JPH035719A - Manufacture of ferroelectric liquid crystal panel - Google Patents

Manufacture of ferroelectric liquid crystal panel

Info

Publication number
JPH035719A
JPH035719A JP14047189A JP14047189A JPH035719A JP H035719 A JPH035719 A JP H035719A JP 14047189 A JP14047189 A JP 14047189A JP 14047189 A JP14047189 A JP 14047189A JP H035719 A JPH035719 A JP H035719A
Authority
JP
Japan
Prior art keywords
liquid crystal
ferroelectric liquid
panel
crystal panel
isotropic phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14047189A
Other languages
Japanese (ja)
Inventor
Kazuo Inoue
井上 一生
Takafumi Kashiwagi
隆文 柏木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14047189A priority Critical patent/JPH035719A/en
Publication of JPH035719A publication Critical patent/JPH035719A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the panel which has excellent bistability for a long period by holding the liquid crystal panel in a temperature range wherein ferroelectric liquid crystal has an isotropic phase, and no thermal denaturation is caused after the ferroelectric liquid crystal is injected. CONSTITUTION:The ferroelectric liquid crystal 6 is injected while heating between two glass substrates 2 and 9. After the injection is completed, this panel is held within the temperature range wherein the ferroelectric liquid crystal 6 has the isotropic phase and no thermal denaturation is caused. Threshold value characteristics are therefore improved. The holding time is preferable >=3 hours. Consequently, ions in ferroelectric liquid crystal molecules nearby the surface of an orienting film are dispersed to reduce the uneven distribution of ions, asymmetry in threshold value is not generated even after the panel is left for a long period in one stable state of the ferroelectric liquid crystal molecules, and the panel having excellent stability for a long period is obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は液晶表示装置に利用される強誘電性液晶パネル
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing a ferroelectric liquid crystal panel used in a liquid crystal display device.

従来の技術 液晶表示装置は薄型化・軽量化・低電圧駆動可能などの
長所により腕時計や電卓等に利用されている。しかし現
在使用されているネマティック液晶は応答速度が数ミI
J〜数十ミリ秒と遅いために高速応答が不可能であり、
利用分野は限られている。一方強誘電性液晶はマイクロ
秒単位の応答速度及びメモリ効果のために高速表示素子
、メモリ形デイスプレィ、液晶シャッターなどの分野に
適用が可能である。
2. Description of the Related Art Liquid crystal display devices are used in wristwatches, calculators, etc. due to their advantages of being thin, lightweight, and capable of being driven at low voltage. However, the response speed of currently used nematic liquid crystals is a few milliseconds.
J to several tens of milliseconds, making high-speed response impossible.
Fields of use are limited. On the other hand, ferroelectric liquid crystals can be applied to fields such as high-speed display devices, memory type displays, and liquid crystal shutters due to their response speed on the microsecond scale and memory effect.

第6図1に示すように強誘電性液晶分子12は分子の長
袖方向に対して垂直方向に自発分極Psを有しており、
電圧Eを印加すると、■式で示される電気的エネルギー
密度f(Ps)が生じる。
As shown in FIG. 6, the ferroelectric liquid crystal molecules 12 have spontaneous polarization Ps in the direction perpendicular to the long sleeve direction of the molecules.
When a voltage E is applied, an electrical energy density f(Ps) shown by the equation (2) is generated.

f(Ps)=PsKcosφ  (φ:方位角)・・・
・・・■すなわち強誘電性液晶分子12に対してしきい
値電圧Et以上の電圧Eを加えると、強誘電性液晶はコ
ーン状の軌跡を描くように動き、第6図すに示すような
安定状前人をとり、電圧をきっても強誘電性液晶のメモ
リー性によりこの状態を保持する。またこれと逆方向の
電圧−Eを加えると、強誘電性液晶分子12はコーン上
を180°回転(−1第5図Cに示すようなもう一方の
安定状態Bをとる。このように強誘電性液晶分子12は
安定状態人と安定状態Bの二つの状態間においてスイッ
チングを行う。
f(Ps)=PsKcosφ (φ: azimuth angle)...
...■ That is, when a voltage E higher than the threshold voltage Et is applied to the ferroelectric liquid crystal molecules 12, the ferroelectric liquid crystal moves in a cone-shaped locus, as shown in Figure 6. It assumes a stable state and maintains this state even if the voltage is removed due to the memory properties of the ferroelectric liquid crystal. When a voltage -E in the opposite direction is applied, the ferroelectric liquid crystal molecules 12 rotate 180 degrees on the cone (-1) and take the other stable state B as shown in Figure 5C. The dielectric liquid crystal molecules 12 switch between two states, a stable state and a stable state B.

液晶パネルに第6図&に示すような電圧波形を印加した
場合の透過光量を第6図すに示す。Vkはフ)き込みパ
ルスを示しており、αは書き込みパルスが印加されてい
る時の輝度、すなわち駆動時の輝度、βは一定の非選択
パルスを1000ライン分印加した後の輝度すなわちメ
モリー時の輝度を示している。この電圧波形の電圧を変
化させた場合のしきい値特性の変化を第7図に示す。第
7図aが正パルスに対する特性であり、第7図すが負パ
ルスに対する特性である。ここで正パルスにおける輝度
が10%になる電圧をV、。、負パルスにおける輝度が
9o%になる電圧をV、。とじている。
FIG. 6 shows the amount of transmitted light when a voltage waveform as shown in FIG. 6 & is applied to the liquid crystal panel. Vk indicates the write pulse, α is the brightness when the write pulse is applied, that is, the brightness during driving, and β is the brightness after applying a constant non-selection pulse for 1000 lines, that is, during memory time. It shows the brightness of FIG. 7 shows changes in threshold characteristics when the voltage of this voltage waveform is changed. FIG. 7a shows the characteristics for positive pulses, and FIG. 7 shows the characteristics for negative pulses. Here, the voltage at which the brightness in the positive pulse becomes 10% is V. , V is the voltage at which the brightness in the negative pulse is 9o%. It is closed.

発明が解決しようとする課題 従来の強誘電性液晶パネルの製造方法においては、液晶
注入後すぐに降温していた。しかしこの方法では、液晶
中にある強誘電性液晶分子の分極電場により移動し空間
電荷分極場を形成することや、配向膜界面付近の液晶層
の変形が原因となり一方の安定状態(たとえば第6図す
の安定状前人)で長時間放置しておくと、放置しておい
た安定状前人が他方の安定状態Bよりも安定となり、安
定状前人から安定状態Bに移動しにくくなり、■、。
Problems to be Solved by the Invention In the conventional method for manufacturing a ferroelectric liquid crystal panel, the temperature drops immediately after the liquid crystal is injected. However, in this method, ferroelectric liquid crystal molecules in the liquid crystal move due to the polarization electric field and form a space charge polarization field, or deformation of the liquid crystal layer near the alignment film interface causes one stable state (for example, the sixth If you leave it for a long time in a stable state (previously stable), the left stable state becomes more stable than the other stable state B, and it becomes difficult to move from stable state B to stable state B. ,■,.

とV、。が異なった値を取シしきい値特性の非対称化が
生じる。すなわち良好な双安定性が得られなくなる。す
なわち正パルスを加えた時と負パルスを加えた時でしき
い値特性が異なってしまう。
and V. When the threshold value is different, the threshold characteristic becomes asymmetric. In other words, good bistability cannot be obtained. In other words, the threshold characteristics differ when a positive pulse is applied and when a negative pulse is applied.

(第8図) 本発明はこの様な従来の欠点に鑑み、長期間にわたり良
好な双安定性を示す強誘電性液晶パネルを提供すること
を目的としている。
(FIG. 8) In view of these conventional drawbacks, the present invention aims to provide a ferroelectric liquid crystal panel that exhibits good bistability over a long period of time.

課題を解決するための手段 上記の目的を達成するために本発明は、液晶パネルに強
誘電性液晶を注入した後、前記強誘電性γ夜晶が等方相
を示しかつ熱変性を受けない温度範囲に液晶パネルを保
持した後、降温するものである。
Means for Solving the Problems In order to achieve the above objects, the present invention provides that after injecting ferroelectric liquid crystal into a liquid crystal panel, the ferroelectric γ night crystal exhibits an isotropic phase and does not undergo thermal denaturation. After holding the liquid crystal panel within a temperature range, the temperature is lowered.

作用 本発明によれば、強誘電性液晶の注入後、前記強誘電性
液晶が等方相を示しかつ熱変性を受けない温度範囲に液
晶パネルを保持することによシ配向膜表面付近の強誘電
性液晶分子中のイオンが分散され、イオンの偏在が緩和
されると考えられるので、強誘電性液晶分子の一方の安
定状態で長期間放置後も正パルスと負パルスのしきい値
の非対称化が生じず長期間にわたり良好な双安定性を示
すパネルを得る・ことができる。
According to the present invention, after the ferroelectric liquid crystal is injected, the liquid crystal panel is maintained in a temperature range in which the ferroelectric liquid crystal exhibits an isotropic phase and does not undergo thermal denaturation. It is thought that the ions in the dielectric liquid crystal molecules are dispersed and the uneven distribution of ions is alleviated, so that even after leaving the ferroelectric liquid crystal molecules in one stable state for a long time, the threshold values of the positive and negative pulses remain asymmetry. It is possible to obtain a panel that exhibits good bistability over a long period of time without causing any oxidation.

実施例 以下、本発明の一実施例について図面を用いて説明する
。第1図に示すような製造工程で、第2図に示す強誘電
性液晶パネルを製造する。まず2枚の透明なガラス基板
2,9上に透明導電膜(ITO膜)からなる透明電極3
.8を形成する。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to the drawings. The ferroelectric liquid crystal panel shown in FIG. 2 is manufactured using the manufacturing process shown in FIG. 1. First, a transparent electrode 3 made of a transparent conductive film (ITO film) is placed on two transparent glass substrates 2 and 9.
.. form 8.

このガラス基板2.9を洗浄した後、その上に配向膜4
,7としてポリイミド樹脂をスピンナーにより塗布した
後、レイヨンを材質としたラピングクロヌを用いてラビ
ング処理を施す。その後、方のガラス基板2の配向膜4
を設けた面にスペーサーとして直径2μmの5102を
散布し、他方のガラス基板9の配向膜7を設けた面の縁
部にシール樹脂6を印刷し、これら両方の基板2.9を
配向膜4,7面間士が対向するように貼り合わせ、加熱
することでシール樹脂6を硬化させる。その後真空脱気
し、この2枚のガラス基板2,9間に強誘電性液晶6を
加熱しながら、注入する。注入が完全に終了した後この
パネルを前記強誘電性液晶6が等方相を示しかつ熱変性
をうけない温度範囲でそれぞれ1.2,3,4,5.1
0時間保持した後降温する。注入口を封口し、ガラス基
板2.9に偏光板1,10を貼付する。また本実施例の
比較例として、強誘電性液晶6を注入後ただちに降温す
る方法でも液晶パネルを製造する。
After cleaning this glass substrate 2.9, an alignment film 4 is placed on it.
, 7, a polyimide resin is applied using a spinner, and then a rubbing treatment is performed using a wrapping cloth made of rayon. After that, the alignment film 4 of the other glass substrate 2 is
5102 with a diameter of 2 μm is sprinkled as a spacer on the surface provided with the alignment film 7, and sealing resin 6 is printed on the edge of the surface of the other glass substrate 9 where the alignment film 7 is provided. , and the sealing resin 6 is cured by heating. Thereafter, vacuum degassing is performed, and ferroelectric liquid crystal 6 is injected between the two glass substrates 2 and 9 while being heated. After the injection is completely completed, the panel is heated at temperatures of 1.2, 3, 4, and 5.1 degrees, respectively, at a temperature range in which the ferroelectric liquid crystal 6 exhibits an isotropic phase and does not undergo thermal denaturation.
After holding for 0 hours, the temperature is lowered. The injection port is sealed, and the polarizing plates 1 and 10 are attached to the glass substrate 2.9. Further, as a comparative example of this example, a liquid crystal panel was also manufactured by a method in which the temperature was immediately lowered after the ferroelectric liquid crystal 6 was injected.

このようにして作られた7種類の液晶パネルに電圧を加
え、一方の安定状態に保持し室温で336時間放置した
後、しきい値特性を測定した。その結果を第3図に示す
。第3図において横軸はパネル作製時における等方相で
の保持時間を示しており、縦軸はしきい値6111定に
おいて正パルスにおける#度が10%になる電圧v1o
と負パルスにおける輝度が90%になる電圧V、。との
差V、。−V、。
A voltage was applied to the seven types of liquid crystal panels made in this way, one of them was kept in a stable state, and the panel was left at room temperature for 336 hours, after which the threshold characteristics were measured. The results are shown in FIG. In Fig. 3, the horizontal axis shows the holding time in the isotropic phase during panel fabrication, and the vertical axis shows the voltage v1o at which the # degree in the positive pulse becomes 10% when the threshold value 6111 is constant.
and the voltage V at which the brightness in the negative pulse is 90%. The difference between V and -V.

を示している。第3図から明らかなように等方相での保
持時間を0.1.2時間としたものは正パルスと負パル
スのしきい値特性の差が大きく、非対称であるのに対し
、等方相での保持時間を3時間以上としたものはしきい
値特性が対称であり、良好な双安定性を示していること
がわかる。
It shows. As is clear from Fig. 3, when the holding time in the isotropic phase is set to 0.1.2 hours, the difference in threshold characteristics between the positive pulse and the negative pulse is large and the pulse is asymmetric, whereas the isotropic It can be seen that when the retention time in the phase was 3 hours or more, the threshold characteristics were symmetrical, indicating good bistability.

次に液晶の種類を変え、同様の実験を行った結果を第4
図に示す。第4図より、等方相での保持時間を0.1.
2,3.4時間としたものはしきい値特性が非対称とな
ったが、保持時間を6時間以上としたものは正パルスと
負パルスのしきい値特性が対称となり良好な双安定性を
示していることがわかる。すなわち液晶の種類により等
方相での保持時間は異なるが、液晶注入後すぐに降温せ
ず、等方相で保持することにより、しきい値特性を改善
することができる。なお保持時間は3時間以上とするこ
とが好ましい。
Next, we changed the type of liquid crystal and conducted a similar experiment, and the results were summarized in the fourth section.
As shown in the figure. From FIG. 4, the retention time in the isotropic phase is 0.1.
When the holding time was set to 2 and 3.4 hours, the threshold characteristics became asymmetric, but when the holding time was set to 6 hours or more, the threshold characteristics of the positive and negative pulses were symmetrical, resulting in good bistability. You can see what it shows. That is, although the holding time in the isotropic phase differs depending on the type of liquid crystal, the threshold characteristics can be improved by holding the liquid crystal in the isotropic phase without lowering the temperature immediately after injecting the liquid crystal. Note that the holding time is preferably 3 hours or more.

前記の実施例において、ガラス基板2.9は少lくとも
一方が透明であれば良く、配向膜4,7としてポリイミ
ドを用いたが、それ以外の材料でも良い。またラビング
クロスの材質もレイヨンに限らず、ナイロン、ポリエス
テルなどでも良い。
In the embodiments described above, at least one of the glass substrates 2.9 needs to be transparent, and polyimide is used as the alignment films 4, 7, but other materials may be used. Furthermore, the material of the rubbing cloth is not limited to rayon, but may also be nylon, polyester, etc.

また配向膜4,7の[有]布方法もスピンコードに限ら
ず、印刷などでも良く、斜方蒸着法など他の配向方法で
も可能である。さらに液晶注入方法も真空注入によらず
、液晶を基板に滴下した後貼り合わせる方法1毛細管現
象による注入法などでも可能である。
Further, the method of forming the alignment films 4 and 7 is not limited to spin cord, but may also be printing, or other alignment methods such as oblique vapor deposition. Furthermore, the liquid crystal injection method is not limited to vacuum injection, and may also be an injection method using capillary action (Method 1) in which liquid crystal is dropped onto a substrate and then bonded.

発明の効果 以上のように、本発明によnば、強誘電性液晶を注入し
た後、前記強誘電性液晶が等方相を示しかつ熱変性をう
けない温度範囲に液晶パネルを保持するにより配向膜表
面付近の強誘電性液晶分子中のイオンが分散さ扛イオン
の偏在が緩和さn。
Effects of the Invention As described above, according to the present invention, after injecting the ferroelectric liquid crystal, the liquid crystal panel is maintained in a temperature range in which the ferroelectric liquid crystal exhibits an isotropic phase and is not subject to thermal denaturation. The ions in the ferroelectric liquid crystal molecules near the surface of the alignment film are dispersed, and the uneven distribution of ions is relaxed.

強誘電性液晶分子の一方の安定状態で長期間放置後もし
きい値の非対称化が生じず、長期間にわたり良好な双安
定住金示すパネルを得ることができる。
Even after one of the ferroelectric liquid crystal molecules is left in a stable state for a long period of time, the threshold value does not become asymmetrical, and a panel that exhibits good bistable aluminum over a long period of time can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における液晶パネルの製造方
法を示す工程図、第2図は同パネルの構成を示す断面図
、第3図、第4図はそれぞれ等方相での保持時間としき
い値の電圧差を示す特性図、第6図は強誘電性液晶分子
の動作状態を示す模式図、第6図は液晶パネルに印加さ
れる電圧波形と液晶パネルの駆動時とメモリー時の輝度
の関係を示す特性図、第7図は正パルスに対する駆動と
負パルスに対する駆動が対称な場合の液晶パネルのしき
い値特性を示す特性図、第8図は正パルスに対する駆動
と負パルスに対する駆動が非対称な場合の液晶パネルの
しきい値特性を示す特性図である。 1.1o・・・・・・偏光板、2,9・・・・・・ガラ
ス基板、3.8・・・・・・電極、4,7・パ・・・配
向膜、6・・・・・・シール樹脂、6・・・・・・強誘
電性液晶、11・・・・・・スペーサ、12・・・・・
・強誘電性液晶分子。
Figure 1 is a process diagram showing a method for manufacturing a liquid crystal panel according to an embodiment of the present invention, Figure 2 is a sectional view showing the structure of the same panel, and Figures 3 and 4 are retention times in isotropic phase, respectively. Figure 6 is a schematic diagram showing the operating state of the ferroelectric liquid crystal molecules, Figure 6 is the voltage waveform applied to the liquid crystal panel, and the voltage waveforms applied to the liquid crystal panel during driving and memory. A characteristic diagram showing the relationship between brightness. Figure 7 is a characteristic diagram showing the threshold characteristics of the liquid crystal panel when driving for positive pulses and driving for negative pulses are symmetrical. Figure 8 is a characteristic diagram showing the driving for positive pulses and driving for negative pulses. FIG. 3 is a characteristic diagram showing threshold characteristics of a liquid crystal panel when driving is asymmetrical. 1.1o...Polarizing plate, 2,9...Glass substrate, 3.8...Electrode, 4,7...Alignment film, 6... ... Seal resin, 6 ... Ferroelectric liquid crystal, 11 ... Spacer, 12 ...
・Ferroelectric liquid crystal molecules.

Claims (2)

【特許請求の範囲】[Claims] (1)液晶パネルに強誘電性液晶を注入した後、前記強
誘電性液晶が等方相を示しかつ熱変性を受けない温度範
囲に液晶パネルを保持した後、降温することを特徴とす
る強誘電性液晶パネルの製造方法。
(1) After injecting a ferroelectric liquid crystal into a liquid crystal panel, the liquid crystal panel is held in a temperature range in which the ferroelectric liquid crystal exhibits an isotropic phase and does not undergo thermal denaturation, and then the temperature is lowered. A method for manufacturing a dielectric liquid crystal panel.
(2)温度範囲での保持時間を3時間以上とすることを
特徴とする請求項1記載の強誘電性液晶パネルの製造方
法。
(2) The method for manufacturing a ferroelectric liquid crystal panel according to claim 1, wherein the holding time in the temperature range is 3 hours or more.
JP14047189A 1989-06-01 1989-06-01 Manufacture of ferroelectric liquid crystal panel Pending JPH035719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14047189A JPH035719A (en) 1989-06-01 1989-06-01 Manufacture of ferroelectric liquid crystal panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14047189A JPH035719A (en) 1989-06-01 1989-06-01 Manufacture of ferroelectric liquid crystal panel

Publications (1)

Publication Number Publication Date
JPH035719A true JPH035719A (en) 1991-01-11

Family

ID=15269373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14047189A Pending JPH035719A (en) 1989-06-01 1989-06-01 Manufacture of ferroelectric liquid crystal panel

Country Status (1)

Country Link
JP (1) JPH035719A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017719A (en) * 1983-07-12 1985-01-29 Seiko Instr & Electronics Ltd Liquid crystal display device
JPS61132926A (en) * 1984-11-30 1986-06-20 Canon Inc Production of liquid crystal element
JPS63204230A (en) * 1987-02-20 1988-08-23 Seiko Instr & Electronics Ltd Method for injecting and sealing smectic liquid crystal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017719A (en) * 1983-07-12 1985-01-29 Seiko Instr & Electronics Ltd Liquid crystal display device
JPS61132926A (en) * 1984-11-30 1986-06-20 Canon Inc Production of liquid crystal element
JPS63204230A (en) * 1987-02-20 1988-08-23 Seiko Instr & Electronics Ltd Method for injecting and sealing smectic liquid crystal

Similar Documents

Publication Publication Date Title
JPS6262334A (en) Liquid crystal element
JP2647828B2 (en) Liquid crystal device manufacturing method
JPH03164713A (en) Ferrodielectric liquid crystal electrooptical device and its production
JPS63237031A (en) Liquid crystal display element
JPH035719A (en) Manufacture of ferroelectric liquid crystal panel
JP2695262B2 (en) Manufacturing method of ferroelectric liquid crystal panel
JP2791345B2 (en) Ferroelectric liquid crystal panel
JPS62299815A (en) Production of ferroelectric liquid crystal display element
JP2610516B2 (en) Liquid crystal electro-optical device
JP2548390B2 (en) Method for manufacturing ferroelectric liquid crystal panel
JP2819814B2 (en) Ferroelectric liquid crystal panel
JPS63228130A (en) Ferroelectric smectic liquid crystal electrooptic device
JPH03100520A (en) Ferroelectric liquid crystal element
JPS6398632A (en) Liquid crystal electrooptical device
JPS61267028A (en) Control method for orientation of liquid crystal
JPS63280221A (en) Production of ferroelectric liquid crystal display element
JP2819822B2 (en) Ferroelectric liquid crystal panel
JPH05203957A (en) Production of ferroelectric liquid crystal element
JP3062978B2 (en) Ferroelectric liquid crystal device
JPH02240633A (en) Liquid crystal element
JPH05188378A (en) Liquid crystal electrooptical device
JPS6370830A (en) Phase transition type liquid crystal display element
JPS63163821A (en) Ferroelectric liquid crystal display element
JPH02240634A (en) Liquid crystal element
JPS6373224A (en) Liquid crystal display element