JPH0356863Y2 - - Google Patents

Info

Publication number
JPH0356863Y2
JPH0356863Y2 JP1986063670U JP6367086U JPH0356863Y2 JP H0356863 Y2 JPH0356863 Y2 JP H0356863Y2 JP 1986063670 U JP1986063670 U JP 1986063670U JP 6367086 U JP6367086 U JP 6367086U JP H0356863 Y2 JPH0356863 Y2 JP H0356863Y2
Authority
JP
Japan
Prior art keywords
temperature
temperature sensor
engine
heat exchange
exchange fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1986063670U
Other languages
Japanese (ja)
Other versions
JPS62173673U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1986063670U priority Critical patent/JPH0356863Y2/ja
Publication of JPS62173673U publication Critical patent/JPS62173673U/ja
Application granted granted Critical
Publication of JPH0356863Y2 publication Critical patent/JPH0356863Y2/ja
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Landscapes

  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は凝縮器に対する高温熱交換流体用第2
温度センサを設けるとともに、蒸発器に対する低
温熱交換流体用第1温度センサを設け、高温熱交
換流体を熱負荷に供給する第1状態の場合には高
温熱交換流体用第2温度センサの検出結果を基
に、かつ、低温熱交換流体を熱負荷に供給する第
2状態の場合には低温熱交換流体用第1温度セン
サの検出結果を基に、エンジンの回転数制御を行
うように制御装置を設けてあるエンジン駆動型ヒ
ートポンプに関する。
[Detailed description of the invention] [Industrial field of application] The present invention is a secondary
A temperature sensor is provided, and a first temperature sensor for low temperature heat exchange fluid is provided for the evaporator, and in the case of the first state in which high temperature heat exchange fluid is supplied to the heat load, the detection result of the second temperature sensor for high temperature heat exchange fluid is provided. and, in the case of a second state in which the low-temperature heat exchange fluid is supplied to the heat load, the control device controls the engine rotation speed based on the detection result of the first temperature sensor for the low-temperature heat exchange fluid. The present invention relates to an engine-driven heat pump.

〔従来の技術〕[Conventional technology]

この種のエンジン駆動型ヒートポンプにおい
て、従来は、前記第1状態で高温熱交換流体用温
度センサが第1設定温度を検出した場合、及び、
第2状態で低温熱交換用温度センサが第3設定温
度を検出した場合にはアイドリング回転数に低下
させて運転を続行するとともに、前記第1状態で
高温熱交換流体用温度センサが前記第1設定温度
より高い第2設定温度を検出した場合、及び、第
2状態で低温熱交換用温度センサが第3設定温度
より低い第4設定温度を検出した場合には、エン
ジンを停止するようにしてあつた(例えば特願昭
60−151053号)。
In this type of engine-driven heat pump, conventionally, when the high-temperature heat exchange fluid temperature sensor detects a first set temperature in the first state, and
When the temperature sensor for low-temperature heat exchange fluid detects the third set temperature in the second state, the rotation speed is reduced to idling and operation continues, and in the first state, the temperature sensor for high-temperature heat exchange fluid detects the third set temperature. When a second set temperature higher than the set temperature is detected, and when the low temperature heat exchange temperature sensor detects a fourth set temperature lower than the third set temperature in the second state, the engine is stopped. Atsuta (for example, Tokgansho)
No. 60-151053).

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

上記構成では、エンジンの定速回転域から停止
に到るまでの中間移行過程でアイドリング回転域
(1250rpm)を設けてあるが、このアイドリング
回転域では、熱負荷がまだ高負荷状態にあるの
で、エンジンにかかる負荷トルクに対しアイドリ
ング回転数でのエンジンの軸トルクがやや不足ぎ
みになり、エンジン回転が不安定になる。従つ
て、この不安定な回転によつて、却つてエンジン
のトルク変動が大きくなり、エンジンと圧縮機と
の連結用フレキシブルカツプリングが破損するこ
とがあつた。
In the above configuration, an idling rotation range (1250 rpm) is provided in the intermediate transition process from the engine constant speed rotation range to stopping, but in this idling rotation range, the thermal load is still high, so The shaft torque of the engine at idling speed becomes slightly insufficient compared to the load torque applied to the engine, and the engine rotation becomes unstable. Therefore, due to this unstable rotation, the torque fluctuation of the engine becomes large, and the flexible coupling connecting the engine and the compressor may be damaged.

本考案の目的はエンジンの定速回転域から停止
に到る中間移行過程での低速エンジン回転を安定
したものにして、機器(フレキシブルカツプリン
グ)の破損を防止できるものを提供する点にあ
る。
The purpose of the present invention is to provide a device that can stabilize low-speed engine rotation during the intermediate transition process from the engine's constant speed rotation range to stop, thereby preventing damage to equipment (flexible couplings).

〔問題点を解決するための手段〕[Means for solving problems]

本考案による特徴構成は前記第1状態で高温熱
交換流体用第2温度センサが第1設定温度を検出
した場合、及び、第2状態で低温熱交換流体用第
1温度センサが第3設定温度を検出した場合に
は、エンジン回転数をアイドリング回転数より高
い設定回転数に低下させて運転を続行するととも
に、前記第1状態で高温熱交換流体用第2温度セ
ンサが前記第1設定温度より高い第2設定温度を
検出した場合、及び、第2状態で低温熱交換流体
用第1温度センサが前記第3設定温度より低い第
4設定温度を検出した場合には、エンジンを停止
するようにしてある点にあり、その作用効果は次
の通りである。
The characteristic structure according to the present invention is that when the second temperature sensor for high temperature heat exchange fluid detects the first set temperature in the first state, and the first temperature sensor for low temperature heat exchange fluid detects the third set temperature in the second state, is detected, the engine speed is reduced to a set speed higher than the idling speed and operation is continued, and the second temperature sensor for the high temperature heat exchange fluid is set to a temperature lower than the first set temperature in the first state. When a high second set temperature is detected, and when the first temperature sensor for low temperature heat exchange fluid detects a fourth set temperature lower than the third set temperature in the second state, the engine is stopped. The functions and effects are as follows.

〔作用〕[Effect]

つまり、前記中間移行過程でのエンジン回転数
をアイドリング回転数(例えば1250rpm)より高
い回転数(例えば1400rpm)で、かつ、定速回転
数(例えば2000rpm)より低い回転数に設定して
あるので、定速回転時に比べて冷凍回路内の冷媒
と高低温熱交換流体との熱交換量を低減させて凝
縮器での高温損傷又は蒸発器での凍結現象を回避
し乍ら熱負荷に対しては最低限の熱交換作用を維
持できるとともに、前記アイドリング回転数より
高い回転数によつて、エンジンの軸トルクを負荷
トルクに見合つたものにでき、エンジンの回転を
安定させることができる。
In other words, since the engine speed during the intermediate transition process is set to a speed higher than the idling speed (e.g. 1250 rpm) (e.g. 1400 rpm) and lower than the constant speed speed (e.g. 2000 rpm), Compared to constant speed rotation, the amount of heat exchange between the refrigerant and the high-temperature heat exchange fluid in the refrigeration circuit is reduced to avoid high-temperature damage in the condenser or freezing phenomenon in the evaporator, while minimizing heat load. In addition to being able to maintain a limited heat exchange effect, the rotation speed higher than the idling speed allows the shaft torque of the engine to be made commensurate with the load torque, and the rotation of the engine can be stabilized.

〔考案の効果〕[Effect of idea]

その結果、フレキシブルカツプリングにかかる
軸トルクの変動が少なくなり、このカツプリング
の損傷を回避できて、長期に渡つて安定したヒー
トポンプの運転が行えるとともに、前記設定回転
数での運転によつて、熱負荷への影響を抑え乍
ら、ヒートポンプ自体のトラブルを解消でき、エ
ンジンの回転数制御をより有効なものにできた。
As a result, fluctuations in the shaft torque applied to the flexible coupling are reduced, and damage to the coupling can be avoided, allowing stable operation of the heat pump over a long period of time. While minimizing the impact on the load, we were able to eliminate problems with the heat pump itself, making engine speed control more effective.

〔実施例〕〔Example〕

ヒートポンプシステムについて暖房の場合を例
にとつて説明する。凝縮器1、膨脹弁2、蒸発器
3、エンジンE、駆動型圧縮機4からなる熱媒循
環回路に対して、蒸発器3側にこの蒸発器3と熱
交換する井戸水等を熱源水とする低温熱交換流体
循環経路5、及び、凝縮器1側にこの凝縮器1と
熱交換する高温熱交換流体循環経路6を設け、
夫々の循環経路6,5に、第1、第2循環ポンプ
P1,P2を備えている。前記高温熱交換循環経路
6は、蓄熱槽7を中立として凝縮器1と蓄熱槽7
を連結する第1循環経路6Aと、蓄熱槽7と温室
等の熱負荷8を連結する第2循環経路6Bとから
なり、第1循環経路6Aにエンジン冷却水を熱源
とする第1熱交換器9を設けている。尚、第1熱
交換器9で高温熱交換流体と熱交換するエンジン
冷却水はエンジン排ガスを熱源とした第2熱交換
器10で熱交換した後第1熱交換器9で熱交換を
行いエンジンEに帰環する循環形態をとる。
A heat pump system will be explained using a case of heating as an example. For a heat medium circulation circuit consisting of a condenser 1, an expansion valve 2, an evaporator 3, an engine E, and a driven compressor 4, well water or the like that exchanges heat with the evaporator 3 is used as heat source water on the evaporator 3 side. A low temperature heat exchange fluid circulation path 5 and a high temperature heat exchange fluid circulation path 6 for exchanging heat with the condenser 1 are provided on the condenser 1 side,
First and second circulation pumps are provided in the respective circulation paths 6 and 5.
It is equipped with P 1 and P 2 . The high temperature heat exchange circulation path 6 connects the condenser 1 and the heat storage tank 7 with the heat storage tank 7 as neutral.
a first circulation path 6A that connects the heat storage tank 7 and a heat load 8 such as a greenhouse, and a second circulation path 6B that connects the heat storage tank 7 and a heat load 8 such as a greenhouse. There are 9. Note that the engine cooling water that exchanges heat with the high-temperature heat exchange fluid in the first heat exchanger 9 is heat exchanged in the second heat exchanger 10 using engine exhaust gas as a heat source, and then heat exchanged in the first heat exchanger 9 to cool the engine. It takes a circular form that returns to E.

圧縮機4の入力軸とフルキシブルカツプリング
15を介して連動連結された前記エンジンEの出
力軸に対しては、この出力軸に嵌着されたギヤ1
6とこのギヤ16の回転速度を検出する電磁パル
ス式回転センサ11を設け、この回転センサ11
の検出結果をエンジン駆動用制御装置12に出力
するようにしてある。前記制御装置12は電子カ
バナ13に連係され、蓄熱槽7に設けられた温度
センサ14の検出結果を基にエンジンEの回転数
制御及び発停制御を行う。
The output shaft of the engine E, which is interlocked with the input shaft of the compressor 4 via a flexible coupling 15, is connected to a gear 1 fitted to the output shaft.
6 and an electromagnetic pulse type rotation sensor 11 for detecting the rotation speed of this gear 16.
The detection results are output to the engine drive control device 12. The control device 12 is linked to the electronic cabana 13, and controls the rotational speed and start/stop of the engine E based on the detection results of the temperature sensor 14 provided in the heat storage tank 7.

以上の場合は暖房時を例にとつて説明したが、
冷房時には低温熱交換流体循環経路5を蓄熱槽7
と配管連結し、高温熱交換流体循環経路6に井戸
水等を供給するように切換える。
The above case was explained using heating as an example.
During cooling, the low temperature heat exchange fluid circulation path 5 is connected to the heat storage tank 7.
The high temperature heat exchange fluid circulation path 6 is connected to the piping and switched to supply well water or the like.

次に、エンジンEの回転数制御及び発停制御に
ついてより細かく詳述する。高温熱交換流体循環
経路10における凝縮器1出口側に第2温度セン
サS2を設けるとともに、低温熱交換流体循環経路
5における蒸発器3出口側に第1温度センサS1
設けてある。第2図のグラフを参考にして説明す
ると、暖房時(第1状態)の場合には、蓄熱槽7
の温度センサ14が始動温度(Ts1=45℃)を検
出するとエンジンEが自動的に運転を開始する。
まず、エンジンEはアイドリング回転数(Na=
1250rpm)で一定時間運転された後、定速回転数
(Ns=2000rpm)で運転される。ここで、前記温
度センサ14が第1の設定温度(T1=50℃)を
検出するとエンジンEは定速回転数Nsからアイ
ドリング回転数Naよりやや高い設定回転数N回
転数に変更されて、その回転数Nで運転され、一
定時間後更に高い第2設定温度(T2=55℃)を
第2温度センサS2が検出した場合にはエンジンE
は停止され、前記温度センサ14が始動温度Ts1
を感知するまで停止状態を維持する。
Next, the rotation speed control and start/stop control of the engine E will be described in more detail. A second temperature sensor S 2 is provided on the exit side of the condenser 1 in the high temperature heat exchange fluid circulation path 10, and a first temperature sensor S 1 is provided on the exit side of the evaporator 3 in the low temperature heat exchange fluid circulation path 5. To explain with reference to the graph in FIG. 2, in the case of heating (first state), the heat storage tank 7
When the temperature sensor 14 detects the starting temperature (T s1 =45° C.), the engine E automatically starts operating.
First, the engine E has an idling speed (Na=
1250rpm) for a certain period of time, and then at a constant rotation speed (Ns = 2000rpm). Here, when the temperature sensor 14 detects the first set temperature (T 1 =50°C), the engine E changes from the constant speed Ns to the set speed N, which is slightly higher than the idling speed Na. If the engine is operated at the rotational speed N and the second temperature sensor S 2 detects a higher second set temperature (T 2 = 55°C) after a certain period of time, the engine E
is stopped, and the temperature sensor 14 detects the starting temperature T s1
It remains stopped until it senses.

次に、冷房時(第2状態)の場合には、蓄熱槽
7の温度センサ14が始動温度(Ts2=15℃)を
検出するとエンジンEが自動的に運転を開始す
る。まず、エンジンEはアイドリング回転数Na
で一定時間運転された後、定速回転数Nsで運転
される。ここで、前記第1温度センサS1が第3設
定温度(T3=10℃)を検出するとエンジンEは
前記設定回転数Nで運転され、一定時間後第1温
度センサS1が更に低い第4設定温度(T4=5℃)
を検出した場合にはエンジンEは自動停止され、
前記温度センサ14が始動温度Ts2を感知するま
で停止状態を維持する。
Next, during cooling (second state), when the temperature sensor 14 of the heat storage tank 7 detects the starting temperature (T s2 =15° C.), the engine E automatically starts operating. First, engine E is at idling speed Na
After being operated for a certain period of time, it is operated at a constant rotation speed Ns. Here, when the first temperature sensor S 1 detects the third set temperature (T 3 = 10°C), the engine E is operated at the set rotation speed N, and after a certain period of time, the first temperature sensor S 1 detects the third set temperature (T 3 = 10°C). 4 Set temperature (T 4 = 5℃)
If detected, engine E will be automatically stopped,
The stopped state is maintained until the temperature sensor 14 senses the starting temperature T s2 .

〔別実施例〕[Another example]

○イ 上記実施例中の設定温度、及び、設定回転数
はそれらの数値に限定されるものでなく、それ
らに近似するものであればよい。
B. The set temperature and set rotation speed in the above embodiments are not limited to these values, but may be anything that approximates them.

○ロ 各第1、第2温度センサS1,S2が夫々設定温
度を感知した場合に驚報を発するようにしても
よい。
(b) An alarm may be issued when each of the first and second temperature sensors S 1 and S 2 senses the set temperature.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本考案に係るエンジン駆動型ヒートポン
プの実施例を示し、第1図は全体構成図、第2図
はエンジン運転状態とセンサでの検出温度とでの
制御状態を示すグラフである。 1……凝縮器、3……蒸発器、8……熱負荷、
12……制御装置、S1……第1温度センサ、S2
…第2温度センサ、E……エンジン、T1〜T4
…第1〜第4設定温度、Na……アイドリング回
転数、N……設定回転数。
The drawings show an embodiment of the engine-driven heat pump according to the present invention, and FIG. 1 is an overall configuration diagram, and FIG. 2 is a graph showing the control state depending on the engine operating state and the temperature detected by the sensor. 1... Condenser, 3... Evaporator, 8... Heat load,
12...control device, S1 ...first temperature sensor, S2 ...
...Second temperature sensor, E...Engine, T1 to T4 ...
...First to fourth set temperatures, Na...Idling speed, N...Set speed.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 凝縮器1に対する高温熱交換流体用第2温度セ
ンサS2を設けるとともに、蒸発器3に対する低温
熱交換流体用第1温度センサS1を設け、高温熱交
換流体を熱負荷8に供給する第1状態の場合には
高温熱交換流体用第2温度センサS2の検出結果を
基に、かつ、低温熱交換流体を熱負荷8に供給す
る第2状態の場合には低温熱換流体用第1温度セ
ンサS1の検出結果を基に、エンジンEの回転数制
御を行うように制御装置12を設けてあるエンジ
ン駆動型ヒートポンプにおいて、前記第1状態で
高温熱交換流体用第2温度センサS2が第1設定温
度T1を検出した場合、及び、第2状態で低温熱
交換流体用第1温度センサS1が第3設定温度T3
を検出した場合には、エンジン回転数をアイドリ
ング回転数Naより高い設定回転数Nに低下させ
て運転を続行するとともに、前記第1状態で高温
熱交換流体用第2温度センサS2が前記第1設定温
度T1より高い第2設定温度T2を検出した場合、
及び、第2状態で低温熱交換流体用第1温度セン
サーS1が前記第3設定温度T3より低い第4設定
温度T4を検出した場合には、エンジンEを停止
するようにしてあるエンジン駆動型ヒートポン
プ。
A second temperature sensor S 2 for the high temperature heat exchange fluid for the condenser 1 is provided, and a first temperature sensor S 1 for the low temperature heat exchange fluid for the evaporator 3 is provided, and a first temperature sensor S 2 for supplying the high temperature heat exchange fluid to the heat load 8 is provided. In the case of the second state, the temperature sensor S2 for high temperature heat exchange fluid is supplied based on the detection result of the second temperature sensor S2 for high temperature heat exchange fluid, and in the case of the second state, the first temperature sensor In an engine-driven heat pump that is provided with a control device 12 to control the rotation speed of the engine E based on the detection result of the temperature sensor S 1 , the second temperature sensor S 2 for high-temperature heat exchange fluid is in the first state. detects the first set temperature T 1 and the first temperature sensor S 1 for low temperature heat exchange fluid detects the third set temperature T 3 in the second state.
is detected, the engine speed is reduced to a set speed N higher than the idling speed Na and operation is continued, and the second temperature sensor S 2 for high-temperature heat exchange fluid is set to the second temperature sensor S 2 in the first state. If a second set temperature T2 higher than the first set temperature T1 is detected,
and an engine configured to stop the engine E when the first temperature sensor S1 for low-temperature heat exchange fluid detects a fourth set temperature T4 lower than the third set temperature T3 in the second state. Drive type heat pump.
JP1986063670U 1986-04-25 1986-04-25 Expired JPH0356863Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986063670U JPH0356863Y2 (en) 1986-04-25 1986-04-25

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986063670U JPH0356863Y2 (en) 1986-04-25 1986-04-25

Publications (2)

Publication Number Publication Date
JPS62173673U JPS62173673U (en) 1987-11-04
JPH0356863Y2 true JPH0356863Y2 (en) 1991-12-24

Family

ID=30899111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986063670U Expired JPH0356863Y2 (en) 1986-04-25 1986-04-25

Country Status (1)

Country Link
JP (1) JPH0356863Y2 (en)

Also Published As

Publication number Publication date
JPS62173673U (en) 1987-11-04

Similar Documents

Publication Publication Date Title
JPH0849942A (en) Engine driven heat pump equipment
JP2000304375A (en) Latent heat recovery type absorption water cooler heater
JPH0356863Y2 (en)
JPH0721362B2 (en) Waste heat recovery power generator
JPS6310349B2 (en)
JP3227531B2 (en) Cooling operation method of absorption refrigerator
JPS6273042A (en) Method of controlling number of revolution of engine on starting of compressor for heat pump
JPH044511B2 (en)
JP2003336929A (en) Absorbing and compression type refrigerator and method of operating the refrigerator
JP3874262B2 (en) Refrigeration system combining absorption and compression
JP2635975B2 (en) Stirling heat engine driven heat pump
JPH10131795A (en) Lean combustion control method for internal combustion engine
JPS60181552A (en) Heat-pump hot-water supply machine
JPH07280380A (en) Chilled water supply system
JP2744034B2 (en) Absorption refrigerator
JP2823219B2 (en) Control device for absorption refrigerator
JPH0140027Y2 (en)
JPS63113267A (en) Internal combustion engine drive refrigerator
JPS5843365A (en) Multiple effect absorption refrigerator
JPS6246173A (en) Method of operating engine driving type heat pump
JPS6315052A (en) Engine drive type heat pump system
JPS629163A (en) Heat pump for air-conditioning
JPS58128474A (en) Control for rankine engine
JPH02140567A (en) Engine-driven heat pump
JPS58137985U (en) Engine-driven heat pump