JPH035722A - Liquid crystal electrooptic device - Google Patents

Liquid crystal electrooptic device

Info

Publication number
JPH035722A
JPH035722A JP1140532A JP14053289A JPH035722A JP H035722 A JPH035722 A JP H035722A JP 1140532 A JP1140532 A JP 1140532A JP 14053289 A JP14053289 A JP 14053289A JP H035722 A JPH035722 A JP H035722A
Authority
JP
Japan
Prior art keywords
liquid crystal
chiral
component
chiral liquid
htp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1140532A
Other languages
Japanese (ja)
Inventor
Takeshi Fukui
毅 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP1140532A priority Critical patent/JPH035722A/en
Publication of JPH035722A publication Critical patent/JPH035722A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

PURPOSE:To suppress a decrease in contrast by adding clockwise chiral liquid crystal and counterclockwise chiral liquid crystal in nematic liquid crystal., and determining either clockwise or counter clockwise twist direction, and further adding chiral liquid crystal which is small in HTP, and making fine adjustment for temperature variation. CONSTITUTION:The liquid crystal has the counterclockwise chiral component and clockwise chiral component, the difference between the helical twist power of one chiral liquid crystal component and the helical chiral twist power of the other chiral liquid crystal component is >=0.04, and the variation with temperature is <=0.005. Thus, the chiral liquid crystal which can suppress temperature variation in the difference in HTP between the two kinds of chiral liquid crystal below +0.005 is added. Consequently, the length of the chiral pitch of an STN type liquid crystal electrooptic device is easily adjusted, a defect of the orientation of a rho-less, stripe domain, etc., is eliminated, and defects such as a decrease in contrast and a failure in display due to temperature variation are removed.

Description

【発明の詳細な説明】 〔従来の技術〕 従来、STN型と呼ばれる液晶電気光学装置がワープロ
などのデイスプレィとしてかなり普及している。このS
 T N (Super Twisted Nemat
ic)型液晶電気光学装置は以前から時計、電卓等に用
、いられてきたTN (Twisted Nemati
c)型液晶電気光学装置に比較して、液晶のスイッチン
グに対する電圧のしきい値が明確であるため、従来のT
N型液晶電気光学装置では用いることができなかった比
較的大型のデイスプレィにも応用することができる。
DETAILED DESCRIPTION OF THE INVENTION [Prior Art] Heretofore, liquid crystal electro-optical devices called STN type have been quite popular as displays for word processors and the like. This S
T N (Super Twisted Nemat
IC) type liquid crystal electro-optical devices have long been used in watches, calculators, etc.
c) type liquid crystal electro-optical device, the voltage threshold for liquid crystal switching is clear, so the conventional T
It can also be applied to relatively large displays that cannot be used with N-type liquid crystal electro-optical devices.

さて、一般にSTNTN型液晶電気光学装置いる液晶は
、ネマティック液晶にカイラル液晶を添加することによ
り、ツイスト状態を生じせしめており、そして、仮にネ
マティック液晶中に1種類のカイラル液晶を添加した場
合、そのカイラル液晶が布巻ならば布巻に、左巻ならば
左巻にツイストする液晶が得られる。
Now, in general, liquid crystals in STNTN type liquid crystal electro-optical devices produce a twisted state by adding chiral liquid crystal to nematic liquid crystal.If one type of chiral liquid crystal is added to nematic liquid crystal, If the chiral liquid crystal is cloth-wrapped, a liquid crystal that twists to the left can be obtained.

ところでSTNTN型液晶電気光学装置、カイラルピッ
チとセル厚(液晶層の厚さ)の調整が非常に重要であり
、セル厚に対してカイラルピンチが大きすぎるとπレス
、逆に小さすぎるとストライプドメインという配向不良
が生じる。
By the way, it is very important to adjust the chiral pitch and cell thickness (thickness of the liquid crystal layer) in the STNTN type liquid crystal electro-optical device.If the chiral pinch is too large relative to the cell thickness, π-less will occur, and if it is too small, striped domain will occur. This alignment defect occurs.

そして、カイラルピンチは一般に温度上昇とともに長く
なるため、仮に室温状態でのカイラルピッチの長さとセ
ルの厚さとがうまく調整されていて高い表示品質が得ら
れていても、温度が上昇するにつれ液晶のツイスト状態
が変化して、コントラストの低下等、表示品質が急激に
低下してしまう。その対策として、通常右巻カイラルと
左巻カイラルとをネマティック液晶中に添加することが
行われている。こうすることにより、温度上昇によるカ
イラルピッチの伸びが布巻と左巻で相殺され、表示品質
が低下することがなくなるものである。
In general, the chiral pinch lengthens as the temperature rises, so even if the chiral pitch length and cell thickness are well adjusted at room temperature and high display quality is obtained, as the temperature rises, the liquid crystal The twist state changes and the display quality, such as a decrease in contrast, deteriorates rapidly. As a countermeasure against this problem, a right-handed chiral and a left-handed chiral are usually added to the nematic liquid crystal. By doing this, the elongation of the chiral pitch due to temperature rise is offset by the cloth wrapping and the left-handed wrapping, and display quality does not deteriorate.

しかしながら、この場合の布巻と左巻の相殺は室温状態
でも当然起こるため、室温状態でのカイラルピッチをあ
る程度以上大きくできなくなり、その結果セル厚もある
程度以上大きくすることができず、基板間に侵入するゴ
ミのために工程上の歩留まりを著しく低下させていた。
However, in this case, the cancellation of cloth wrapping and left-handed winding naturally occurs even at room temperature, so the chiral pitch at room temperature cannot be increased beyond a certain level, and as a result, the cell thickness cannot be increased beyond a certain level, and the interference between the substrates The yield rate of the process was significantly lowered due to the waste generated.

さらに、布巻カイラルと左巻カイラルの相殺については
、その微調整はほとんどできない状態であるため、温度
変化に対するカイラルピッチの変動を相殺できるような
カイラル液晶物質を作りださなければならなかった。
Furthermore, since it is almost impossible to fine-tune the cancellation of cloth-wound chiral and left-handed chiral, it was necessary to create a chiral liquid crystal material that can cancel out fluctuations in chiral pitch due to temperature changes.

〔発明の構成〕[Structure of the invention]

上記問題点を解決するために本発明は、一対の基板間に
液晶を介在せしめ、かつ液晶の異なる状態を識別するた
めの偏光手段を存する液晶電気光学装置において、前記
液晶が左巻カイラル成分と右巻カイラル成分とを含有し
ており、一方のカイラル液晶成分のヘリカルツイストパ
ワーの大きさと、他方のカイラル液晶成分のヘリカルツ
イストパワーの大きさの差が0.04より大きく、温度
変化による変動が±0.005以内であることを特徴と
する。
In order to solve the above-mentioned problems, the present invention provides a liquid crystal electro-optical device in which a liquid crystal is interposed between a pair of substrates and includes a polarizing means for identifying different states of the liquid crystal, in which the liquid crystal has a left-handed chiral component. It contains a right-handed chiral component, and the difference between the helical twist power of one chiral liquid crystal component and the other chiral liquid crystal component is greater than 0.04, and there is no fluctuation due to temperature changes. It is characterized by being within ±0.005.

本発明において、ヘリカルツイストパワー(以下HTP
と書くものとする)を以下のように定義する。
In the present invention, helical twist power (hereinafter referred to as HTP)
) is defined as follows.

HTP−(P*C) ただし、Pはカイラルピッチであり、Cはカイラル液晶
の添加l(wt%)である。
HTP-(P*C) where P is chiral pitch and C is the addition l (wt%) of chiral liquid crystal.

上式から明らかなように、)(TPとはある割合だけカ
イラル液晶を添加した時のピッチの逆数、つまりカイラ
ル液晶のネマティック液晶に対するネマティック液晶を
ツイストさせるための影響力を表しているものといえる
As is clear from the above formula, ) (TP is the reciprocal of the pitch when a certain proportion of chiral liquid crystal is added, that is, it can be said to represent the influence of chiral liquid crystal on nematic liquid crystal to twist the nematic liquid crystal. .

本発明においては、ネマティック液晶中に布巻カイラル
液晶と左巻カイラル液晶を添加する。ただし、添加する
カイラル液晶はそのHTPO差が大きい2種類の液晶を
用いる。つまりHTPの大きいカイラル液晶で液晶全体
のツイスト方向を布巻或いは左巻に決定し、HTPの小
さいカイラル液晶をさらに添加していくことによって温
度変化に対するカイラルピッチの変動についての微調整
を行うことができ、温度変化に対するカイラルピッチの
変動を最小限に押さえることができるものである。本発
明人はHTPの差を具体的に0.04以上にすることに
より、この微調整が非常に容易になることを見出した。
In the present invention, a cloth-wound chiral liquid crystal and a left-handed chiral liquid crystal are added to a nematic liquid crystal. However, the chiral liquid crystals to be added are two types of liquid crystals having a large difference in HTPO. In other words, by using a chiral liquid crystal with a large HTP to determine the twist direction of the entire liquid crystal to cloth-wound or left-handed, and then adding chiral liquid crystals with a small HTP, it is possible to fine-tune the fluctuations in chiral pitch due to temperature changes. , it is possible to minimize fluctuations in chiral pitch due to temperature changes. The inventors have found that this fine adjustment becomes extremely easy by specifically setting the difference in HTP to 0.04 or more.

さらに、2種類のカイラル液晶のHTPの大きさの差の
温度変化に対する変動を±0.005以内に抑えること
ができるようなカイラル液晶を添加することにより、そ
の温度範囲においての配向不良が生じることがなく、コ
ントラストの低下を抑えることができる。
Furthermore, by adding a chiral liquid crystal that can suppress the fluctuation of the difference in HTP between two types of chiral liquid crystals to within ±0.005, alignment defects will occur in that temperature range. There is no contrast, and the decrease in contrast can be suppressed.

以下実施例により本発明を説明する。The present invention will be explained below with reference to Examples.

〔実施例1〕 第1図(a)に本実施例に用いた左巻カイラル液晶のH
TPの温度依存性について示し、第1図(b)に本実施
例で用いた布巻カイラル液晶のHT Pの温度依存性に
ついて示す。
[Example 1] Figure 1(a) shows the H of the left-handed chiral liquid crystal used in this example.
The temperature dependence of TP is shown, and FIG. 1(b) shows the temperature dependence of HTP of the cloth-wound chiral liquid crystal used in this example.

図から明らかなように、本実施例において用いた左巻カ
イラル液晶は布巻カイラル液晶に比較してHTPO値が
0.07〜0.08の範囲で大きくなっていて、さらに
HTPの差の温度変化に対する変動も±0.005以内
に入っていて、本発明の主旨と一致する。
As is clear from the figure, the left-handed chiral liquid crystal used in this example has a larger HTPO value in the range of 0.07 to 0.08 than the cloth-wound chiral liquid crystal, and the temperature change due to the difference in HTP The variation with respect to is also within ±0.005, which is consistent with the gist of the present invention.

この2種類のカイラル液晶をネマティック液晶に添加し
て得られた液晶を用いて液晶セルを20枚作製し、温度
条件を変えて第3図のA−Lに示すようなセル上の12
点についてコントラストをヨリ定し、その結果を第1表
に示す。ただし、表中に示ず数字は測定点毎の20枚の
セルの平均値である。
Using the liquid crystal obtained by adding these two types of chiral liquid crystal to nematic liquid crystal, 20 liquid crystal cells were manufactured, and by changing the temperature conditions, 12
The contrast was determined for each point and the results are shown in Table 1. However, the numbers not shown in the table are the average values of 20 cells for each measurement point.

第 表 ル液晶を添加して得られた液晶を用いて液晶セルを作製
した場合のコントラストの測定結果を第2表に示す。
Table 2 shows the contrast measurement results when a liquid crystal cell was prepared using the liquid crystal obtained by adding the liquid crystal.

第    2    表 また、比較例として第2図(a)、(b)にそれぞれ示
すようなHT Pの温度依存性を有する右巻カイラル液
晶(a)、(b)かられかるように、比較例においては
用いた2種類のカイラル液晶のHT PO差が小さく 
(0,01前後)、温度変化に対するカイラルピンチの
変動を小さくするための調整がうまくいかず、特に高温
領域において、配向不良が発生してしまい、コントラス
トが急激に低下してしまった。
Table 2 Also, as a comparative example, as can be seen from right-handed chiral liquid crystals (a) and (b) having the temperature dependence of HTP as shown in FIGS. 2(a) and (b), respectively, In this case, the difference in HT PO between the two types of chiral liquid crystals used was small.
(approximately 0.01), the adjustment to reduce the fluctuation of chiral pinch due to temperature change was not successful, and alignment defects occurred particularly in the high temperature region, resulting in a sharp drop in contrast.

また、本実施例以外にもネマティ・ンク液晶の添加する
カイラル液晶を変えて実験を行ったが、やはりカイラル
液晶のHTPの差が最低でも0.04以上でないと温度
変化によるカイラルピッチの変動を十分に防いで、πレ
スやストライプドメインのような配向不良を抑えること
ができなかった。
In addition to this example, experiments were conducted by changing the chiral liquid crystal added to the nematic liquid crystal, but it was also found that if the difference in HTP of the chiral liquid crystal was not at least 0.04, fluctuations in chiral pitch due to temperature changes would occur. It was not possible to sufficiently prevent orientation defects such as π-less and striped domains.

さらに、添加するカイラル液晶のHT Pの差が0.0
4以上であっても、その温度変化に対する変動が±o、
oos以内でない場合には高温あるいは低温時に配向不
良が生じてしまった。
Furthermore, the difference in HTP of the added chiral liquid crystal is 0.0.
Even if it is 4 or more, the fluctuation due to temperature change is ±o,
If the temperature was not within oos, poor orientation occurred at high or low temperatures.

[効果] 以上述べたように、本発明を用いることによってSTN
型液晶電気光学装置においてのカイラルピッチの長さの
調整が容易になり、πレス、ストライプドメイン等の配
向不良がなくなり、その結果、温度変化によるコントラ
ストの低下や表示ができな(なる等の欠陥を克服できる
[Effect] As described above, by using the present invention, STN
This makes it easier to adjust the length of the chiral pitch in type liquid crystal electro-optical devices, eliminating alignment defects such as π-less and striped domains. can be overcome.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、(b)、第2図(a)、(1))はカイ
ラル液晶のHTPの温度依存性を示す。 第3図は、液晶セル上のコントラスト測定点を示す。 弔 1 図 (α) (シ) 弔 図 (α) (1))
Figures 1(a) and (b) and Figures 2(a) and (1)) show the temperature dependence of HTP of chiral liquid crystals. FIG. 3 shows contrast measurement points on the liquid crystal cell. Funeral diagram 1 (α) (shi) Funeral diagram (α) (1))

Claims (1)

【特許請求の範囲】[Claims] 1、一対の基板間に液晶を介在せしめ、かつ液晶の異な
る状態を識別するための偏光手段を有する液晶電気光学
装置において、前記液晶が左巻カイラル液晶成分と右巻
カイラル液晶成分とを含有しており、一方のカイラル液
晶成分のヘリカルツイストパワーの大きさと他方のカイ
ラル液晶成分のヘリカルツイストパワーの大きさの差が
0.04以上であり、かつ該ヘリカルツイストパワーの
大きさの差の温度変化に対する変動が±0.005以内
であることを特徴とする液晶電気光学装置。
1. A liquid crystal electro-optical device having a liquid crystal interposed between a pair of substrates and having a polarizing means for identifying different states of the liquid crystal, wherein the liquid crystal contains a left-handed chiral liquid crystal component and a right-handed chiral liquid crystal component. and the difference between the magnitude of the helical twist power of one chiral liquid crystal component and the magnitude of the helical twist power of the other chiral liquid crystal component is 0.04 or more, and the temperature change of the difference in the magnitude of the helical twist power is 1. A liquid crystal electro-optical device characterized in that a variation relative to that of the liquid crystal is within ±0.005.
JP1140532A 1989-06-01 1989-06-01 Liquid crystal electrooptic device Pending JPH035722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1140532A JPH035722A (en) 1989-06-01 1989-06-01 Liquid crystal electrooptic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1140532A JPH035722A (en) 1989-06-01 1989-06-01 Liquid crystal electrooptic device

Publications (1)

Publication Number Publication Date
JPH035722A true JPH035722A (en) 1991-01-11

Family

ID=15270859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1140532A Pending JPH035722A (en) 1989-06-01 1989-06-01 Liquid crystal electrooptic device

Country Status (1)

Country Link
JP (1) JPH035722A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04174823A (en) * 1990-11-08 1992-06-23 Matsushita Electric Ind Co Ltd Liquid crystal display element
KR100277626B1 (en) * 1993-06-23 2001-01-15 김순택 Manufacturing Method of Liquid Crystal Display
KR100592077B1 (en) * 2003-03-18 2006-06-22 김정학 Parking lot for alleyway

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6146030A (en) * 1984-08-10 1986-03-06 Fujitsu Ltd Heating oven
JPS6281484A (en) * 1985-09-30 1987-04-14 ヘキスト アクチェンゲゼルシャフト Liquid crystal phase containing doping agent having temperature adjusting effect

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6146030A (en) * 1984-08-10 1986-03-06 Fujitsu Ltd Heating oven
JPS6281484A (en) * 1985-09-30 1987-04-14 ヘキスト アクチェンゲゼルシャフト Liquid crystal phase containing doping agent having temperature adjusting effect

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04174823A (en) * 1990-11-08 1992-06-23 Matsushita Electric Ind Co Ltd Liquid crystal display element
KR100277626B1 (en) * 1993-06-23 2001-01-15 김순택 Manufacturing Method of Liquid Crystal Display
KR100592077B1 (en) * 2003-03-18 2006-06-22 김정학 Parking lot for alleyway

Similar Documents

Publication Publication Date Title
KR100249883B1 (en) Lcd element
JP2008293041A (en) Liquid crystal display device
JPS61137127A (en) Liquid crystal display element
US4426133A (en) Twisted nematic liquid crystal display panel
JPS63502932A (en) electro-optic display element
KR100319467B1 (en) Liquid Crystal Display device
KR20030079513A (en) Liquid crystal display using compensation film
JP5093779B2 (en) Liquid crystal element
KR20140014990A (en) Liquid crystal composition and liquid crystal display
JPH035722A (en) Liquid crystal electrooptic device
JP2594583B2 (en) Liquid crystal display
KR20020026355A (en) Liquid-crystal switching element and liquid-crystal display device
JPS58191782A (en) Liquid crystal composition
WO2022057532A1 (en) Liquid crystal composition and liquid crystal display device comprising same
JPH04278929A (en) Liquid crystal display element
KR20150109008A (en) Liquid crystal composition and liquid crystal display comprising the same
JP2000206535A (en) Transmissive hybrid aligned liquid crystal display device
JP4725871B2 (en) Liquid crystal display
TW202016269A (en) Liquid crystal composition having high transmittance and liquid crystal display device thereof capable of improving the transmittance of an IPS liquid crystal display device, reducing response time, and increasing contrast ratio
JP2523982B2 (en) Liquid crystal display element
TW476016B (en) Liquid crystal display device operating in a vertically aligned mode
JPS6191284A (en) Nematic liquid crystal composition
KR100466394B1 (en) Fringe field switching mode lcd
Nawa Deformation of the helical structure during the unwinding and winding process of ferroelectric liquid crystals
KR100648209B1 (en) Vertical alignment mode lcd