JPH0356642B2 - - Google Patents

Info

Publication number
JPH0356642B2
JPH0356642B2 JP59268970A JP26897084A JPH0356642B2 JP H0356642 B2 JPH0356642 B2 JP H0356642B2 JP 59268970 A JP59268970 A JP 59268970A JP 26897084 A JP26897084 A JP 26897084A JP H0356642 B2 JPH0356642 B2 JP H0356642B2
Authority
JP
Japan
Prior art keywords
wood
hydroxyl groups
modified
polymerizable substance
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59268970A
Other languages
Japanese (ja)
Other versions
JPS61144304A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP26897084A priority Critical patent/JPS61144304A/en
Publication of JPS61144304A publication Critical patent/JPS61144304A/en
Publication of JPH0356642B2 publication Critical patent/JPH0356642B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Chemical And Physical Treatments For Wood And The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、特に寸法安定性に優れた改質木材の
製造方法に関し、更に詳しくは、木材中のセルロ
ース結晶領域を実質的に残した条件下、木材をエ
ステル化剤、エーテル化剤など、木材成分の水酸
基と反応し得る反応体で化学的に処理し、かくし
て得られた処理木材を極性液で膨潤させ、同時に
極性液に溶解せしめた脱水縮合型の重合性物質を
含浸させ、次いで木材内に浸透した極性溶媒を穏
やかな条件下で除去した後、滞留している重合成
物質を加熱硬化せしめることからなる、特に寸法
安定性に優れた改質木材の製造方法に関する。 木材は、古くから建築材料、家具用材料、およ
びその他の広範な用途に使用されているが、各種
菌類の浸触や白蟻などの虫害を受けて腐朽し易い
という欠点を有するほか、水、湿気などの吸収、
放散の繰り返しによつて、反り、割れ、ねじれ、
伸縮などの変形を生じ易いという、構造材料およ
び表面材料としての決定的な欠陥を有している。
このことは専ら木材成分とが水分を吸収しやすい
性質に起因する。 この様な寸法不安定性を改善する手段として、
木材をアシル化剤、特にアセチル化剤で処理する
方法、および木材に樹脂を含浸させて硬化させる
方法などが既に知られている。しかしながら、い
ずれの方法も、以下に述べる理由で満足し得るも
のとはいい難い。 即ち、前者の方法は、木材をアシル化剤で処理
することにより、木材成分、特にセルロースの水
酸基をアシル化し、木材の親水性を低下させるこ
とにより上記の欠陥を軽減しようとするものであ
るが、緩和な条件下では木材成分中の水酸基は残
存し、十分なアシル化を達成することができない
為、得られる寸法安定性にも限界があつた(従来
例では抗膨張率(ASE;Anti Swelling
Efficiencyが最高で70受程度))。従つて、通常、
強酸やアミノ類、アミド類などを用いてセルロー
ス結晶領域を非晶化することにより、アシル化効
率を上げるという手段がとられている。この様な
方法により、アシル化率は上昇するが、同時に、
使用した非晶化剤の作用により木材の本質的な特
長である軽量性、靭性、加工性および強度が損な
われるという不利益が生じる。 一方、木材に重合性物質を含浸、硬化させる方
法は、WPC強化木として木材業界で広く利用さ
れているが、これらの例にみられるように、多量
の重合性物質を含浸させても細胞膜を充填すこと
はできるが、効率よく木材細胞壁中にまで浸透・
吸着させることは不可能で通常寸法安定性はさほ
ど改善されない(ASE=50%以下)。 又、適当な溶媒を用いて、木材細胞壁中まで浸
透可能な重合性物質を含浸させることで寸法安定
性を与えようとする試みも公知であるが、この場
合も得られる寸法安定性に限界があり(ASE=
60〜70%がMax)、さらに、含浸を進行させるた
めに非晶化すると上述と同様に脆弱化して好まし
くない。例外的に、ポリエチレングリコールのよ
うな非重合性物質を含浸させた場合は、ここで得
られたと同等の高い寸法安定性を得ることができ
る(ASE=80%以上)が、これは水に易溶の物
質であり、その高い寸法安定性も水への溶脱によ
つて著しく低下し、永続性がないことから、その
適用範囲が大幅に制限されている。 さらに、特開昭58−39405号公報に木材をアセ
チル化処理した後、ポリアルキレングリコールま
たはそのビニル誘導体を含浸し、乾燥して得た非
退色性木材が開示されているが、木材がアセチル
化処理されていても、無処理木材に注入した場合
と同様、木材に充填しても樹脂の溶出は避けられ
ず、耐水性は改善されていない。さらに、耐水性
を改善するためにポリアルキレングリコールをビ
ニル誘導体に変性し、ラジカル重合して充填され
るものも開示されているが、この樹脂も分子構造
がエーテル結合を主体としているため、水や熱に
よつてラジカル重合以外の部分が分断されやす
く、不安定であり、一時的に改質されても水回り
や屋外では長期間の使用に耐えられない。 本発明者らは、上記の従来技術を適当な条件下
で組み合わせることにより、永続性の高い寸法安
定性に優れた改質木材を得ることに成功し、本発
明を完成するに至つた。 すなわち、本発明は、木材の結晶領域を実質的
に残した条件下で木材成分の水酸基を化学的に修
飾し、この様にして得た処理木材を極性液で膨潤
させ、同時に極性液に溶解した脱水縮合型の重合
性物質を含浸させ、次いで緩和な条件下で極性溶
媒を木材から揮散せしめ、最後に木材中に滞留し
ている重合性物質を加熱硬化させるものである。 つまり、寸法変化の主要因である非晶域の木材
成分の水酸基を化学的に修飾し、水分を吸着しに
くくする一方、前記処理で化学修飾し得なかつた
残存する木材成分の水酸基を、この水酸基と親和
性の高い極性溶液に溶解した脱水縮合型の重合性
物質を注入し、木材の膨潤化した細胞壁の微細空
〓中に脱水縮合型の重合物質を充填して硬化して
不溶化させるものである。 その結果、木材成分の水酸基を化学修飾するだ
けでは得られなかつた寸法安定性を脱水縮合型の
重合物質の充填にて著しく改善することができ
る。 また、脱水縮合型の熱硬化樹脂は脱水しながら
硬化するので、残存する木材成分中のOH基との
親和性が非常に高く、逆に前処理で化学的に修飾
された部分は疎水性になつているため、残存する
OH基の周辺に熱硬化性樹脂が選択的に充填され
ることになり、改質にさほど影響のない部分に対
する余分な充填が少なくなり、切削性、軽量性、
外観などの木材の本質的特性を損なうことがな
い。 以下に本発明をより詳細に説明する。 本発明で使用し得る木材の樹種や形状には特に
制限はなく、木材薄板、厚板材、チツプ、フアイ
バーなど、あらゆるものを使用することができ
る。これらの木材は、本発明の処理工程に付す前
に特別の前処理を施す必要はない。しかし、化学
的修飾を容易にしたり、重合性物質の含浸をより
容易にするために、予め煮沸、蒸煮したり、アル
カリ水溶液または熱水で可溶成分を除去しておい
てもよい。 木材成分の化学的修飾に使用する反応体は、木
材成分の水酸基と化学的に反応して疎水性を付与
する物質であればいかなるものであつてもよい
が、通常、エステル化剤(アシル化剤)またはエ
ーテル化剤を使用する。 エステル化剤としては有機酸無水物(例えば酢
酸、プロピオン酸、酪酸などの酸無水物)、有機
酸ハロゲン化物(例えば上記の酸の他カプロン
酸、ラウリン酸、ステアリン酸およびメタクリル
酸などの酸ハロゲン化物、特に酸塩化物)、およ
び有機酸無水物と脂肪酸の混合物(例えば無水ト
リフルオル酢酸または無水クロル酢酸と酢酸、プ
ロピオン酸、カプロン酸またはラウリン酸などと
の混合物)などを挙げることができる。これらの
エステル化剤は単独で、あるいは2種以上混合し
て使用することができる。 上記エステル化剤には、木材成分との反応を促
進するための触媒および/または、エステル化剤
の木材細胞壁内への浸透を促進するための溶媒を
添加してもよいが、既述した理由で、木材の結晶
領域を非晶化するような強力な触媒の使用は避け
る方が望ましい。従つて、代表的なエステル化剤
である無水酢酸を使用する場合、酢酸ナトリウム
や酢酸カリウムを触媒として使用し、溶媒の存在
下または非存在下、緩和な条件下で処理するのが
好ましい。 エーテル化剤としては、例えばエチレンオキサ
イド、プロピレンオキサイド等の1,2−エポキ
シド、塩化メチル、塩化エチル等のハロゲン化ア
ルキル、塩化ベンジル等の芳香族ハロゲン化物、
ジメチル硫酸等のジアルキル硫酸、モノクロル酢
酸等のα−ハロゲン酸、シアン化ビニル等の陰性
基で活性化されたビニル化合物、ホルムアルデヒ
ド等のアルデヒドなどを用いることができる。 エーテル化剤の場合も、エステル化剤の場合と
同様、触媒や溶媒を適宜添加することができる
が、エステル化剤の場合と同様、強力な試剤の使
用を避けるのが望ましい。 水酸基と反応させる反応体としては、上記のエ
ステル化剤およびエーテル化剤のほか、イソシア
ネート類(例えばメチルイソシアネート、エチル
イソシアネートなど)を使用することもできる。 以上述べた反応体を木材と接触させるには、例
えば木材を反応体中に浸漬するか、あるいは反応
体を気化せしめ、これに木材をさらせばよい。ま
た、この様な方法を減圧下、加圧下あるいは減圧
加圧法により行い、木材への反応体の含浸を促進
させることができる。この反応は、反応体で処理
することによつて得られる処理木材の重量増加率
が30%を超えない様に、調節するのが好ましい。 この様にして反応体で処理した木材を、要すれ
ば適当な溶媒で洗浄した後乾燥し、次の極性液で
の膨潤及び脱水縮合型の重合性物質の含浸工程に
付す。 この工程は、重合性物質を適当な極性液に溶か
した溶液に処理木材を浸漬するか、あるいは処理
木材にこの溶液を塗布、注入することからなり、
この操作は減圧下、加圧下あるいは減圧加圧下に
行なうことができる。 この工程で使用される処理木材を膨潤させる極
性液には水、メタノール、セロソルブ(エチレン
グリコールモノエチルエーテル)、エチルアルコ
ール、n−プロピルアルコール、イソ−プロピル
アルコール、エチレングリコール、フルフリルア
ルコール、フエノール、蟻酸、酢酸、プロピオン
酸、ホルムアミド、n−ブチルアミン、ジエチル
アミン、モルホリン、ピペリジン、ジメチルホル
ムアミド、ジメチルアセトアミド、ジエチルホル
ムアミド、ジメチルスルホキシド、アセトン、メ
チルエチルケトン、ジオキサン、酢酸メチル、酢
酸エチル等である。 一方、脱水縮合型の重合性物質は、極性液に可
溶であり、細胞壁中への浸透が立体化学構造的に
可能なものでなければならず、かつ、木材中に浸
透した後、木材成分中の水酸基と親和性を有する
適当な手段で樹脂状固形物に変換され得るもので
なければならない。この様な脱水縮合型の重合性
物質として、アミノ系、フエノール系樹脂の初期
縮合物、フラン系樹脂初期縮合物、フラン系モノ
マー等が挙げられる。 重合性物質を極性溶媒に溶解した溶液には、適
宜、触媒、硬化剤、可塑剤、着色剤および/また
は難燃剤を添加することができる。 上記の方法で重合性物質を含浸させた処理木材
を、次の溶媒除去工程に付す。この工程は、上記
処理木材を加温雰囲気下(常温〜約150℃)や減
圧下に保持し、穏やかに溶媒を木材中から揮散せ
しめることからなる。 本工程により、処理木材の微細空〓中に浸透し
て膨潤に寄与した極性液が、同時に含浸した重合
性物質を残したままで、又は置換する様に除去す
るので、膨潤した状態で保持できる。一般に、繊
維飽和点以下まで溶媒を除去するのが望ましい。
具体的には極性液が水である場合、常圧で50〜80
℃で2〜5時間、メタノールやアセトンは室内で
一日放置、ジオキサンは常温30mmHgの減圧下で
3時間保持することにより達成できる。 溶媒を除去した処理木材を、次に最終工程の加
熱硬化処理に付す。この工程は、要すれば常圧若
しくは加圧下に、木材を常温〜250℃で加熱する
ことからなる。この処理により、木材中の微細構
造において化学修飾処理で残存するOH基の近傍
に浸透していた重合性物質が互いに脱水縮合し、
あるいは木材成分とグラフトポリマーを形成する
に至り、嵩効果を発揮する。 尚、重合性物質の流出がない限り、室温放置の
後、徐々に熱圧したりして、溶媒除去工程と硬化
工程を並行して行なう事もできる。 以上の一連の操作によつて、寸法安定性のみな
らず、構造材料表面材料としての望ましい諸性
質、例えば、耐水性、耐汚染性、耐腐巧性などが
著しく改善された改質木材を得ることができる。 実施例 1 0.6mm厚のベイツガ単板を、5重量%の酢酸ナ
トリウムを含有する130℃の無水酢酸中に10分間
浸漬し、重量増加率(絶乾重量比)27%のアセチ
ル化単板を得た。このアセチル化単板に、フエノ
ール樹脂初期縮合物:水=30:70の混液を減圧加
圧下に注入した。注入後、単板を2時間60℃に保
ち、溶媒を除去した。次いで、130℃で30分間熱
圧硬化させ、改質単板(A)を得た。 試験例 1 本発明方法で処理した改質単板(A)、無処理単板
(B)、および下記の方法で処理した単板(C)(D)(E)を一
旦絶乾にした後、減圧下(5mmHg)で一時間吸
水させ、加圧下(10Kg/cm2)で24時間静置し、膨
張率を測定した後、105℃の熱風下で3時間乾燥
し、収縮率を測定し繰り返し実験し、そのASE
値を比較検討した。結果を表1に示す。
The present invention particularly relates to a method for producing modified wood with excellent dimensional stability, and more specifically, the present invention relates to a method for producing modified wood having particularly excellent dimensional stability. Chemically treated with a reactant that can react with the hydroxyl groups of the components, the treated wood thus obtained is swollen with a polar liquid, and at the same time impregnated with a dehydration condensation type polymerizable substance dissolved in the polar liquid. The present invention relates to a method for producing modified wood having particularly excellent dimensional stability, which comprises removing the polar solvent that has permeated the wood under mild conditions, and then heating and curing the remaining polymeric material. Wood has been used as a building material, furniture material, and for a wide range of other purposes since ancient times, but it has the disadvantage of being susceptible to rot due to infiltration by various fungi and damage from insects such as termites, as well as being susceptible to water and moisture. absorption, such as
Due to repeated dissipation, warping, cracking, twisting,
It has a decisive defect as a structural material and surface material in that it is susceptible to deformation such as expansion and contraction.
This is mainly due to the property of wood components that easily absorb moisture. As a means to improve such dimensional instability,
Methods of treating wood with an acylating agent, particularly an acetylating agent, and methods of impregnating wood with a resin and curing it are already known. However, it is difficult to say that either method is satisfactory for the reasons described below. That is, the former method attempts to alleviate the above defects by treating wood with an acylating agent to acylate the hydroxyl groups of wood components, particularly cellulose, and reduce the hydrophilicity of the wood. Under mild conditions, the hydroxyl groups in the wood components remain and sufficient acylation cannot be achieved, so there is a limit to the dimensional stability that can be obtained (in the conventional example, anti-swelling coefficient (ASE)
Maximum efficiency is around 70)). Therefore, usually
Measures have been taken to increase the acylation efficiency by amorphizing cellulose crystalline regions using strong acids, aminos, amides, etc. Such a method increases the acylation rate, but at the same time,
The effect of the amorphizing agent used has the disadvantage that the essential features of wood, such as lightness, toughness, workability, and strength, are impaired. On the other hand, the method of impregnating and curing wood with a polymeric substance is widely used in the wood industry to make WPC-reinforced wood, but as seen in these examples, even if a large amount of polymeric substance is impregnated, cell membranes cannot be damaged. Although it can be filled, it does not efficiently penetrate into the wood cell walls.
Adsorption is impossible and dimensional stability usually does not improve much (ASE = 50% or less). There is also a known attempt to provide dimensional stability by impregnating a polymeric substance that can penetrate into the wood cell wall using an appropriate solvent, but in this case too, there is a limit to the dimensional stability that can be obtained. Yes (ASE=
60 to 70% is the maximum), and furthermore, if it is amorphized to advance impregnation, it becomes brittle as described above, which is not preferable. Exceptionally, high dimensional stability comparable to that obtained here (ASE = 80% or more) can be obtained when impregnated with a non-polymerizable material such as polyethylene glycol, which is easily oxidized by water. It is a soluble substance, and its high dimensional stability is significantly reduced by leaching into water and is not permanent, which greatly limits its range of application. Furthermore, JP-A No. 58-39405 discloses a non-fading wood obtained by acetylating wood, impregnating it with polyalkylene glycol or its vinyl derivative, and drying it. Even if the resin is treated, the resin will inevitably leach out even if it is filled into wood, similar to when it is injected into untreated wood, and the water resistance will not be improved. Furthermore, in order to improve water resistance, polyalkylene glycol is modified into a vinyl derivative and filled by radical polymerization, but this resin also has a molecular structure mainly composed of ether bonds, so it Parts other than radical polymerization are easily separated by heat, making it unstable, and even if it is temporarily modified, it cannot withstand long-term use around water or outdoors. By combining the above-mentioned conventional techniques under appropriate conditions, the present inventors succeeded in obtaining modified wood that is highly durable and excellent in dimensional stability, and have completed the present invention. That is, the present invention chemically modifies the hydroxyl groups of wood components under conditions that substantially leave the crystalline regions of the wood, swells the thus obtained treated wood with a polar liquid, and simultaneously dissolves it in the polar liquid. The method involves impregnating the wood with a dehydration condensation type polymerizable substance, then volatilizing the polar solvent from the wood under mild conditions, and finally heating and curing the polymerizable substance remaining in the wood. In other words, while the hydroxyl groups of wood components in the amorphous region, which are the main cause of dimensional changes, are chemically modified to make them less likely to absorb water, this treatment also removes the hydroxyl groups of remaining wood components that could not be chemically modified in the above treatment. A dehydration condensation type polymerizable substance dissolved in a polar solution that has a high affinity for hydroxyl groups is injected, and the dehydration condensation type polymeric substance is filled into the microscopic cavities of the swollen cell walls of wood and hardened to become insolubilized. It is. As a result, the dimensional stability, which could not be obtained only by chemically modifying the hydroxyl groups of wood components, can be significantly improved by filling with a dehydration condensation type polymeric substance. In addition, since dehydration condensation type thermosetting resins harden while being dehydrated, they have a very high affinity with the OH groups in the remaining wood components, and conversely, the parts that are chemically modified during pretreatment become hydrophobic. It remains because it has been preserved
Thermosetting resin is selectively filled around the OH group, reducing excess filling in areas that have little effect on modification, improving machinability, light weight,
It does not impair the essential characteristics of wood, such as its appearance. The present invention will be explained in more detail below. There are no particular restrictions on the species or shape of the wood that can be used in the present invention, and all kinds of wood, such as thin wood boards, thick boards, chips, and fibers, can be used. These woods do not require any special pretreatment before being subjected to the treatment steps of the present invention. However, in order to facilitate chemical modification or impregnation with a polymerizable substance, soluble components may be removed in advance by boiling, steaming, or an alkaline aqueous solution or hot water. The reactant used for chemical modification of wood components may be any substance as long as it chemically reacts with the hydroxyl group of the wood component to impart hydrophobicity, but it is usually an esterifying agent (acylating agent). agent) or etherification agent. Esterifying agents include organic acid anhydrides (for example, acid anhydrides such as acetic acid, propionic acid, and butyric acid), organic acid halides (for example, in addition to the above acids, acid halides such as caproic acid, lauric acid, stearic acid, and methacrylic acid). (in particular acid chlorides), and mixtures of organic acid anhydrides and fatty acids (for example mixtures of trifluoroacetic anhydride or chloroacetic anhydride with acetic acid, propionic acid, caproic acid or lauric acid, etc.). These esterifying agents can be used alone or in combination of two or more. A catalyst for promoting the reaction with the wood component and/or a solvent for promoting the penetration of the esterifying agent into the wood cell wall may be added to the above-mentioned esterifying agent, but for the reasons mentioned above. Therefore, it is preferable to avoid using strong catalysts that would amorphize the crystalline regions of the wood. Therefore, when acetic anhydride, which is a typical esterifying agent, is used, it is preferable to use sodium acetate or potassium acetate as a catalyst and to perform the treatment under mild conditions in the presence or absence of a solvent. Examples of the etherification agent include 1,2-epoxides such as ethylene oxide and propylene oxide, alkyl halides such as methyl chloride and ethyl chloride, aromatic halides such as benzyl chloride,
Dialkyl sulfates such as dimethyl sulfate, α-halogen acids such as monochloroacetic acid, vinyl compounds activated with negative groups such as vinyl cyanide, aldehydes such as formaldehyde, and the like can be used. In the case of an etherification agent, as in the case of an esterification agent, a catalyst and a solvent can be appropriately added, but as in the case of an esterification agent, it is desirable to avoid the use of strong reagents. In addition to the above-mentioned esterifying agents and etherifying agents, isocyanates (for example, methyl isocyanate, ethyl isocyanate, etc.) can also be used as the reactant to be reacted with the hydroxyl group. In order to bring the wood into contact with the reactant described above, the wood may be immersed in the reactant, or the wood may be exposed to the vaporized reactant. Further, such a method can be carried out under reduced pressure, under increased pressure, or by a reduced pressure method to promote impregnation of the reactant into the wood. This reaction is preferably controlled such that the weight gain of the treated wood obtained by treatment with the reactants does not exceed 30%. The wood thus treated with the reactant is washed with a suitable solvent if necessary and then dried, and subjected to the next step of swelling with a polar liquid and impregnation with a dehydration condensation type polymerizable substance. This process consists of immersing the treated wood in a solution of a polymerizable substance in a suitable polar liquid, or applying or injecting this solution onto the treated wood.
This operation can be carried out under reduced pressure, increased pressure, or reduced pressure. The polar liquids used in this process to swell the treated wood include water, methanol, cellosolve (ethylene glycol monoethyl ether), ethyl alcohol, n-propyl alcohol, iso-propyl alcohol, ethylene glycol, furfuryl alcohol, phenol, Formic acid, acetic acid, propionic acid, formamide, n-butylamine, diethylamine, morpholine, piperidine, dimethylformamide, dimethylacetamide, diethylformamide, dimethylsulfoxide, acetone, methylethylketone, dioxane, methyl acetate, ethyl acetate, and the like. On the other hand, dehydration condensation type polymerizable substances must be soluble in polar liquids, have a stereochemical structure that allows them to penetrate into cell walls, and after penetrating into wood, they must be able to penetrate into wood components. It must be capable of being converted into a resinous solid by an appropriate means that has an affinity for the hydroxyl groups in the resin. Examples of such dehydration condensation type polymerizable substances include initial condensates of amino and phenol resins, initial condensates of furan resins, and furan monomers. A catalyst, a curing agent, a plasticizer, a coloring agent, and/or a flame retardant can be added as appropriate to the solution in which the polymerizable substance is dissolved in a polar solvent. The treated wood impregnated with the polymerizable substance by the above method is subjected to the next solvent removal step. This step consists of maintaining the treated wood under a heated atmosphere (room temperature to about 150° C.) or under reduced pressure to gently volatilize the solvent from the wood. Through this process, the polar liquid that permeates into the microscopic cavities of the treated wood and contributes to the swelling is removed at the same time, leaving or replacing the impregnated polymerizable substance, so that it can be maintained in a swollen state. Generally, it is desirable to remove the solvent to below the fiber saturation point.
Specifically, when the polar liquid is water, it is 50 to 80 at normal pressure.
This can be achieved by keeping methanol and acetone indoors for 2 to 5 hours at ℃, and keeping dioxane at room temperature and under reduced pressure of 30 mmHg for 3 hours. The treated wood from which the solvent has been removed is then subjected to a final heat curing treatment. This step consists of heating the wood at room temperature to 250°C, optionally under normal pressure or pressure. Through this treatment, the polymerizable substances that had permeated the vicinity of the OH groups remaining from the chemical modification treatment in the fine structure of the wood dehydrate and condense with each other.
Alternatively, it forms a graft polymer with wood components, producing a bulking effect. As long as there is no outflow of the polymerizable substance, the solvent removal step and the curing step can also be carried out in parallel by leaving at room temperature and then gradually applying heat and pressure. Through the above series of operations, modified wood with significantly improved not only dimensional stability but also desirable properties as a structural material surface material, such as water resistance, stain resistance, and rot resistance, is obtained. be able to. Example 1 A 0.6 mm thick hemlock veneer was immersed in acetic anhydride at 130°C containing 5% by weight of sodium acetate for 10 minutes, resulting in an acetylated veneer with a weight increase rate (bone dry weight ratio) of 27%. Obtained. A mixed solution of phenolic resin initial condensate:water = 30:70 was injected into this acetylated veneer under reduced pressure. After injection, the veneer was kept at 60°C for 2 hours and the solvent was removed. Next, heat and pressure curing was performed at 130° C. for 30 minutes to obtain a modified veneer (A). Test Example 1 Modified veneer (A) treated by the method of the present invention, untreated veneer
(B) and the veneers (C), (D), and (E) treated in the following manner were once completely dried, allowed to absorb water for one hour under reduced pressure (5 mmHg), and then dried under pressure (10 Kg/cm 2 ). The ASE
We compared and examined the values. The results are shown in Table 1.

【表】 表1から、本発明に係る改質単板の寸法安定性
は、従来法に相当する方法で処理した改質単板よ
りも遥かに優れていることがわかる。 さらに、アセチル化処理のみを施した単板(C)に
比べ、比重増加が0.07であり、無処理単板(B)に直
接、脱水縮合型の重合性物質を含浸硬化し、比重
が0.14増加した単板(D)に比べ、選択的に充填され
ていることがわかる。その他、この改質単板は寸
法安定性能の持続性、易加工性、耐久性および化
粧性にも優れている。
[Table] From Table 1, it can be seen that the dimensional stability of the modified veneer according to the present invention is far superior to that of the modified veneer treated by a method corresponding to the conventional method. Furthermore, compared to the veneer (C) that was only subjected to acetylation treatment, the specific gravity increased by 0.07, and when the untreated veneer (B) was directly impregnated with a dehydration condensation type polymerizable substance and hardened, the specific gravity increased by 0.14. It can be seen that the filling is selective compared to the veneer (D). In addition, this modified veneer has excellent long-lasting dimensional stability, ease of processing, durability, and cosmetic properties.

Claims (1)

【特許請求の範囲】[Claims] 1 木材中のセルロース結晶領域を実質的に残し
た条件下で木材成分の水酸基と反応し得る反応体
で木材を処理することにより該水酸基が化学的に
修飾された処理木材を得、該処理木材を極性液で
膨潤させ、同時に極性液に溶解せしめた脱水縮合
型の重合性物質を含浸させ、緩和な条件下で極性
溶媒を揮散せしめ、次いで重合性物質を加熱硬化
せしめることにより木材を膨潤状態で固定するこ
とを特徴とする改質木材を製造する方法。
1. Treating wood with a reactant capable of reacting with hydroxyl groups of wood components under conditions that substantially leave cellulose crystalline regions in the wood to obtain treated wood in which the hydroxyl groups are chemically modified; The wood is swollen by swelling it with a polar liquid, impregnating it with a dehydration condensation type polymerizable substance dissolved in the polar liquid, volatilizing the polar solvent under mild conditions, and then curing the polymerizable substance by heating. A method for producing modified wood characterized by fixing it with.
JP26897084A 1984-12-19 1984-12-19 Manufacture of improved wood Granted JPS61144304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26897084A JPS61144304A (en) 1984-12-19 1984-12-19 Manufacture of improved wood

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26897084A JPS61144304A (en) 1984-12-19 1984-12-19 Manufacture of improved wood

Publications (2)

Publication Number Publication Date
JPS61144304A JPS61144304A (en) 1986-07-02
JPH0356642B2 true JPH0356642B2 (en) 1991-08-28

Family

ID=17465834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26897084A Granted JPS61144304A (en) 1984-12-19 1984-12-19 Manufacture of improved wood

Country Status (1)

Country Link
JP (1) JPS61144304A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO318254B1 (en) * 2002-07-26 2005-02-21 Wood Polymer Technologies Asa Furan polymer-impregnated wood, process for making same and using same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5839405A (en) * 1981-09-02 1983-03-08 門馬 将信 Non-tenebrescent wood

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5839405A (en) * 1981-09-02 1983-03-08 門馬 将信 Non-tenebrescent wood

Also Published As

Publication number Publication date
JPS61144304A (en) 1986-07-02

Similar Documents

Publication Publication Date Title
DK170147B1 (en) Catalyst-Free Process for Improving Dimensional Stability and Biological Resistance of Lignocellulose Materials
KR20050049521A (en) Method for improving the durability, dimensional stability and surface hardness of a wooden body
US4592962A (en) Process for acetylating a wood material
US3985921A (en) Treatment of wood with butylene oxide
JPH0362523B2 (en)
JPH0226573B2 (en)
JPH0536202B2 (en)
JPH0356642B2 (en)
US4883719A (en) Method of surface impregnation of wood articles and wood articles made therewith
JPH056481B2 (en)
JP4551894B2 (en) Formulation for wood treatment
JPH0313041B2 (en)
US4005039A (en) Curable compositions for bulking timber comprising (a) a modified polyol containing -0-3-alkyleneamido groups and (b) an amino resin precursor containing reactive N-hydroxymethyl groups
US2811470A (en) Stabilized wood and a method for its production
US20180111286A1 (en) Process of Improving the Dimensional Stability of Wood and Dimensional Stabile Wood Thereof
JPH05138615A (en) Production of modified timber
US3284231A (en) Method and means of stabilizing cellulosic materials and the products produced thereby
JP3198471B2 (en) Method for producing modified wood
FI91503C (en) A method for softening wood, especially for shaping
KR100543652B1 (en) Dimensional stability method of wood product
JP3377845B2 (en) Manufacturing method of wood material with stabilized water resistance
JP2024506179A (en) Method for manufacturing wood polymer composites
JP2595270B2 (en) Modified wood material and method for producing the same
JP3378646B2 (en) Method for manufacturing consolidated wood
JP2934700B2 (en) Wood material processing method and wood fiberboard manufacturing method