JPH0356754A - Mechanical and hydraulic transmission gear and control method therefor - Google Patents

Mechanical and hydraulic transmission gear and control method therefor

Info

Publication number
JPH0356754A
JPH0356754A JP8979791A JP7979189A JPH0356754A JP H0356754 A JPH0356754 A JP H0356754A JP 8979791 A JP8979791 A JP 8979791A JP 7979189 A JP7979189 A JP 7979189A JP H0356754 A JPH0356754 A JP H0356754A
Authority
JP
Japan
Prior art keywords
hydraulic
pump
mechanical
output shaft
transmission device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8979791A
Other languages
Japanese (ja)
Inventor
Noboru Kanayama
登 金山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP8979791A priority Critical patent/JPH0356754A/en
Priority to US07/613,706 priority patent/US5193416A/en
Priority to EP89906463A priority patent/EP0417283B1/en
Priority to PCT/JP1989/000547 priority patent/WO1989012188A1/en
Publication of JPH0356754A publication Critical patent/JPH0356754A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To simplify a structure by connecting clutch of a mechanical transmission gear and disconnecting a clutch of a hydraulic transmission gear in a range where the rotating speed of an output shaft is higher than a designated value, and minimizing the absorption power of a pump. CONSTITUTION:The power transmission of a mechanical hydraulic transmission gears is such that clutch pressure control valves 45, 46 controlled by a control portion 41 are provided to connect a clutch 51 o a mechanical transmission gear 50 fixed to an input shaft 2 and disconnect a clutch 33 of a hydraulic transmission gear 10 in a range where the rotating speed of an output shaft 35 is higher than a designated value. Further, the discharge capacity of a variable-capacity hydraulic pump 21 is minimized, and power from a power source 1 is transmitted to the output shaft 35 through the mechanical transmission gear 50 having good transmission efficiency. On the other hand, when the rotating speed of the output shaft 35 is lower than a designated value, the clutch 51 of the mechanical transmission gear 50 is disconnected, to transmit power to the output shaft 35 through the hydraulic transmission gear 10. Thus, the structure can be simplified, and the power transmission efficiency can be improved.

Description

【発明の詳細な説明】 (産業上の利川分野〉 この発明は機械油圧式伝vJ装羅とその制御方法に関す
るものであり、特にはホイール式バヮーシ3ベル、ラフ
テレーンクレーン等の建設機械で高速連続走行用の動力
伝達システムに関する. (従来の技術) 従来、建設機械等の伝動装置には次の方式が良く使われ
ている. ■.機械的動力伝達方式 ■.油圧式動力伝達方式( H S T )■.機械油
圧式動力伝達方式(HMT)このうち、機械油圧式動力
伝達方式(HMT)は伝達動力の一訃を機械的に伝達し
、残りを油圧で伝達する方式すなわち動力分割形油圧伝
動(油圧一機械式伝動)の中で第18図のごとく出力分
割形が良くしられている. (発明が解決しようとする諜B) しかしながら、上記従来の伝動装置において機械的動力
伝達方式は効率が良い反面正逆運転切換えの制御性が慾
<、また油圧式動力伝遠方式(第19図)は可変容量形
ボンプ51とモータ52の吐出容量を変えることにより
正逆運転の切換え制御ができるため容易である反面、歯
車53と54、または歯車55と56、およびクラッチ
57と58の切換えにより速度を変えられるが高速時に
はボンプ5lの傾転角が大きくなり吐出流量が増えるこ
とによって圧力損失が大きくなり、またモータ52の傾
転角が少なくなるために効率が低下する欠点がある.そ
こで従来より、高中速時には主に機械的な動力伝達が行
われて効率の低下を避け、低速時には主に油圧的な動力
伝達が行われて正逆運転の切換え制御を8易にした機械
油正式動力伝達方式(第18図)が多方面で使用されて
いる.第18図において、動力源6lに入力軸62が連
結され、その入力軸62の中間部には油圧ポンプ駆!I
+歯車63と噛み合うσI車64が固着され、端部には
遊星歯車装置Aの太陽歯車65が固着されている.この
浦圧ポンプ駆動歯車63は入力軸62の一方側に設けら
れた油正伝動装置Bの可変形容量ポンプ66を駆動する
ようになっており、この可変容量形ポンプ66はそれと
入力軸62の軸線方向に並設された定容量モータ67を
作動する.この定容量モータ67の出力軸には油圧伝動
受動満車68が設けられている。
[Detailed Description of the Invention] (Industrial field in Icheon) This invention relates to a mechanical hydraulic power transmission system and its control method, and is particularly concerned with a high-speed construction machine such as a wheel-type vanshy 3-bell and a rough terrain crane. Concerning power transmission systems for continuous running. (Conventional technology) Conventionally, the following methods have been commonly used in transmission devices for construction machinery, etc. ■.Mechanical power transmission system ■.Hydraulic power transmission system (H S T ) ■. Mechanical-hydraulic power transmission system (HMT) Among these, the mechanical-hydraulic power transmission system (HMT) is a power split type in which part of the transmitted power is transmitted mechanically and the rest is transmitted hydraulically. Among hydraulic transmissions (hydraulic-mechanical transmission), the output split type as shown in Fig. 18 is well known. Although it is efficient, it is difficult to control the switching between forward and reverse operation.In addition, the hydraulic power transmission method (Fig. 19) allows switching control between forward and reverse operation by changing the discharge capacity of the variable displacement pump 51 and motor 52. On the other hand, the speed can be changed by switching the gears 53 and 54, or the gears 55 and 56, and the clutches 57 and 58, but at high speeds, the tilt angle of the pump 5l becomes large and the discharge flow rate increases, causing the pressure to increase. This has the drawback of increasing loss and decreasing efficiency because the tilting angle of the motor 52 decreases.Therefore, conventionally, mechanical power transmission is mainly performed at high and medium speeds to avoid a decrease in efficiency, and at low speeds The mechanical oil formal power transmission system (Fig. 18), which uses mainly hydraulic power transmission and makes it easy to control switching between forward and reverse operation, is used in many fields.In Fig. 18, the power source An input shaft 62 is connected to the input shaft 6l, and a hydraulic pump drive!I is connected to the middle part of the input shaft 62.
A σI wheel 64 that meshes with the + gear 63 is fixed, and a sun gear 65 of a planetary gear system A is fixed to the end. This pressure pump drive gear 63 drives a variable displacement pump 66 of a hydraulic transmission device B provided on one side of the input shaft 62, and this variable displacement pump 66 is connected to the input shaft 62. The constant displacement motors 67 arranged in parallel in the axial direction are operated. A hydraulic transmission passive full wheel 68 is provided on the output shaft of the constant displacement motor 67.

そして受動歯車68はそれと噛み合う歯車69により遊
星歯車装置Aの内薗歯車69aを同転駆動するように連
結されており、この内ffi歯車69aと太陽歯車65
との間には遊星歯車70が設けられている.この遊星歯
車70の軸支持枠7lは出力軸72に連結され、′ll
l星出車70の公転運動、すなわち軸支持枠7!の回転
運動を適宜の建設機械等の車体73に伝達するようにな
っている.そして、可変容量形ポンプ66の中立時は油
圧伝動装WBは単にブレーキ作用を行い、内歯由車69
aが固定されるので、遊星歯車装IAは機械的な遊星減
速機の働きをなし、出力軸72の速度v4御は動力源6
lに設けられたガバナ等の図示しない速度!4御手段に
よって行われる.また可変容量形ポンプ66が作動1“
ると、動力の一部は伝動要素64、63、66、67、
68、69、70の順に伝達され、他の一部は機械的に
伝動要素62、65、70の順に伝達される。
The passive gear 68 is connected to drive an inner gear 69a of the planetary gear system A by a gear 69 meshing with it, and the inner ffi gear 69a and the sun gear 65
A planetary gear 70 is provided between the two. The shaft support frame 7l of this planetary gear 70 is connected to the output shaft 72, and 'll
The revolving motion of the l-star car 70, that is, the shaft support frame 7! The rotary motion of the machine is transmitted to a vehicle body 73 of an appropriate construction machine or the like. When the variable displacement pump 66 is in the neutral state, the hydraulic transmission system WB simply performs a braking action, and the internal gear 69
Since a is fixed, the planetary gear system IA functions as a mechanical planetary reducer, and the speed v4 of the output shaft 72 is controlled by the power source 6.
The speed (not shown) of the governor etc. installed in l! 4. It is carried out by means of control. Also, the variable displacement pump 66 is activated 1".
Then, part of the power is transferred to the transmission elements 64, 63, 66, 67,
The transmission elements 68, 69, and 70 are transmitted in this order, and the other part is mechanically transmitted in the order of transmission elements 62, 65, and 70.

どころで、前述した従来の機械油圧式動力伝達方式には
次のような欠点がある.すなわち、定容量モータ67で
内白由車69aを駆動する形式となっているので、正転
から逆転まで出力回転数を変化させるためには、油圧ポ
ンプとして両方同吐出型の可変容量形ボンプ66を用い
、かつ出力軸72がある回転数の所で内@歯重69aを
相当高速に回転させねばならないので、油圧ポンプと油
圧モータとの容量比を非常に大きいものこせねばならず
、実際にそのようなith圧ポンプおよび油圧モータを
選定してみるとその実現はかなり困難なものである.ま
た歯車は遊星歯車装置を用いているため構造が複雑にム
リ、コストアップにもなっている.さらに油圧伝動装1
tBを構威する油圧ポンプ、油圧モータ、および遊星歯
車装置とが人力軸62の軸線方向に並設されているため
に装置全体が大型のものとなる欠点がある.また油圧回
路を切換えて油圧ポンプの吐出流量を建設機械等の作業
機の他の油圧アクチュエー夕に供給し使用する場合にも
、絶えず出力軸72に動力が伝わってしまう。
However, the conventional mechanical-hydraulic power transmission system described above has the following drawbacks. That is, since the inner white rotation wheel 69a is driven by a constant displacement motor 67, in order to change the output rotation speed from normal rotation to reverse rotation, a variable displacement pump 66 of the same discharge type is used as a hydraulic pump. In addition, since the inner gear 69a must be rotated at a fairly high speed at a certain rotation speed of the output shaft 72, the capacity ratio between the hydraulic pump and the hydraulic motor must be very large, and in practice When selecting such an ith pressure pump and hydraulic motor, it is quite difficult to realize it. Furthermore, since the gears use a planetary gear system, the structure is unnecessarily complex and costs increase. Furthermore, hydraulic transmission system 1
Since the hydraulic pump, hydraulic motor, and planetary gear device that make up the tB are arranged in parallel in the axial direction of the human power shaft 62, there is a drawback that the entire device becomes large. Further, even when the hydraulic circuit is switched to supply the discharge flow rate of the hydraulic pump to another hydraulic actuator of a working machine such as a construction machine, power is constantly transmitted to the output shaft 72.

仮に出力軸72をブレーキ等で固定しても遊星歯車70
、内歯歯車69a.および受動11車68を介して定容
量モータ67を回転させることになり、それらの攪拌ロ
ス等によって動力を損失する.また、油圧伝動装置から
機械式伝動装置への切換えが複雑となり、ショックが大
きいという欠点がある. 本発明は上記問題点に着目し、機械油圧式動力伝達方式
の改良に関するものであり、その目的とするところは ■,高速回転時には、機械的な動力伝達のみが行われて
油圧による損失がほばセロになる. ■.低速時には、正転と逆転との間の出力回転数の変化
を円滑に、スムーズにfill御できる, ■.複雑な機構を有する遊星歯車装置を用いていないた
め構造が極めてシンプルで安価にできる. ■ 装R全体をコンパクトにできる. ■,油圧回路を切換えることにより油圧ボンプの吐出流
量を他のアクチュエータに供給する堪合、余分な動力を
損失することなしに油圧エネルギを利用することができ
る。
Even if the output shaft 72 is fixed with a brake etc., the planetary gear 70
, internal gear 69a. The constant displacement motor 67 is rotated via the driven eleven wheels 68, and power is lost due to stirring loss and the like. Another disadvantage is that switching from a hydraulic transmission to a mechanical transmission is complicated and the shock is large. The present invention focuses on the above-mentioned problems and relates to an improvement of the mechanical-hydraulic power transmission system.The purpose of the present invention is (1) to perform only mechanical power transmission during high-speed rotation, so that losses due to hydraulic pressure are almost eliminated. Become a bassero. ■. At low speeds, the change in output rotation speed between forward and reverse rotations can be smoothly controlled; ■. The structure is extremely simple and inexpensive because it does not use a planetary gear system with a complicated mechanism. ■ The entire installation R can be made compact. (2) By switching the hydraulic circuit, the discharge flow rate of the hydraulic pump can be supplied to other actuators, and hydraulic energy can be used without losing extra power.

■ 油圧式伝動装置と機械式伝動装置との切換え、およ
び機械式、油圧式の各伝動装置内での切換えも出力回転
速度、スロノトル開度およびシフト位置の変化等を検出
し、制{コロ装置によりクラッチへの油圧をTA御して
いるため、スムーズに速く行うことが出来る。
■ Changes between hydraulic transmissions and mechanical transmissions, as well as between mechanical and hydraulic transmissions, are detected by detecting changes in output rotational speed, throttle opening, shift position, etc. Since the hydraulic pressure to the clutch is controlled by TA, it can be done smoothly and quickly.

(課題を解決するための手段) 』二記「J的を達威すべく本発明は、その第1発明では
、出力軸の回転速度が所定値より小さい範囲では$+1
御部からの信号により機械式伝動装置のクラッチを切断
するとともに油圧式伝動装置のクラッチを接合し動力を
出力軸に伝え、さらにポンプとモータの間で制@部から
の信号により切り換わる油圧バルプを作動させて出力軸
の回転方向を切換えるとともに出力軸の同転速度をti
4御し、かつ出力軸の回転速度が所定値より大きい範囲
では′!A御部よりの信号により機44式伝動装置のク
ラッチを接合するとともに油圧式伝動装置のクラッチを
切断し動力を出力軸に伝えるとともに制御部からの指令
によりポンプによって吸収される動力を最小にする。そ
してこの第1発明を主要部と1る第2発明ではポンプに
よって吸収される動力を鰻小にするため制!)lからの
指令によりポンプの斜板を作勅さセボンプの吐出容量を
最小にするとともにポンプとモータの間の油圧バルブを
中立にすることによりポンプの吐出圧力を最小にし、第
3発明ではポンプとバルブの間の他の油圧バルブを切換
えてポンプの油圧を他の回路に使用出来るようにしてい
る.第4発明に係わる機M抽圧式伝動装置は、!YiI
tj−進を切換る切換え手段と、速度を制御する速度制
御手段と、出力軸の回転速度を検知する検知手段と、切
換え手段の信号と速度制御手段の信号と出力軸の検知手
段の信号とを比較し機械式伝動装置および油圧式伝動装
置のクラッチの接合、切断と少なくともポンプあるいは
モータの容量を増減する制御を行う@御装置と、から威
る.また、第5発明では、前後進を切換る切換え手段と
、ポンプとモータの間に制御部からの信号により出力軸
の回転方向とを切換えるとともに出力軸の](+1転速
度を制御する油圧バルブと、ポンプとモータの間にあっ
てポンプの油圧を他の回路に切換える油圧バルブと、速
度をt,q御する速度!4御手段と、出力軸の回転速度
を検知する検知手段と、切換え手段の信号と速度w4御
手段の信号と出力情の検知手段の信号とを比べ機械式伝
動装Wおよび油圧式伝動装置のクラッチの接合、切断と
少なくともポンプあるいはモータの容量を増減するi4
Qmを行う制御装置と、から威る. (作用) 上記IJI威によれば、機械油圧式伝動装置の動力伝達
に際してコントローラによりIl御されるクラッチ圧コ
ントロール用バルブを設け、出力軸の回転速度が所定値
より大きい範囲では入力輪に固着された機械式伝動装置
のクラッチを接合し、油圧式伝動装置のクラッチを切断
するかポンプの吐出量を最小にし伝達効率の良い機械式
伝動装置で動力を出力軸に伝え、出力軸の回転速度が所
定値より小さい範囲では入力軸に固着された機械式伝動
装置のクラッチを切断し、油圧式伝動装置により出力軸
に動力を伝える.このため、高速時には伝達効率が良い
ため損失動力を少なくにすることが出来るとともに低速
時には正転と逆転との間の出力1リ】転速度を円滑に制
御しうる.さらに本発明による機械油圧式伝動装置の場
合はポンプとモータとの間に油圧バルブを設け、@後進
の切換えおよび出力軸の回転速度をtI1rBするとと
もに中立のボートにすると出力軸には動力が伝えられず
、ポンプの吐出流量を他の油圧アクチュエー夕等に利用
することが出来る.さらにポンプとモータとの間に複数
の油圧バルブを設けた場合には、1個の油圧バルブでは
前後進を切換えるとともに出力軸の回転辻度を1411
し、他の油圧パルブではポンプの吐出流量を他の油圧ア
クチヱエータ等に利用することが出来る.また、ポンプ
とモータをlJ!i械式伝動装置と並べて設けたため装
置を小さく出来る。さらに、油圧式伝動装置と機械式伝
動装置との切換え、および機械式、油圧式の各伝動装置
内での切換えも出力回転速度、スロットル関度およびシ
フト位置の変化等を検出して制i)l装置によりクラッ
チへの浦圧を制御し゛Cいるのでスムーズに速く行うこ
とが出来る。
(Means for Solving the Problems)'' 2. In order to achieve the J objective, the present invention, in its first invention, provides a
A hydraulic valve that disengages the clutch of the mechanical transmission device based on a signal from the control section and engages the clutch of the hydraulic transmission device to transmit power to the output shaft, and also switches between the pump and the motor based on a signal from the control section. to switch the rotation direction of the output shaft and change the rotational speed of the output shaft to ti.
4 control and the rotational speed of the output shaft is greater than the predetermined value '! A signal from the A control section engages the clutch of the machine type 44 transmission and disengages the clutch of the hydraulic transmission, transmitting power to the output shaft and minimizing the power absorbed by the pump according to a command from the control section. . The second invention, which has the first invention as its main part, is designed to reduce the amount of power absorbed by the pump! ) The swash plate of the pump is actuated to minimize the discharge capacity of the pump, and the hydraulic valve between the pump and the motor is set to neutral, thereby minimizing the discharge pressure of the pump. By switching the other hydraulic valve between the pump and the valve, the pump's hydraulic pressure can be used for other circuits. The mechanical extraction type transmission device according to the fourth invention is! YiI
A switching means for switching the tj-adism, a speed control means for controlling the speed, a detection means for detecting the rotational speed of the output shaft, a signal of the switching means, a signal of the speed control means, a signal of the output shaft detection means. Comparisons are made between mechanical transmission devices and hydraulic transmission devices with @control devices that control the engagement and disengagement of clutches and at least increase and decrease the capacity of pumps or motors. Further, in the fifth invention, there is provided a switching means for switching between forward and backward movement, and a hydraulic valve that switches the rotational direction of the output shaft by a signal from a control section between the pump and the motor, and controls the +1 rotation speed of the output shaft. , a hydraulic valve that is located between the pump and the motor and switches the hydraulic pressure of the pump to another circuit, a speed control means that controls the speeds t and q, a detection means that detects the rotational speed of the output shaft, and a switching means. Comparing the signal, the speed w4 control means signal, and the output information detection means signal, engaging and disengaging the clutches of the mechanical transmission W and the hydraulic transmission, and increasing or decreasing at least the capacity of the pump or motor i4
A control device that performs Qm, and a control device that performs Qm. (Function) According to the above-mentioned IJI, a clutch pressure control valve is provided which is controlled by a controller when power is transmitted through a mechanical-hydraulic transmission device, and when the rotational speed of the output shaft is greater than a predetermined value, it is fixed to the input wheel. The clutch of the mechanical transmission device is engaged, the clutch of the hydraulic transmission device is disengaged, or the discharge amount of the pump is minimized, and the power is transmitted to the output shaft using a mechanical transmission device with high transmission efficiency, so that the rotational speed of the output shaft is When the value is smaller than a predetermined value, the clutch of the mechanical transmission device fixed to the input shaft is disengaged, and the power is transmitted to the output shaft using the hydraulic transmission device. Therefore, at high speeds, the power loss can be reduced due to good transmission efficiency, and at low speeds, the output speed between forward and reverse rotations can be smoothly controlled. Furthermore, in the case of the mechanical-hydraulic transmission device according to the present invention, a hydraulic valve is provided between the pump and the motor, and when the rotation speed of the output shaft is changed to tI1rB and the rotational speed of the output shaft is changed to reverse, power is transmitted to the output shaft when the boat is set to a neutral boat. The discharge flow rate of the pump can be used for other hydraulic actuators, etc. Furthermore, when multiple hydraulic valves are provided between the pump and the motor, one hydraulic valve can switch between forward and backward movement and also change the rotation angle of the output shaft by 1411 degrees.
However, with other hydraulic valves, the discharge flow rate of the pump can be used for other hydraulic actuators, etc. Also, lJ the pump and motor! Since it is installed side by side with the i-mechanical transmission, the device can be made smaller. Furthermore, switching between a hydraulic transmission device and a mechanical transmission device, as well as switching within each mechanical and hydraulic transmission device, is controlled by detecting changes in output rotational speed, throttle relation, shift position, etc.i) Since the pressure to the clutch is controlled by the L device, it can be done smoothly and quickly.

(実施例) 以下本発明を図に示す実施例について説明する。第1図
は本発明の第l実施例を示す機械油圧式伝動装置の全体
構威図であり、速度制御手段を有する動力源lと、油圧
式伝動装置10と、制御装置4oおよび機械式伝動装置
5oとから構威されている.油圧式伝動装置1oは油圧
伝動装120と増減速装置3oとから構威され、油圧伝
動装120の可変容量形油圧ボンプ2l(以下ポンプ2
1と言う。)は動力源1からの動力を軸2に固着された
増減速装Wl3oの歯車31,32を介して駆動される
ポンプ軸3によって回転させられ、可変容量形油圧モー
タ22(以下モータ22と言う.)はボンプ2lに配管
23、油圧バルブ24および配管25によってつながれ
、ボンプ21の油圧を受けて勤カをモータ軸26に出カ
する.モータ軸26の動カはモータ軸26に設けられた
増減速装130のクラッチ33と、回転自在に挿入され
た歯車34と、出力軸35に固着された南車36とを介
して出力軸35に出カする.クラッチ33はボンプ44
の油圧を制御部41にょり制御されるクラッチ圧コント
ロール用バルプ45を介してうけ、クラッチ33を接合
し出方軸35を回転させる.油圧バルプ24には車両の
前後進の切換えボート24a,24bおよび中立ボート
24cが設番Jられ中立時にはタンク29に戻している
.また、配管23から分岐して配管27、油jIニバル
ブ28が接続され他の油圧アクヂュエータ(八)へ給排
油し駆動する。さらに、ポンプ2lとモータ22には吐
出容量コントロール用バルブ11、l2が設けられ制御
部41からの指令によりボンプ21の吐出容量およびモ
ータ22の吐出容量を変えている.軸2には速度センサ
42が、また出力軸35には連度センサ43が設けられ
回転数を$11@84 1にフィードバノクしている.
lJl械式伝勤装置50は軸2に闇若されたクラッチ5
lと、@2に回転自在に挿入された歯車52と、歯車5
2に噛み合いかつ出力軸35に固着された5i IC 
5 3よりなり、ポンプ44の油圧を$lI御部41に
より!4御されるクラッチ圧コントロール用バルブ46
を介してうけ、クラッチ51を接合することにより動力
源1の動力を出力軸35に出力する.コントローラ等よ
りなる窮御B41には建設機械等の前後逗を切換える切
換えレバー等の切換え手段47と、車両速度を制御する
アクセルベタル等の速度制御手段48が設けられ、上記
ボンプ44、クラッチ圧コントロール用バルブ45、4
6等とともに制御装置40を構威している。
(Example) The present invention will be described below with reference to an example shown in the drawings. FIG. 1 is an overall configuration diagram of a mechanical-hydraulic transmission device showing a first embodiment of the present invention. It is configured from device 5o. The hydraulic transmission device 1o is composed of a hydraulic transmission device 120 and a speed increase/deceleration device 3o.
Say 1. ) is rotated by a pump shaft 3 driven by the power from a power source 1 through gears 31 and 32 of a speed increase/reduction gear Wl3o fixed to a shaft 2, and is rotated by a variable displacement hydraulic motor 22 (hereinafter referred to as motor 22). ) is connected to the pump 2l by a pipe 23, a hydraulic valve 24, and a pipe 25, and receives the hydraulic pressure of the pump 21 and outputs force to the motor shaft 26. The moving force of the motor shaft 26 is transferred to the output shaft 35 via a clutch 33 of an increase/decrease gear 130 provided on the motor shaft 26, a rotatably inserted gear 34, and a south wheel 36 fixed to the output shaft 35. I will appear in Clutch 33 is bomb 44
The clutch 33 is engaged and the output shaft 35 is rotated by receiving the hydraulic pressure through the clutch pressure control valve 45 controlled by the control section 41. The hydraulic valve 24 is equipped with switching boats 24a, 24b for forward and backward movement of the vehicle, and a neutral boat 24c, which are returned to the tank 29 when the vehicle is in neutral. Further, a pipe 27 branched from the pipe 23 and an oil jI valve 28 are connected to supply and discharge oil to and drive other hydraulic actuators (8). Further, the pump 2l and the motor 22 are provided with discharge volume control valves 11 and 12, and the discharge volume of the pump 21 and the discharge volume of the motor 22 are changed by commands from the control section 41. A speed sensor 42 is provided on the shaft 2, and a continuity sensor 43 is provided on the output shaft 35 to feed back the rotation speed to $11@841.
The lJl mechanical transmission device 50 has a clutch 5 attached to the shaft 2.
l, gear 52 rotatably inserted into @2, and gear 5
5i IC meshed with 2 and fixed to the output shaft 35
5 3, the hydraulic pressure of the pump 44 is controlled by the $lI control section 41! 4-controlled clutch pressure control valve 46
The power of the power source 1 is output to the output shaft 35 by connecting the clutch 51. The control unit B41 consisting of a controller etc. is provided with a switching means 47 such as a switching lever for switching between forward and backward movement of a construction machine, etc., and a speed control means 48 such as an accelerator pedal for controlling vehicle speed. Valve 45, 4
6, etc., constitutes the control device 40.

上記構威において次に作動について説明する。Next, the operation of the above structure will be explained.

第2図のフローチャートに従って制御動作の例を説明す
る.なお、例えば(ステップl00)は100と略記す
る.100で各位置のセンサより、スロットル間度eL
1シフトレバー位I L pの(R− N,2nd、1
st)、軸2の回転達度N1、出力軸35の回転速度N
o、およびボンプ21の吐出油JE I)を読み込む.
10lではンフトレバー位Fil L pが中立位置の
Nであるか否かを判断し、Nの場合には102でN時の
データを随時読み超む.101で否の場合には!03で
シフトレバー位置L pがバックの位IRかあるいはl
連の位クの1stかを111断し、否の場合すなわちシ
フトレバー位1! L pが2連の位置の2ndの位置
の時は104で第3[i1(a>(b)のノフトパター
ンを示すソフトマップでデータNo.etよりシフト情
報を検索する。105では103あるいは104での処
理結果から得られたシフト位W指令と現在の変速段とを
比較しソフトダウン或いはシフトアノプの領域に行くか
を判断する。105でシフトに変化がないときは106
でシフトレバー位I L pが1sLにあるかRにある
かを再度判断し、Rあるいは1stにないとき即ち2n
dにあるときはステップ200に行き前同での処理結果
あるいは初期値をそのまま出力する.106でRあるい
はlsLにあるときは107の後述する油圧!2!II
ll制御のサブルーチンに行く.105でノフト変化が
あるときは、!. 0 8に行き第4図のクラッチ係合
パターンを読み込む.クラッチ係舎パターンは第5図(
a)のシフトタイミングデータ倒のごとく、制御部4l
よりクラッチ圧コントロール用バルブ45および46へ
のilDIl?ttM l c aとlcbとを変化さ
せ、クラノヂ33および51の接合あるいは断続を行う
.なお、ノフト変化があるときの制i3Il奄流lca
とIcbとの変化(T f , T t, Tm,等)
は各速度段に対して第4図のごとくのマトリックスによ
り与えられている.l09ではシフ}R化がl. s 
tから2ndへの変化かを判断し、lsLから2ndの
場合には111で第5図(C)のシフトタイミングデー
タ例のごとくボンプ2lの吐出容量コントロール用バル
ブ1lへのtill御B41からのTi流1pdと油圧
バルブ24へのiillllJfiH41からの電流1
vfを切控え時間tに対して変化させ、200で出力す
る。
An example of control operation will be explained according to the flowchart in Figure 2. Note that, for example, (step l00) is abbreviated as 100. At 100, the throttle distance eL is determined from the sensor at each position.
1 shift lever position I L p (R-N, 2nd, 1
st), rotational degree N1 of shaft 2, rotational speed N of output shaft 35
o, and the discharge oil JE I) from the pump 21.
At 10l, it is determined whether or not the lever position Fil L p is at the neutral position N, and if it is N, the data at N time is read at any time at 102. If the answer is 101 and no! At 03, the shift lever position L p is in reverse, IR or l
1st or 1st position of the series is disconnected, and if no, that is, the shift lever position 1! When L p is at the 2nd position of two consecutive positions, at 104, shift information is searched from the data No. et with the soft map showing the noft pattern of the 3rd [i1 (a>(b)). At 105, shift information is searched from the data No. It compares the shift position W command obtained from the processing result with the current gear stage and determines whether to go to the soft down or shift annope area.If there is no change in shift at 105, then 106
Then judge again whether the shift lever position I L p is at 1sL or R, and if it is not at R or 1st, that is, 2n
If it is in step d, the process goes to step 200 and the previous processing result or initial value is output as is. When 106 is in R or lsL, the oil pressure in 107 will be explained later! 2! II
Go to the ll control subroutine. When there is a noft change at 105,! .. 08 and read the clutch engagement pattern shown in Figure 4. The clutch mooring pattern is shown in Figure 5 (
As shown in the shift timing data in a), the control unit 4l
ilDIl? to clutch pressure control valves 45 and 46? ttM l ca and lcb are changed to connect or disconnect the cranoids 33 and 51. In addition, when there is a noft change, the control i3Il flow lca
Changes between and Icb (T f , T t, Tm, etc.)
is given by the matrix shown in Figure 4 for each speed stage. In l09, Schiff}R conversion is l. s
It is determined whether the change is from t to 2nd, and if it is from lsL to 2nd, it is determined by 111 that the Ti from the till control B41 is changed to the valve 1l for controlling the discharge volume of the pump 2l, as shown in the shift timing data example in FIG. 5(C). Current 1pd and current 1 from illllJfiH41 to hydraulic valve 24
vf is varied with respect to cut-off time t and output at 200.

+09でlsLから2ndでない場合は110に行き、
油圧駆動ルーチンの起動タイミングを読み込む.起動タ
イミングは第5図(d)のンフトタイミングデータ例の
ごとく、ポンプ21の吐出容量コントロール用バルブ1
lへの制御i1441からの?lifilpd,モータ
22の吐出容量コントロール用バルブl2への制御部4
lからのtl!流1mdおよび油圧バルブ24へのM 
Ill部4lからの電流1 v fの変化を起動タイミ
ングThs後に立ち上がせ、200で出力するlO7の
油圧駆tll制御のサブルーチンは第6図のフローであ
り、121でアクセルベタルの踏み込みによるスロット
ル開度etに対する目標エンジン同転数Neを求める(
第7図)。122では目標エンジン回転数Neと軸2の
回転速度N1との偏差e1を求め、123ではスロノ}
ル開度OLに対するボンプ21の目標吸収トルクTpo
を算出する(第8図).124では回転速度偏差e1を
考慮したポンプ21の吸収トルクT pを求め、125
では吸収トルクTpのときのポンプ油圧Pに対するボン
プ21の吐出容9Dpを求める.126ではボンプ2l
が吐出容量■)pとなるように吐出容量コントロール川
バルフ1lへの′U4御fl+41からの指令する制御
電流+pdを求める.127ではスロノトル間度etに
対する走行速度にあったfa量を流すように浦圧バルブ
24への指令する′Mm電流■を算出するく第9図).
128ではシフトレバー位訳LpがRにあるか否かを判
断し、否の場合には129で油圧バルブ2 4 C)i
iii進の電磁ソレノイドの制御電流1vfに127で
箆出した制御電流1vを、反対側の後進の電磁ソレノイ
ドのtillflfft流1vrに零を与える。またR
にある場合には130で後進のための制御電流lvrに
127で算出したtill御電流1vを、Ivfには零
を与える.13lでは出力軸の回転速度Noまたは車両
の速度に対する油圧モータの吐出容量を算出する(第1
0図〉。132では+31で算出した吐出容量になるよ
うに油圧モータiqm電流1mdを算出する, 第11図は第2実施例を示す.尚同一部品には同一符号
を付し脱明を省略する. 1stは第l実施例と同じに構威され′ζいるが、2n
dはモータ軸26に固着された山4f 1 3 1を介
して、出力軸35に設けられた壜減速装置+30のクラ
ッチ132と、回転自往に挿入された出車133とで構
威されている。クラッチ132はボンプ44の油圧を″
M’D5部141により制御されるクラッチ圧コントロ
ール用バルブ145を介してうけ、クラッチ132を接
合しモータ軸26の動力を出力軸35に出力する.機械
式伝動装W150の3rdと4thは第1実施例の2n
dと同様に構成され、3rdは機械式伝動装1150の
軸2に固着されたクラフヂ151と、軸2に回転自在に
挿入された歯車+52と、歯車152に噛み合いかつ出
力軸35に固着された歯車153よりなり、ボンプ44
の油圧を?4御部141により制御されるクラッチ圧コ
ントロール用バルブ146を介してうけ、クラッチ15
1を接合し動力Mlの動力を出力軸35に出力する.4
thは同様にクラノ+161と、歯車162と、rP車
163と、クラッチ圧コント0−ル用バルブ166とよ
リ41威されている.尚、この場合にクラ,チ+S+、
16+と歯車152、162とを出力軸35に、歯−1
f l 5 3、163を軸2に設けても良いし、交互
に設けても良い. 上記構威において次に第12図のフローチャートに従い
作動について説明する.532図のフローチャートと同
一作動の場合は同−符号を付し説明を省略する。この実
施例の場合にシフトレバー位ILqは後進2速のR 2
 、後進1速のRl、中立のN、前進1速から4速の1
,2、3、Dをいう.204で第13図のノフトレパー
位2Lqに列するシフトパターンを后すシフトマップで
データNo、eLよりンフ1・情報を検索する.l05
では103あるいは204での処理結果から得られたソ
フト位置{h令と現在の速度段とを比較しソフトダウン
あるいはシフトアップの領域に行くかをII1断する。
If it is not 2nd from lsL at +09, go to 110,
Read the start timing of the hydraulic drive routine. The startup timing is as shown in the example of the pump timing data in FIG.
Control to l from i1441? lifilpd, control unit 4 for valve l2 for controlling the discharge volume of the motor 22
tl from l! M to flow 1md and hydraulic valve 24
The subroutine for the hydraulic drive Tll control of the lO7, which causes the change in the current 1 v f from the Ill section 4l to rise after the startup timing Ths and outputs it at 200, is the flow shown in FIG. Find the target engine rotation number Ne for the opening degree et (
Figure 7). In 122, the deviation e1 between the target engine rotation speed Ne and the rotation speed N1 of the shaft 2 is determined, and in 123, the deviation e1 is calculated.
Target absorption torque Tpo of the pump 21 for the opening degree OL
Calculate (Figure 8). In step 124, the absorption torque T p of the pump 21 is calculated taking into account the rotational speed deviation e1, and in step 125
Now, find the discharge volume 9Dp of the pump 21 with respect to the pump oil pressure P when the absorption torque Tp. 126 has a bomb 2l
Find the control current +pd commanded from 'U4 control fl+41 to the discharge capacity control valve 1l so that the discharge capacity becomes the discharge capacity■)p. In step 127, calculate the 'Mm current (2) which is commanded to the pressure valve 24 to flow an amount of fa that matches the running speed with respect to the throttle distance et (Fig. 9).
At 128, it is determined whether the shift lever position Lp is at R, and if not, at 129, the hydraulic valve 2 4 C) i
Give the control current 1v that was determined in step 127 to the control current 1vf of the iii-adic electromagnetic solenoid, and give zero to the tillflffft flow 1vr of the reverse electromagnetic solenoid on the opposite side. Also R
, the till control current 1V calculated in step 127 is given to the control current lvr for reversing in step 130, and zero is given to Ivf. 13l calculates the discharge capacity of the hydraulic motor with respect to the rotational speed No. of the output shaft or the speed of the vehicle (first
Figure 0〉. At 132, the hydraulic motor iqm current 1md is calculated so that the discharge capacity calculated by +31 is obtained. Fig. 11 shows the second embodiment. Identical parts are given the same reference numerals and clarifications are omitted. The 1st has the same structure as the first embodiment, but the 2n
d is connected via a peak 4f 1 3 1 fixed to the motor shaft 26 by a clutch 132 of a bottle reduction gear + 30 provided on the output shaft 35 and a delivery wheel 133 inserted into the rotating shaft. There is. The clutch 132 controls the hydraulic pressure of the pump 44.
The power is received via the clutch pressure control valve 145 controlled by the M'D5 section 141, the clutch 132 is engaged, and the power of the motor shaft 26 is output to the output shaft 35. The 3rd and 4th of the mechanical transmission W150 are 2n of the first embodiment.
The 3rd is configured in the same manner as d, and the 3rd includes a cluff 151 fixed to the shaft 2 of the mechanical transmission 1150, a gear +52 rotatably inserted into the shaft 2, and a gear +52 that meshes with the gear 152 and is fixed to the output shaft 35. Consists of gear 153, pump 44
The hydraulic pressure? 4 through a clutch pressure control valve 146 controlled by a clutch 15 control section 141
1 and outputs the power Ml to the output shaft 35. 4
Similarly, th is controlled by cranometer +161, gear 162, rP wheel 163, and clutch pressure control valve 166. In this case, Kula, Chi+S+,
16+ and gears 152, 162 on the output shaft 35, tooth -1
f l 5 3, 163 may be provided on the shaft 2, or may be provided alternately. Next, the operation of the above structure will be explained according to the flowchart shown in Fig. 12. If the operation is the same as that in the flowchart of FIG. In this embodiment, the shift lever position ILq is R2 for reverse 2nd speed.
, Rl for reverse 1st gear, N for neutral, 1 for forward 1st to 4th gears
,2,3,D. At step 204, search is made for NFF1 information from the data No. and eL using the shift map that follows the shift pattern aligned at Noft Leper position 2Lq in FIG. l05
Then, the soft position {h command obtained from the processing result in step 103 or 204 is compared with the current speed stage, and it is determined whether to go to the soft down or shift up area.

+05でソフトに変化がないときは206で現在の変速
段が油圧駆動のポジション1 s t,2ndSR1s
t.R2sLにあるかを川断し、ないとき即ち3th,
4rdにあるときはそのまま2oOに行<.206でI
sL、2ndXRlsc、R2SLにあるときは第1実
施例と同槌に油圧駆勤LIAIIのサブルーチンの10
7に行く.このとき第l実y&例のスうーノブ+07と
は浦圧モタの吐出容量が出力軸回転速度に対して第14
図のごとく、1st、2ndまたはR l. s t 
,R2stに合わせて変化する。このとき、第15図の
ように出力回転速度の代わりにモータ軸の同転速度を検
出しても良い。105でノフト変化があるときは、20
8に行きクラッチ係合パターンfml6[m)を読み込
む.クラノヂ係合パターンは第51ffi (a>のシ
フトタイミングデータ例のごと<、II[l4 1より
クラッチ圧コントロール用バルブ45、145、14G
および166への制御電1iWlca,Icb、IcC
,およびIcdのいずれかを変化させ、クラッチ33、
132、15l3および161のいずれかを接合あるい
は断続を行う.ムお、シフト変化があるときの$1!御
電流lea、Icb、Icc,lcdとの変化(Tf.
Tt、T m ,等)は各速度段にタ1して第16図の
ごとくのマトリノクスにより行う.209ではノフト変
化が油圧駆動から機械式伝動装置】50への直結の変化
かを判断し、油圧駆動から直結の場合には210で第5
図(C)のシフトタイミングデータ例のごとくポンプ2
lの吐出容量コントロール用バルブl1への制御部14
1からの電流Ipdと油圧バルブ24へのtilI御部
4lからの電流1vrを切換え時間tに対して変化させ
、200で出力する.油圧駆動から機械式伝動装置への
変化でない場合は211で機械式伝動装1!+50から
油圧駆動への切換の変化かを判断し、またそうでない場
合はステノプ200に行きそのまま出力する.直結の場
合は212で第1実y&例と同様に第5図(d)のシフ
トタイミングデータ例のごとくボンプ2Iの吐出容量コ
ントロール用バルブl1への制御1141からの電流1
pdと油圧バルブ24への″#A御部l41からの電流
1vfを切換え時間tに対して変化させ、200で出力
する. なお、上記実施例lでは油圧駆動の変速段を1段および
8l械駆動の変速段を1段に、実施例2では油圧駆動の
変速段を2段および機械駆動の変速段を2段にしたが第
17図に示すような組合せにしても良い.またポンプと
モータの間に1、211Nの油圧バルブを設けたが多数
個配設し、油圧回路もタンデム、ソリーズ、パラレルお
よび復合回路を用いても良い。さらに、油圧式駆動装置
の油圧回路は開回路のみについて述べたが、閉回路を用
いても良いことは言うまでもない. (発明の効果) 以上説明したように本発明によれば、8!1械油圧式伝
動装置の機械式伝動装置と油圧式伝動装置とに分けたも
のを出力軸の回転速度が所定埴より大きい範囲では機械
式伝動装置にて動力を伝えるため効率が良くなるととも
に、所定{直より小さい範囲では油圧式伝動装置で動力
を伝えるためn一転と逆転との間の出力回転速度を円滑
に制御出来る.また、油圧式伝動装夏と機槻工(伝動装
置との切換え、および機械式、油圧式の各伝動2a内で
の切換えも出力l1I]転速度、スロノトル間度および
ノフト位置の変化等を撞出し、コントローラによりクラ
ッチへの油圧を制御しているため、スムーズに速く行う
ことが出来る.さらに、複雑な機構を有する遊星歯車装
置を用いていないため構造が簡単になり、またコンパク
トになるとともに安価に出来る。また油圧回路を切り換
えることにより油圧ポンプの吐出流量を他のアクチュエ
ータに供給することが出来るため余分な動力を損失する
ことなしに油圧エネルギを利用出来るという優れた効果
が得られる.
When there is no change in the software at +05, at 206 the current gear position is hydraulic drive position 1st, 2ndSR1s
t. If it is not in R2sL, that is, 3th,
If it is on 4th, just go to 2oO<. I at 206
sL, 2ndXRlsc, and R2SL, subroutine 10 of the hydraulic drive LIAII is the same as in the first embodiment.
Go to 7. In this case, the lth actual y & example sunknob +07 means that the discharge capacity of the pressure motor is the 14th relative to the output shaft rotational speed.
As shown in the figure, 1st, 2nd or R l. s t
, R2st. At this time, the same rotational speed of the motor shaft may be detected instead of the output rotational speed as shown in FIG. When there is a noft change in 105, 20
8 and read the clutch engagement pattern fml6[m]. The clutch engagement pattern is as shown in the shift timing data example of 51ffi (a).
and control voltages 1iWlca, Icb, IcC to 166
, and Icd, the clutch 33,
Join or disconnect any of 132, 15l3 and 161. Oh, $1 when there is a shift change! Changes in control currents lea, Icb, Icc, lcd (Tf.
(Tt, T m, etc.) are calculated using a matrix as shown in Fig. 16 for each speed stage. At 209, it is determined whether the noft change is a direct connection change from hydraulic drive to mechanical transmission 50, and if it is from hydraulic drive to direct connection, noft change is determined at 210.
Pump 2 as shown in the shift timing data example in Figure (C)
Control unit 14 for valve l1 for controlling the discharge volume of l
The current Ipd from 1 and the current 1vr from the tilI control unit 4l to the hydraulic valve 24 are changed with respect to the switching time t, and output at 200. If the change is not from hydraulic drive to mechanical transmission, 211 indicates mechanical transmission 1! It is determined whether the change is a change from +50 to hydraulic drive, and if it is not, it goes to the stenop 200 and outputs it as is. In the case of direct connection, the current 1 from the control 1141 to the valve 11 for controlling the discharge volume of the pump 2I is set at 212, as shown in the shift timing data example of FIG.
pd and the current 1vf from the "#A control part 141 to the hydraulic valve 24 is changed with respect to the switching time t, and is output at 200. In the above embodiment 1, the hydraulically driven gear is 1st gear and 8l gear. Although the drive gear stage is set to one stage, and the hydraulic drive gear stage is set to two stages and the mechanical drive gear stage is set to two stages in Embodiment 2, a combination as shown in Fig. 17 may also be used. Although a 1,211N hydraulic valve is provided between the valves, a large number may be provided, and tandem, Solise, parallel, and combined circuits may also be used for the hydraulic circuit.Furthermore, the hydraulic circuit of the hydraulic drive device may only be an open circuit. As described above, it goes without saying that a closed circuit may be used. (Effects of the Invention) As explained above, according to the present invention, the mechanical transmission device and the hydraulic transmission device of the 8!1 mechanical-hydraulic transmission device In the range where the rotational speed of the output shaft is greater than the specified value, the mechanical transmission device transmits the power, which improves efficiency, and in the range smaller than the specified value, the hydraulic transmission device transmits the power. It is possible to smoothly control the output rotation speed between one rotation and reverse rotation.In addition, switching between the hydraulic transmission system and the transmission system (transmission system), as well as switching within each mechanical and hydraulic transmission 2a, is possible. Output l1I] Changes in rotational speed, throttle angle, noft position, etc. are output, and the hydraulic pressure to the clutch is controlled by a controller, so it can be performed smoothly and quickly.In addition, it is possible to operate smoothly and quickly with a planetary gear system that has a complex mechanism. Since it does not use a hydraulic pump, the structure is simple, compact, and inexpensive.Also, by switching the hydraulic circuit, the discharge flow rate of the hydraulic pump can be supplied to other actuators, so there is no loss of excess power. This provides the excellent effect of being able to utilize hydraulic energy without having to use hydraulic energy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例を示す機械油圧式伝動装置
の全体構威図. 第2図は本発明の第1実施例のフローチャトレ4. 第3図(a)は出力軸回転速度とスロットル開度、第3
図(b)は出力軸回転速度と出カ軸トルクの関係を示す
図 第4図、第16図はクラッチ係合パターンを示す図表 第5図はシフトタ イミングのタイムチャートを示す図 第6L4は油圧駆動オ,ll御のフローチャート51第
7図はスロットル開度と目標エンジン同転速度の関係を
示す図 第8図はスロ7}ル開度と油圧ポンプ1−1標や収トル
クの関係を示す図 第9図はスロットル開度と油圧バルブへ流す電流{直の
関係を示す図 第lO図、第l4図は出力軸回転速度と曲圧モータの吐
出容量の関係を示す図 第].1図は本発明の第l実施例を示す機絨浦圧式伝勤
装置の全体構或図。 第12図は本発明の第1実施例のフロー1−ヤート図。 第13図(a)は各7フトレバ位Kに文13る出力軸同
転速度、スロノトル開度、出力軸トルクと変速段との関
係を示す図 ffil3[6(b)は各ノフトレパ位置に幻する出力
軸回転速度、スロノトル間度、出力軸トルクと変速段と
の関係を示す図 W415図は浦圧モータ軸回転速度と油圧モ−夕の吐出
容量の関係を示す図 m17図は本発明の油圧駆動と機絨駆動の変速段の組合
せを示す図表 第18図は従来の実n例を示す機械油圧式伝動装置の全
体構威図 第l9図は従来の実M l+1を示す油圧式勤力仏勧装
置の全体構威図 l 3 20 21 22 24 30 3 l 5 3 131  、 田車 3 3 、 5 ラッチ 動力源、2   軸、 ポンプ軸 10   油圧式伝動装置 油圧伝動装置 可変容量形浦圧ボンプ 可変容量形油圧モータ 油圧バルブ、26   モータ軸 増減速装置 2、34、36、52、53..l30、152、15
3、162、163 1 、 132 、 151.161 ク 4 5 、 1 4 5 、 +46 、.166圧コ
ントロール用バルブ 40   制御装置、 41、! 4 1− − i!It御部42、43 一
 速度センサ 47   切換え手段 4日   速度¥A御手段 50、150   −機械式伝動装訳 ク  ラ  ッ チ
FIG. 1 is an overall structural diagram of a mechanical-hydraulic transmission device showing a first embodiment of the present invention. FIG. 2 is a flow chart of the first embodiment of the present invention. Figure 3 (a) shows the output shaft rotational speed, throttle opening, and
Figure (b) is a diagram showing the relationship between output shaft rotational speed and output shaft torque. Figure 4 is a diagram showing the relationship between output shaft rotation speed and output shaft torque. Figure 16 is a diagram showing a clutch engagement pattern. Figure 5 is a diagram showing a time chart of shift timing. Figure 6L4 is a diagram showing the oil pressure. Flowchart 51 for drive control Fig. 7 shows the relationship between throttle opening and target engine rotational speed Fig. 8 shows the relationship between throttle opening and hydraulic pump 1-1 mark and torque output Figure 9 is a diagram showing the direct relationship between the throttle opening and the current flowing to the hydraulic valve (Figure 10 is a diagram showing the direct relationship, and Figure 14 is a diagram showing the relationship between the output shaft rotational speed and the discharge capacity of the bending pressure motor). FIG. 1 is a diagram showing the overall structure of a mechanical pressure transmission device according to a first embodiment of the present invention. FIG. 12 is a flow diagram of the first embodiment of the present invention. Figure 13(a) is a diagram showing the relationship between the output shaft co-rotating speed, throttle opening, output shaft torque, and gear position at each 7-lift position K; Figure W415 is a diagram showing the relationship between the output shaft rotational speed, throttle distance, output shaft torque, and gear stage. Figure M17 is a diagram showing the relationship between the pressure motor shaft rotational speed and the discharge capacity of the hydraulic motor. A diagram showing combinations of gear stages for hydraulic drive and mechanical drive. Fig. 18 is an overall structural diagram of a mechanical-hydraulic transmission device showing an example of a conventional conventional hydraulic power transmission. Overall configuration diagram of the Buddhism system 3 20 21 22 24 30 3 5 3 131, rice cart 3 3, 5 latch power source, 2 shafts, pump shaft 10 Hydraulic transmission device Hydraulic transmission device variable displacement pump Variable displacement hydraulic motor hydraulic valve, 26 Motor shaft speed increase/decrease device 2, 34, 36, 52, 53. .. l30, 152, 15
3, 162, 163 1, 132, 151.161 ku4 5, 1 4 5, +46, . 166 pressure control valve 40 control device, 41,! 4 1--i! It control section 42, 43 - Speed sensor 47 Switching means 4 Speed A control means 50, 150 - Mechanical transmission clutch

Claims (1)

【特許請求の範囲】 1)速度制御手段を有する動力源と、油圧式伝動装置と
、制御装置および機械式伝動装置とを有する機械油圧式
伝動装置において、出力軸の回転速度が所定値より小さ
い範囲では制御部からの信号により機械式伝動装置のク
ラッチを切断するとともに油圧式伝動装置のクラッチを
接合し動力を出力軸に伝え、さらにポンプとモータの間
で制御部からの信号により切り換わる油圧バルブを作動
させて出力軸の回転方向を切換えるとともに出力軸の回
転速度を制御し、かつ出力軸の回転速度が所定値より大
きい範囲では制御部よりの信号により機械式伝動装置の
クラッチを接合するとともに油圧式伝動装置のクラッチ
を切断し動力を出力軸に伝えるとともに制御部からの指
令によりポンプによって吸収される動力を最小にするこ
とを特徴とする機械油圧式伝動装置とその制御方法。 2)ポンプによって吸収される動力を最小にするため制
御部からの指令によりポンプの斜板を作動させポンプの
吐出容量を最小にするとともにポンプとモータの間の油
圧バルブを中立にすることによりポンプの吐出圧力を最
小にする請求項1)記載の機械油圧式伝動装置とその制
御方法。 3)ポンプとバルブの間の他の油圧バルブを切換えてポ
ンプの油圧を他の回路にも使用出来る請求項1)記載の
機械油圧式伝動装置とその制御方法。 4)速度制御手段を有する動力源と、油圧式伝動装置と
、制御装置および機械式伝動装置とを有する機械油圧式
伝動装置において、前後進を切換る切換え手段と、速度
を制御する速度制御手段と、出力軸の回転速度を検知す
る検知手段と、切換え手段の信号と速度制御手段の信号
と出力軸の検知手段の信号とを比較し機械式伝動装置お
よび油圧式伝動装置のクラッチの接合、切断と少なくと
もポンプあるいはモータの容量を増減する制御を行う制
御装置と、からなる機械油圧式伝動装置。 5)速度制御手段を有する動力源と、油圧式伝動装置と
、制御装置および機械式伝動装置とを有する機械油圧式
伝動装置において、前後進を切換る切換え手段と、ポン
プとモータの間に制御部からの信号により出力軸の回転
方向を切換えるとともに出力軸の回転速度を制御する油
圧バルブと、ポンプとモータの間にあってポンプの油圧
を他の回路に切換える油圧バルブと、速度を制御する速
度制御手段と、出力軸の回転速度を検知する検知手段と
、切換え手段の信号と速度制御手段の信号と出力軸の検
知手段の信号とを比べ機械式伝動装置および油圧式伝動
装置のクラッチの接合、切断と少なくともポンプあるい
はモータの容量を増減する制御を行う制御装置と、から
なる機械油圧式伝動装置。
[Claims] 1) In a mechanical hydraulic transmission device having a power source having a speed control means, a hydraulic transmission device, a control device and a mechanical transmission device, the rotational speed of the output shaft is smaller than a predetermined value. In the range, the clutch of the mechanical transmission is disengaged by a signal from the control unit, and the clutch of the hydraulic transmission is engaged, transmitting power to the output shaft, and the hydraulic pressure is switched between the pump and motor by a signal from the control unit. Operates a valve to switch the rotation direction of the output shaft and control the rotation speed of the output shaft, and engages the clutch of the mechanical transmission device by a signal from the control section when the rotation speed of the output shaft is greater than a predetermined value. A mechanical-hydraulic transmission device and its control method, characterized in that the clutch of the hydraulic transmission device is disengaged to transmit power to an output shaft, and the power absorbed by the pump is minimized by a command from a control section. 2) In order to minimize the power absorbed by the pump, the pump's swash plate is activated by a command from the control unit to minimize the pump's discharge capacity, and the hydraulic valve between the pump and motor is set to neutral. The mechanical-hydraulic transmission device and its control method according to claim 1, wherein the discharge pressure of the transmission device is minimized. 3) The mechanical hydraulic transmission device and its control method according to claim 1), wherein the hydraulic pressure of the pump can also be used for other circuits by switching other hydraulic valves between the pump and the valve. 4) In a mechanical hydraulic transmission device having a power source having a speed control means, a hydraulic transmission device, a control device and a mechanical transmission device, a switching means for switching between forward and backward travel and a speed control means for controlling the speed. , a detection means for detecting the rotational speed of the output shaft, a signal from the switching means, a signal from the speed control means, and a signal from the output shaft detection means to connect the clutches of the mechanical transmission device and the hydraulic transmission device; A mechanical-hydraulic transmission device consisting of a control device for controlling disconnection and increasing or decreasing the capacity of at least a pump or motor. 5) In a mechanical hydraulic transmission device having a power source having a speed control means, a hydraulic transmission device, a control device and a mechanical transmission device, a switching means for switching forward and backward movement, and a control device between the pump and the motor. A hydraulic valve that switches the rotational direction of the output shaft and controls the rotational speed of the output shaft based on a signal from the pump, a hydraulic valve that is located between the pump and the motor that switches the pump's hydraulic pressure to another circuit, and a speed control that controls the speed. means, a detection means for detecting the rotational speed of the output shaft, a signal from the switching means, a signal from the speed control means, and a signal from the detection means for the output shaft; A mechanical-hydraulic transmission device consisting of a control device for controlling disconnection and increasing or decreasing the capacity of at least a pump or motor.
JP8979791A 1988-05-31 1989-03-30 Mechanical and hydraulic transmission gear and control method therefor Pending JPH0356754A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP8979791A JPH0356754A (en) 1989-03-30 1989-03-30 Mechanical and hydraulic transmission gear and control method therefor
US07/613,706 US5193416A (en) 1988-05-31 1989-05-31 Mechanical-hydraulic transmission gear system and method of controlling power transmission using the system
EP89906463A EP0417283B1 (en) 1988-05-31 1989-05-31 Mechanical-hydraulic transmission gear and method of controlling same
PCT/JP1989/000547 WO1989012188A1 (en) 1988-05-31 1989-05-31 Mechanical-hydraulic transmission gear and method of controlling same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8979791A JPH0356754A (en) 1989-03-30 1989-03-30 Mechanical and hydraulic transmission gear and control method therefor

Publications (1)

Publication Number Publication Date
JPH0356754A true JPH0356754A (en) 1991-03-12

Family

ID=13700038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8979791A Pending JPH0356754A (en) 1988-05-31 1989-03-30 Mechanical and hydraulic transmission gear and control method therefor

Country Status (1)

Country Link
JP (1) JPH0356754A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533861A (en) * 1991-07-29 1993-02-09 Komatsu Ltd Speed change control device for hydrostatic-mechanical transmitting machine
US5809846A (en) * 1994-03-31 1998-09-22 Komatsu Ltd. Method of power transmission in mechanical/hydraulic type transmission system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533861A (en) * 1991-07-29 1993-02-09 Komatsu Ltd Speed change control device for hydrostatic-mechanical transmitting machine
US5809846A (en) * 1994-03-31 1998-09-22 Komatsu Ltd. Method of power transmission in mechanical/hydraulic type transmission system

Similar Documents

Publication Publication Date Title
US5193416A (en) Mechanical-hydraulic transmission gear system and method of controlling power transmission using the system
US9447858B2 (en) Hydro-mechanical continuously variable transmission for producing high torque output
US7361111B2 (en) Power branching transmission for motor vehicles
US20070281815A1 (en) Hydrostatic mechanical gearbox
US8696509B2 (en) Power split transmission
US5421790A (en) Continuously variable transmission
WO2004104449A1 (en) Speed-changing device
JP2004353685A (en) Hydraulic mechanical transmission
JP2005114160A (en) Control system for hydro-mechanical transmission
DK2860426T3 (en) Hydromechanical transmission
EP0754883B1 (en) Mechanical-hydraulic transmission gear system and method of controlling power transmission using the system
JPH0356754A (en) Mechanical and hydraulic transmission gear and control method therefor
US7335125B2 (en) Continuously variable transmission
US20140357447A1 (en) Continuously variable power-split vehicle transmission
JP4284024B2 (en) Small engine transmission
JP2002139125A (en) Drive mode switching mechanism of tractor with hmt type transmission
JP2717671B2 (en) Mechanical hydraulic transmission and control method thereof
JP2002139126A (en) Hydraulic-mechanical non-stage transmission
JP3438929B2 (en) Variable speed traveling control device for hydraulically driven tracked vehicles
JP3005864B2 (en) Mechanical hydraulic transmission
JP4347963B2 (en) Abnormality detection device for transmission
JPH07149160A (en) Direct advance correction control device at starting time for hydraulically driven type catapillar
JPS5967120A (en) Running driving device for industrial vehicle
JP2893115B2 (en) Mechanical hydraulic transmission
JP2000127780A (en) Brake control method for hydromechanical transmission