P, which is provided with a phase modulation layer adjoining this light absorption layer, and a modulation current electrode PS3. When an attempt is made to carry out phase modulation in reverse phase mode between the MD-P section and phase modulation where laser light is subjected to phase modulation the section MD-EA, cancellation is produced so that wavelength chapping may be zero or work in reverse direction, thereby upgrading the optical transmission characteristic.

Description

【発明の詳細な説明】 〔概要〕 超高速光伝送システム用光源として好通な分布帰還(d
istributed  feedback : DF
B)型半導体レーザと半導体変調器を一体化した半導体
発光装置に関し、 DFB型半導体レーザと半導体変調器を一体化した半導
体発光装置に於いて、変調時に発住する波長チャーピン
グを更に低減し、良質の超高速光伝送を可能にすること
を目的とし、 レーザ光を発生する為の活性層を有し且つ駆動電流を流
す電極を有する半導体レーザ部分と、該レーザ光が入射
可能であるように前記活性層に連なっている光吸収層を
有し且つ該レーザ光を光吸収型変調する為の変調電流を
流す電極を有する光吸収型変調器部分と、該光吸収型変
調並びに該光吸収型変調に随伴する位相変調を受けた該
レーザ光が入射可能であるように前記光吸収層に連なっ
ている位相変調層を有し且つ該レーザ光が受けている位
相変調と逆位相で位相変調する為の変調電流を流す電極
を有する位相変調器部分とが同一基板上に集積化されて
なるか、或いは、前記半導体レーザ部分と前記位相変調
器部分と前記光吸収型変調器部分がその順に直列して同
一基板上に集積化されてなるよう構戒する。
[Detailed Description of the Invention] [Summary] Distributed feedback (d
distributed feedback: DF
B) Regarding a semiconductor light emitting device that integrates a type semiconductor laser and a semiconductor modulator, in a semiconductor light emitting device that integrates a DFB type semiconductor laser and a semiconductor modulator, wavelength chirping that occurs during modulation is further reduced, The purpose is to enable high-quality ultra-high-speed optical transmission, and the semiconductor laser part has an active layer for generating laser light and an electrode for flowing a driving current, and a structure that allows the laser light to enter. a light absorption modulator portion having a light absorption layer connected to the active layer and having an electrode through which a modulation current flows for light absorption modulation of the laser beam, the light absorption modulation and the light absorption type; It has a phase modulation layer that is continuous with the light absorption layer so that the laser light that has undergone phase modulation accompanying modulation can be incident, and that is phase modulated in an opposite phase to the phase modulation that the laser light is undergoing. A phase modulator portion having an electrode for passing a modulation current for the purpose of the invention is integrated on the same substrate, or the semiconductor laser portion, the phase modulator portion, and the light absorption type modulator portion are connected in series in that order. The aim is to ensure that these components are integrated on the same substrate.

〔産業上の利用分野〕 本発明は、超高速光伝送システム用光源として好通な分
布帰還(distributed  feedback
:DFB)型半導体レーザと半導体変調器を一体化した
半導体発光装置に関する。
[Industrial Application Field] The present invention is directed to distributed feedback, which is popular as a light source for ultrahigh-speed optical transmission systems.
The present invention relates to a semiconductor light emitting device that integrates a DFB type semiconductor laser and a semiconductor modulator.

現在、光伝送システムでは大容量化が進められていて、
それを達成するのには光源として用いられているDFB
型半導体レーザの高速応答性を向上することが不可欠で
ある。
Currently, optical transmission systems are increasing their capacity.
To achieve this, DFB is used as a light source.
It is essential to improve the high-speed response of semiconductor lasers.

〔従来の技術〕[Conventional technology]

DFB型半導体レーザを例えば10〔ギガビット/秒〕
程度の超高速で変調した場合、発振波長にチャーピング
を招来する緩和振動を抑制しないと良質な光伝送を期待
できない。
For example, a DFB type semiconductor laser with a speed of 10 [gigabits/second]
When modulating at extremely high speeds, high-quality optical transmission cannot be expected unless relaxation oscillations, which cause chirping in the oscillation wavelength, are suppressed.

そこで、DFB型半導体レーザを直接変調する方式に比
較して緩和振動が著しく少ない外部変調方式が試みられ
ている。
Therefore, attempts have been made to use an external modulation method that causes significantly less relaxation oscillation than a method that directly modulates a DFB type semiconductor laser.

第5図は本発明者が開発したDFB型半導体レーザと半
導体変調器を一体化した半導体発光装置を説明する為の
要部切断側面図を表している。
FIG. 5 is a cross-sectional side view of essential parts for explaining a semiconductor light emitting device that integrates a DFB type semiconductor laser and a semiconductor modulator developed by the present inventor.

図に於いて、1はn型rnP基板、2は回折格子、3は
GarnAsP導波層、4はInPエソチング停止層、
5はGa I nAs P活性層、6はGalnAsP
光吸収層、7はInPクラフド層、8は高抵抗分離領域
、9はp+型GalnAspキヤ,プ層、IOA及びI
OBはp側電極、11はn側電極、l2はSiNからな
る無反射コーティング膜、LDは半導体レーザ部分、M
Dは半導体変調器部分をそれぞれ示している.尚、高抵
抗分離領域8はレーザ部分LDと変調器部分MDを絶縁
する役割を果し、また、活性層5の組威はホトルξネセ
ンス波長にするとλPL=1.54 Cμm〕、そして
、吸収層6の組成はホトルミネセンス波長にするとλP
L=1.42 Cμm〕であり、更にまた、活性層5並
びに光吸収層6の厚さは約o.iscμm〕である。
In the figure, 1 is an n-type rnP substrate, 2 is a diffraction grating, 3 is a GarnAsP waveguide layer, 4 is an InP etch stop layer,
5 is GaInAsP active layer, 6 is GalnAsP
7 is an InP clad layer, 8 is a high resistance isolation region, 9 is a p + type GalnAsp layer, IOA and I
OB is a p-side electrode, 11 is an n-side electrode, 12 is an anti-reflection coating film made of SiN, LD is a semiconductor laser part, M
D indicates the semiconductor modulator section. The high-resistance isolation region 8 plays a role of insulating the laser portion LD and the modulator portion MD, and the active layer 5 has a compositional strength of λPL=1.54 Cμm when the photonescence wavelength is set to ξ, and the absorption The composition of layer 6 is λP in terms of photoluminescence wavelength.
L=1.42 Cμm], and furthermore, the thickness of the active layer 5 and the light absorption layer 6 is approximately o. iscμm].

この半導体発光装置に於いては、電極10A並びに電極
11間に電流を流すと、レーザ部分LDで発振が起こり
、その活性層5で発生した波長が1.55Cμm〕の光
は変調器部分MDの吸収層6に導波される。
In this semiconductor light emitting device, when a current is passed between the electrode 10A and the electrode 11, oscillation occurs in the laser portion LD, and light with a wavelength of 1.55 Cμm generated in the active layer 5 is transmitted to the modulator portion MD. The wave is guided to the absorption layer 6.

そこで、電極10B並びに電極11間に逆方向電圧が印
加されていない場合、吸収N6のエネルギ・バンド・ギ
ャソブは活性層5のそれと比較して大きいので、1.5
4Cμm〕のレーザ光が入射しても電子並びに正札を発
生することなく、無反射コーティング膜l2を介し、そ
のまま出射される。然しなから、電極10B並びに電極
l1間に逆方向電圧が印加されている場合、光吸収層6
のエネルギ・バンド・ギャンプは小さくなり、そこに前
記レーザ光が入射すると電子及び正孔が発生し、所謂、
光電流となって費消されてしまうので、レーザ光は出射
されないことになる。
Therefore, when no reverse voltage is applied between the electrodes 10B and 11, the energy band gap of the absorbed N6 is larger than that of the active layer 5, so 1.5
Even if a laser beam of 4 C μm is incident, it is emitted as it is through the non-reflection coating film 12 without generating electrons or genuine tags. However, when a reverse voltage is applied between the electrode 10B and the electrode l1, the light absorption layer 6
The energy band gap of becomes small, and when the laser beam is incident there, electrons and holes are generated, so-called
Since it becomes a photocurrent and is consumed, no laser light is emitted.

前記したところから明らかなように、電極10B及び電
極11間に電流を流すか否かに依って、出射光はオン・
オフされて変調が行われる。
As is clear from the above, the emitted light can be turned on or off depending on whether or not a current is passed between the electrode 10B and the electrode 11.
It is turned off and modulation is performed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

第5図について説明した半導体発光装置に於いて、変調
信号は、勿論、変調器部分MDのみに加わるようになっ
ている。そのようにすると、出射光には位相変調が掛か
る状態となり、波長チャーピングを生ずる。その波長チ
ャービングは、直接変調方弐のDFB型半導体レーザに
比較し、著しく少なくなってはいるものの零ではなく、
無視することはできない。
In the semiconductor light emitting device described with reference to FIG. 5, the modulation signal is, of course, applied only to the modulator portion MD. In this case, the emitted light is subjected to phase modulation, resulting in wavelength chirping. Although the wavelength chirving is significantly lower than that of the DFB semiconductor laser using the direct modulation method, it is not zero.
It cannot be ignored.

第6図は第5図に見られる半導体発光装置に於ける変調
の様子を説明する為の線図であり、そして、第7図は同
しく波長チャーピングの発生を説明する為の線図である
FIG. 6 is a diagram for explaining the state of modulation in the semiconductor light emitting device shown in FIG. 5, and FIG. 7 is a diagram for explaining the occurrence of wavelength chirping. be.

第6図に於いては、縦軸に光出力を、横軸に時間をそれ
ぞれ採ってあり、また、第7図に於いては、縦軸に出力
波長を、また、横軸に時間をそれぞれ採ってある。
In Figure 6, the vertical axis represents the optical output, and the horizontal axis represents time. In Figure 7, the vertical axis represents the output wavelength, and the horizontal axis represents time. It has been taken.

図から明らかなように、波長チャービングは、光の変調
に追随して現れ、光出力の立ち下がり時には波長が増加
し、そして、光出力の立ち上がり時には波長が減少し、
その変動値W,は約0.  5〔人〕程度であり、また
、マルチギガビフ}変調時には約0.8 〔人〕程度に
も達する。
As is clear from the figure, wavelength chirving appears following the modulation of light; the wavelength increases when the optical output falls, and decreases when the optical output rises.
The fluctuation value W, is approximately 0. It is about 5 [persons], and reaches about 0.8 [persons] during multi-giga bif} modulation.

本発明は、DFB型半導体レーザと半導体変調器を一体
化した半導体発光装置に於いて、変調時に発生する波長
チャーピングを更に低減し、良質の超高速光伝送を可能
にしようとする。
The present invention aims to further reduce wavelength chirping that occurs during modulation in a semiconductor light emitting device that integrates a DFB type semiconductor laser and a semiconductor modulator, thereby enabling high-quality ultrahigh-speed optical transmission.

〔課題を解決するための手段〕[Means to solve the problem]

第5図乃至第7図について説明したところから明らかな
ように、波長チャーピングは、光出力が立ち下がる際に
は長波長側にチャープし、また、光出力が立ち上がる際
には短波長側にチャープしている。
As is clear from the explanation of Figures 5 to 7, wavelength chirping chirps toward longer wavelengths when the optical output falls, and chirps toward shorter wavelengths when the optical output rises. It's chirping.

従って、このような現象を打ち消すような手段を採って
やれば、問題は解消する筈である。
Therefore, if measures are taken to counteract this phenomenon, the problem should be resolved.

第1図乃至第3図は本発明の原理を説明する為の半導体
発光装置の要部ブロノク図を表している。
1 to 3 are Bronoch diagrams of essential parts of a semiconductor light emitting device for explaining the principle of the present invention.

各図に於いて、LDは半導体レーザ部分、MDEAは光
吸収型変調器部分、MD−Pは位相変調器部分、Psi
は駆動用電源、PS2は光吸収型変調用電源、PS3は
位相変調用電源をそれぞれ示している。尚、光吸収型変
調用電源PS2からの変調用電圧と位相変調用電源PS
3からの変調用電圧とは逆位相になっていて、また、半
導体レーザ部分LDとしてはDFB型のものを用いるこ
とが望ましい。
In each figure, LD is a semiconductor laser part, MDEA is a light absorption modulator part, MD-P is a phase modulator part, and Psi
, PS2 is a power supply for light absorption type modulation, and PS3 is a power supply for phase modulation. In addition, the modulation voltage from the light absorption type modulation power supply PS2 and the phase modulation power supply PS
The phase is opposite to that of the modulation voltage from 3, and it is preferable to use a DFB type semiconductor laser portion LD.

図から明らかなように、本発明では、半導体レーザ部分
と光吸収型変調器部分とからなる第5図について説明し
た半導体発光装置と同様な部分、即ち、半導体レーザ部
分LDと光吸収型変調器部分MD−EAからなる部分に
加えて位相変調器部分MD−Pを設けたものである。
As is clear from the figure, in the present invention, the same parts as the semiconductor light emitting device explained with reference to FIG. In addition to the portion consisting of the portion MD-EA, a phase modulator portion MD-P is provided.

この位相変調器部分MD−Pは、第1図に見られるよう
に、半導体レーザ部分LDと光吸収型変調器部分MD−
EAとの間に介拝するか、第2図に見られるように、半
導体レーザ部分LDと光吸収型変調器部分MD−EAと
を結合した後に結合させるか、第3図に見られるように
、第1図に見られる構成と第2図に見られる構成とを結
合するなど、何れの構或を採っても良い。
As shown in FIG. 1, this phase modulator part MD-P includes a semiconductor laser part LD and a light absorption type modulator part MD-
EA, or as shown in FIG. 2, the semiconductor laser section LD and the light absorption modulator section MD-EA are combined after being combined, or as shown in FIG. , the configuration shown in FIG. 1 and the configuration shown in FIG. 2 may be combined, or any other configuration may be adopted.

このように、変調器として光吸収型変調器と位相変調器
とを併用する理由は、第5図乃至第7図について説明し
たように、光吸収型変調器のみを用いた場合、光を吸収
する際に出力波長が長波長側に、そして、光を透過させ
る際に出力波長が短波長側にそれぞれシフトして位相変
調が掛かってしまうことから、位相変調器に於ける屈折
率変化を光吸収型変調器に於けるそれと反対位相になる
ようにして前記出力波長のシフトと反対位相に出力波長
をシフトさせ、波長チャービングを零或いは逆方向にも
動かせるようにして、出力光の位相変調を任意に制御で
きるようにする為である。
The reason why a light absorption modulator and a phase modulator are used together as a modulator is that, as explained in FIGS. 5 to 7, when only a light absorption modulator is used, the light absorption When transmitting light, the output wavelength shifts to the long wavelength side, and when transmitting light, the output wavelength shifts to the short wavelength side, resulting in phase modulation. Therefore, the refractive index change in the phase modulator is Phase modulation of the output light is achieved by shifting the output wavelength to a phase opposite to that of the absorption modulator so that the wavelength chirving can be moved to zero or in the opposite direction. This is to enable arbitrary control.

前記したようなことから、本発明に依る半導体発光装置
に於いては、レーザ光を発生する為の活性層(例えばI
nGaAsP活性1i5)を有し且つ駆動電流を流す電
極(例えば電極13A)を有する半導体レーザ部分(例
えば半導体レーザ部分LD)と、咳レーザ光が入射可能
であるように前記活性層に連なっている光吸収層(例え
ばGaTnAsP光吸収層6)を有し且つ該レーザ光を
光吸収型変調する為の変調電流を流す電極(例えば電極
13B)を有する光吸収型変tn器部分(例えば光吸収
型変調器部分MD−EA)と、該光吸収型変調並びに該
光吸収型変調に随伴する位相変調を受けた該レーザ光が
入射可能であるように前記光吸収層に連なっている位相
変調層(例えばGarnAsP位相変調層6′)を有し
且つ該レーザ光が受けている位相変調と逆位相で位相変
調するする為の変調電流を流す電極(例えば電極13C
)を有する位相変調器部分(例えば位相変調器部分MD
−P)とを同一基板(例えばn型1nP基板工)上に集
積化するか、或いは、レーザ光を発生する為の活性層を
有し且つ駆動電流を流す電極を有する半導体レーザ部分
と、該レーザ光が入射可能であるように前記活性層に連
なっている位相変調層を有し且つ該レーザ光を光吸収型
変調した際に随伴して受けるであろう位相変調と逆位相
で位相変調する為の変調電流を流す電極を有する位相変
調器部分と、該位相変調を受けた該レーザ光が入射可能
であるように前記位相変調層に連なっている光吸収層を
有し且つ該レーザ光を光吸収型変調する為の変調電流を
流す電極を有する光吸収型変調器部分とが同一基板上に
集積化される。
As described above, in the semiconductor light emitting device according to the present invention, an active layer (for example, I
A semiconductor laser portion (e.g., semiconductor laser portion LD) having nGaAsP activity 1i5) and having an electrode (e.g., electrode 13A) through which a driving current flows; A light absorption type transformer portion (for example, a light absorption modulation type) having an absorption layer (for example, a GaTnAsP light absorption layer 6) and an electrode (for example, an electrode 13B) through which a modulation current flows for light absorption type modulation of the laser beam. a phase modulation layer (e.g. GarnAsP phase modulation layer 6') and an electrode (for example, electrode 13C) through which a modulation current is passed to perform phase modulation with an opposite phase to the phase modulation that the laser beam is receiving.
) having a phase modulator section (e.g. phase modulator section MD
-P) on the same substrate (for example, an n-type 1nP substrate), or a semiconductor laser portion having an active layer for generating laser light and an electrode for passing a driving current, and It has a phase modulation layer connected to the active layer so that the laser beam can be incident thereon, and the phase modulation layer is phase-modulated in an opposite phase to the phase modulation that would be received when the laser beam is subjected to optical absorption modulation. a phase modulator portion having an electrode through which a modulation current flows for the purpose of the phase modulation, and a light absorption layer connected to the phase modulation layer so that the phase modulated laser light can be incident thereon; A light absorption modulator portion having an electrode through which a modulation current for light absorption modulation is passed is integrated on the same substrate.

〔作用〕[Effect]

前記手段を採ることに依り、レーザ光を光吸収型変調器
部分に於いて光吸収型変調を行うのに随伴して位相変調
が行われて長波長側の波長チャービング或いは短波長側
の波長チャービングが発生しても、その位相変調は、予
めレーザ光を位相変調器部分を通過させるか、或いは、
位相変調を受けた後のレーザ光を位相変調器部分を通過
させるかして、そこで、前記位相変調とは逆位相の位相
変調を行うことで相殺し、波長チャービングを零或いは
逆方向にも動くようにして、光伝送特性を向上すること
が可能である。
By adopting the above-mentioned means, phase modulation is performed in conjunction with optical absorption modulation of the laser beam in the optical absorption modulator section, resulting in wavelength chirving on the long wavelength side or wavelength chirping on the short wavelength side. Even if chirving occurs, its phase modulation can be achieved by passing the laser light through a phase modulator section in advance, or by
The laser beam that has undergone phase modulation is passed through a phase modulator section, where it is canceled out by performing phase modulation with an opposite phase to the phase modulation, and the wavelength chirping is reduced to zero or even in the opposite direction. It is possible to improve the optical transmission characteristics by making it move.

〔実施例〕〔Example〕

第4図は本発明一実施例の要部切断側面図を表し、第5
図乃至第7図に於いて用いた記号と同記号は同部分を示
すか或いは同し意味を持つものとする。
FIG. 4 shows a cutaway side view of essential parts of one embodiment of the present invention, and FIG.
The same symbols as those used in FIGS. 7 to 7 indicate the same parts or have the same meanings.

図に於いて、6′はGalnAsP位相変調層、13A
は半導体レーザ部分LDの電極、13Bは光吸収層型変
調器部分MD−EAの電極、13Cは位相変調器部分M
D−Pの電極、l4は駆動用電源、15は光吸収型変調
用電源、l6は位相変調用電源をそれぞれ示している。
In the figure, 6' is a GalnAsP phase modulation layer, 13A
13B is the electrode of the semiconductor laser portion LD, 13B is the electrode of the light absorption layer type modulator portion MD-EA, and 13C is the phase modulator portion M.
DP electrodes, l4 is a driving power source, 15 is a light absorption type modulation power source, and l6 is a phase modulation power source.

図から明らかなように、本実施例は、第5図乃至第7図
について説明した先行技術に依る半導体発光装置に於け
る半導体レーザ部分LD及び光吸収型変調器部分MD 
(即ち、本実施例ではMD−EA)に位相変調器部分M
D−Pを加えて構戒したものであり、そして、活性層5
、光吸収N6、位相変調層6′はGalnAsPで構成
され、その組成は、波長感度にして、例えば1.55C
μm)、1.4Cμm〕、1.3Cμm〕にしてある。
As is clear from the drawings, this embodiment is similar to the semiconductor laser portion LD and light absorption modulator portion MD in the semiconductor light emitting device according to the prior art described with reference to FIGS. 5 to 7.
(that is, MD-EA in this embodiment) has a phase modulator section M
It is prepared by adding D-P, and the active layer 5
, the light absorption layer N6 and the phase modulation layer 6' are made of GalnAsP, and the composition thereof is, for example, 1.55C in terms of wavelength sensitivity.
μm), 1.4Cμm], and 1.3Cμm].

尚、位相変#[i6’の波長感度を1.3〔μm〕程度
にすると深い逆バイアス動作時にも透明である。
Note that if the wavelength sensitivity of the phase shift #[i6' is set to about 1.3 [μm], it will remain transparent even during deep reverse bias operation.

本実施例に於いては、光吸収型変調用電源15から電極
13Bに変調電流を流す際、位相変調用電源16から電
極13Cに対し、屈折率を小さくして波長を短波長側に
シフトする為の電流を流し、また、光吸収型変調用電源
15から電極13Bに流していた変調電流を遮断する際
、位相変調用電a16から電極13Cに対し、屈折率を
大きくして波長を長波長側にシフトする為の電流を流す
ようにしでいる。従って、活性N5で発生したレーザ光
が光吸収層6に入射され、そこで光吸収型の変調を受け
、且つ、その変調に付随して波長が長波長側及び短波長
側にシフトする位相変調を受けてから位相変調16’に
入射され、そこを通過する際、前記光吸収型変調に付随
して発生した位相変調と同期する逆位相の変調を受けて
波長チャービングが略零になった状態のレーザ光が出射
されるものである。
In this embodiment, when a modulation current is caused to flow from the light absorption type modulation power source 15 to the electrode 13B, the refractive index is decreased from the phase modulation power source 16 to the electrode 13C, and the wavelength is shifted to the shorter wavelength side. In addition, when cutting off the modulation current flowing from the light absorption modulation power supply 15 to the electrode 13B, the refractive index is increased from the phase modulation power supply a 16 to the electrode 13C to change the wavelength to a longer wavelength. A current is applied to shift to the side. Therefore, the laser light generated by the active N5 is incident on the light absorption layer 6, where it undergoes light absorption type modulation, and accompanying the modulation, phase modulation in which the wavelength shifts to the longer wavelength side and the shorter wavelength side is generated. After receiving the light, it enters the phase modulation 16', and when passing through there, it receives modulation with an opposite phase that is synchronized with the phase modulation that occurred accompanying the light absorption type modulation, so that the wavelength chirping becomes approximately zero. The laser beam is emitted.

本実施例に於ける活性層5、光吸収層6、位相変調層6
′の形或は、従来の技術を適用し、容易に行うことがで
きる。即ち、 [1.lInPエソチング停止層4上にGa rnAs
P゛活性層5を或長させる。
Active layer 5, light absorption layer 6, phase modulation layer 6 in this example
' or by applying conventional techniques. That is, [1. Ga rnAs on the lInP ethoching stop layer 4
P゛The active layer 5 is lengthened to a certain extent.

(21  G a T n A s P活性層5のパタ
ーニングを行って、半導体レーザ部分LDに対応する部
分のみ残して他を除去する。
(The 21 Ga T n A s P active layer 5 is patterned to leave only the portion corresponding to the semiconductor laser portion LD and remove the rest.

(31  G a I n A s P光吸収層6を戒
長させ、それをバクーニングして光吸収型変調器部分M
DEAに対応する部分のみ残して他を除去する。
(31 G a I n A s P The light absorption layer 6 is lengthened and exposed to light absorption type modulator portion M.
Leave only the part corresponding to DEA and remove the rest.

(41  GalnAsP位相変調層6′を成長させ、
それをバターニングして位相変調器部分MDPに対応す
る部分のみ残して他を除去する。
(41 Grow the GalnAsP phase modulation layer 6',
It is patterned to leave only the part corresponding to the phase modulator part MDP and remove the rest.

前記したように、活性層5、光吸収層6、位相変調N6
′それぞれの組成は波長感度λ,Lにして1.55 C
μm) 、1.4  (μm) 、1.3 Cpm〕で
あり、そして、半導体レーザ部分LD、光吸収型変調器
部分MD−EA、位相変調器部分MD−Pそれぞれの長
さは300  (μm) 、200〔μrr+)、40
0(μm〕とした。
As described above, the active layer 5, the light absorption layer 6, the phase modulation N6
'Each composition has a wavelength sensitivity λ, L of 1.55 C
μm), 1.4 (μm), 1.3 Cpm], and the lengths of each of the semiconductor laser portion LD, light absorption modulator portion MD-EA, and phase modulator portion MD-P are 300 (μm). ), 200 [μrr+), 40
It was set to 0 (μm).

〔発明の効果〕〔Effect of the invention〕

本発明に依る半導体発光装置に於いては、レーザ光を発
生する為の活性層を有し且つ駆動電流を流す電極を有す
る半導体レーザ部分と、該レーザ光が入射可能であるよ
うに前記活性層に連なっている光吸収層を有し且つ該レ
ーザ光を光吸収型変調する為の変調電流を流す電極を有
する光吸収型変調器部分と、該光吸収型変調並びに該光
吸収型変調に随伴する位相変調を受けた該レーザ光が入
射可能であるように前記光吸収層に連なっている位相変
調層を有し且つ該レーザ光が受けている位相変調と逆位
相で位相変調する為の変調電圧を印加する電極を有する
位相変調器部分とが同一基板上に集積化されるか、或い
は、前記半導体レーザ部分と前記位相変調器部分と前記
光吸収型変調器部分がその順に直列して同一基板上に集
積化される。
In the semiconductor light emitting device according to the present invention, there is provided a semiconductor laser portion having an active layer for generating laser light and an electrode through which a driving current flows; a light absorption modulator portion having a light absorption layer connected to the laser beam and an electrode through which a modulation current flows for light absorption modulation of the laser beam; a phase modulation layer that is continuous with the light absorption layer so that the laser beam that has undergone phase modulation can be incident thereon, and that modulates the phase with an opposite phase to the phase modulation that the laser beam is undergoing; A phase modulator section having an electrode for applying a voltage is integrated on the same substrate, or the semiconductor laser section, the phase modulator section, and the light absorption modulator section are connected in series in that order and are integrated on the same substrate. Integrated on a substrate.

前記構或を採ることに依り、レーザ光を光吸収型変調器
部分に於いて光吸収型変調を行うのに随伴して位相変調
が行われて長波長側の波長チャーピング或いは短波長側
の波長チャービングが発生しても、その位相変調は、予
めレーザ光を位相変調器部分を通過させるか、或いは、
位相変調器に位相変調後のレーザ光を通過させるかして
、そこで、前記位相変調とは逆位相の位相変調を行うこ
とで相殺し、波長チャーピングを零、或いは、逆方向に
も動くようにして光伝送特性を向上することが可能であ
る。
By employing the above structure, phase modulation is performed along with optical absorption modulation of the laser beam in the optical absorption modulator section, resulting in wavelength chirping on the long wavelength side or wavelength chirping on the short wavelength side. Even if wavelength chirping occurs, the phase modulation can be achieved by passing the laser light through a phase modulator section in advance, or by
The laser beam after phase modulation is passed through a phase modulator, and the phase modulation is canceled out by performing phase modulation with an opposite phase to the phase modulation, so that the wavelength chirping becomes zero or moves in the opposite direction. It is possible to improve optical transmission characteristics by

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第3図は本発明の原理を説明する為の半導体
発光装置の要部ブロック図、第4図は本発明一実施例の
要部切断側面図、第5図はDFB型半導体レーザと半導
体変調器を一体化した半導体発光装置を説明する為の要
部切断側面図、第6図は第5図に見られる半導体発光装
置に於ける変調の様子を説明する為の線図、第7図は同
じく波長チャーピングの発生を説明する為の線図をそれ
ぞれ示している。 図に於いて、lはn型1nP基板、2は回折格子、3は
GarnAsP導波層、4はInPエソチング停止層、
5はGarnAsP活性層、6はGalnAsP光吸収
層、6′はGalnAsP位相変調層、7はInPクラ
ッド層、8は高抵抗分離領域、9はp1型Qa)nAs
Pキ+−/ブ層、10A及びIOBはp {!1.11
電極、11はn側電極、l2はSiNからなる無反射コ
ーティング膜、工3Aは半導体レーザ部分LDの電極、
13Bは光吸収層型変調器部分MD−EAの電極、13
Cは位相変調器部分MD−Pの電極、14は駆動用電源
、l5は光吸収型変調用電源、16は位相変調用電源、
LDは半導体レーザ部分、MD−EAは光吸収型変調器
部分、MD−Pは位相変調器部分、PSlは駆動用電源
、PS2は光吸収型変調用電源、PS3は位相変調用電
源をそれぞれ示している。
1 to 3 are block diagrams of essential parts of a semiconductor light emitting device for explaining the principle of the present invention, FIG. 4 is a cutaway side view of essential parts of an embodiment of the present invention, and FIG. 5 is a DFB type semiconductor laser. 6 is a cross-sectional side view of essential parts for explaining a semiconductor light emitting device that integrates a semiconductor light emitting device and a semiconductor modulator; FIG. 6 is a line diagram for explaining the state of modulation in the semiconductor light emitting device shown in FIG. Similarly, FIG. 7 shows diagrams for explaining the occurrence of wavelength chirping. In the figure, l is an n-type 1nP substrate, 2 is a diffraction grating, 3 is a GarnAsP waveguide layer, 4 is an InP etch stop layer,
5 is a GalnAsP active layer, 6 is a GalnAsP light absorption layer, 6' is a GalnAsP phase modulation layer, 7 is an InP cladding layer, 8 is a high resistance isolation region, 9 is a p1 type Qa)nAs
P key+-/bu layer, 10A and IOB are p {! 1.11
electrode, 11 is the n-side electrode, 12 is the non-reflective coating film made of SiN, 3A is the electrode of the semiconductor laser part LD,
13B is an electrode of the light absorption layer type modulator part MD-EA, 13
C is an electrode of the phase modulator part MD-P, 14 is a drive power source, l5 is a light absorption type modulation power source, 16 is a phase modulation power source,
LD is a semiconductor laser part, MD-EA is a light absorption modulator part, MD-P is a phase modulator part, PSl is a drive power supply, PS2 is a light absorption modulation power supply, and PS3 is a phase modulation power supply. ing.

Claims (2)

【特許請求の範囲】[Claims] (1)レーザ光を発生する為の活性層を有し且つ駆動電
流を流す電極を有する半導体レーザ部分と、該レーザ光
が入射可能であるように前記活性層に連なっている光吸
収層を有し且つ該レーザ光を光吸収型変調する為の変調
電圧を印加する電極を有する光吸収型変調器部分と、 該光吸収型変調並びに該光吸収型変調に随伴する位相変
調を受けた該レーザ光が入射可能であるように前記光吸
収層に連なっている位相変調層を有し且つ該レーザ光が
受けている位相変調と逆位相で位相変調する為の変調電
流を流す電極を有する位相変調器部分と が同一基板上に集積化されてなることを特徴とする半導
体発光装置。
(1) A semiconductor laser has an active layer for generating laser light and an electrode for passing a driving current, and a light absorption layer that is connected to the active layer so that the laser light can be incident thereon. and a light absorption modulator portion having an electrode for applying a modulation voltage for light absorption modulation of the laser beam, and the laser subjected to the light absorption modulation and the phase modulation accompanying the light absorption modulation. A phase modulator, which has a phase modulation layer connected to the light absorption layer so that light can be incident thereon, and an electrode through which a modulation current flows for phase modulation in an opposite phase to the phase modulation that the laser beam is receiving. 1. A semiconductor light emitting device characterized in that a light emitting device and a light emitting device are integrated on the same substrate.
(2)レーザ光を発生する為の活性層を有し且つ駆動電
流を流す電極を有する半導体レーザ部分と、該レーザ光
が入射可能であるように前記活性層に連なっている位相
変調層を有し且つ該レーザ光を光吸収型変調した際に随
伴して受けるであろう位相変調と逆位相で位相変調する
為の変調電圧を印加する電極を有する位相変調器部分と
、 該位相変調を受けた該レーザ光が入射可能であるように
前記位相変調層に連なっている光吸収層を有し且つ該レ
ーザ光を光吸収型変調する為の変調電流を流す電極を有
する光吸収型変調器部分と が同一基板上に集積化されてなることを特徴とする半導
体発光装置。
(2) A semiconductor laser portion having an active layer for generating laser light and an electrode for passing a drive current, and a phase modulation layer continuous to the active layer so that the laser light can be incident. and a phase modulator portion having an electrode for applying a modulation voltage to perform phase modulation in an opposite phase to the phase modulation that would be received when the laser light is optically absorbed modulated; a light absorption type modulator part having a light absorption layer connected to the phase modulation layer so that the laser light can be incident thereon, and an electrode through which a modulation current flows for light absorption modulation of the laser light; 1. A semiconductor light emitting device characterized in that: and are integrated on the same substrate.
JP19151189A 1989-07-26 1989-07-26 Semiconductor light emitting device Pending JPH0357285A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19151189A JPH0357285A (en) 1989-07-26 1989-07-26 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19151189A JPH0357285A (en) 1989-07-26 1989-07-26 Semiconductor light emitting device

Publications (1)

Publication Number Publication Date
JPH0357285A true JPH0357285A (en) 1991-03-12

Family

ID=16275873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19151189A Pending JPH0357285A (en) 1989-07-26 1989-07-26 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JPH0357285A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0671791A1 (en) * 1994-03-11 1995-09-13 Alcatel N.V. Semiconductor electrooptical modulator and optical transmission system including this modulator
US5550855A (en) * 1993-07-23 1996-08-27 Mitsubishi Denki Kabushiki Kaisha Optical modulator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5550855A (en) * 1993-07-23 1996-08-27 Mitsubishi Denki Kabushiki Kaisha Optical modulator
EP0671791A1 (en) * 1994-03-11 1995-09-13 Alcatel N.V. Semiconductor electrooptical modulator and optical transmission system including this modulator
WO1995024752A1 (en) * 1994-03-11 1995-09-14 Alcatel N.V. Electro-optical semiconductor modulator and optical link including same
FR2717330A1 (en) * 1994-03-11 1995-09-15 Alcatel Nv Electro-optical semiconductor modulator and optical link including this modulator.
US5611003A (en) * 1994-03-11 1997-03-11 Alcatel N.V. Electro-optical semicoductor modulator, and an optical link including the modulator

Similar Documents

Publication Publication Date Title
JPS6155981A (en) Semiconductor light-emitting element
JP6425631B2 (en) Semiconductor laser and optical integrated light source having the same
JPH0357288A (en) Device with semiconductor laser and using method of the same
JP2002169131A (en) Optical semiconductor device, and modulation method of the optical semiconductor device
KR100519922B1 (en) self-mode locked multisection semiconductor laser diode
Menon et al. All-optical wavelength conversion using a regrowth-free monolithically integrated Sagnac interferometer
JPS60260024A (en) Optical modulating element
JP4421951B2 (en) Optical transmission module
Hatta et al. Polarization-insensitive monolithic 40-Gbps SOA–MZI wavelength converter with narrow active waveguides
JPS63244783A (en) Wavelength conversion element
JP2018060974A (en) Semiconductor optical integrated element
US20200235547A1 (en) Optical transmitter
JPS6242593A (en) Semiconductor light emission device
JPH0357285A (en) Semiconductor light emitting device
JP2011181789A (en) Semiconductor light source
JP2019057543A (en) Semiconductor optical integrated element
JPH0357286A (en) Semiconductor luminous device
JP6761391B2 (en) Semiconductor optical integrated device
JPS6232680A (en) Integrated type semiconductor laser
WO2020221434A1 (en) Interferometric enhancement of an electroabsorptive modulated laser
JP7397376B2 (en) optical transmitter
JP2019057539A (en) Semiconductor optical integrated element
JPS61107781A (en) Single axial-mode semiconductor laser device
JP2013251424A (en) Optical integrated device
JP2018060975A (en) Direct modulation laser