JPH0226573B2 - - Google Patents

Info

Publication number
JPH0226573B2
JPH0226573B2 JP60046797A JP4679785A JPH0226573B2 JP H0226573 B2 JPH0226573 B2 JP H0226573B2 JP 60046797 A JP60046797 A JP 60046797A JP 4679785 A JP4679785 A JP 4679785A JP H0226573 B2 JPH0226573 B2 JP H0226573B2
Authority
JP
Japan
Prior art keywords
wood
resin
cellulose
synthetic resin
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60046797A
Other languages
Japanese (ja)
Other versions
JPS60242003A (en
Inventor
Masayuki Kakehi
Yasuro Yoshida
Kazuhiro Minami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiken Trade and Industry Co Ltd
Original Assignee
Daiken Trade and Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiken Trade and Industry Co Ltd filed Critical Daiken Trade and Industry Co Ltd
Priority to JP4679785A priority Critical patent/JPS60242003A/en
Publication of JPS60242003A publication Critical patent/JPS60242003A/en
Publication of JPH0226573B2 publication Critical patent/JPH0226573B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Chemical And Physical Treatments For Wood And The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、特に寸法安定性と耐汚染性とに優れ
た改質木材に関し、更に詳しくは、木材のミセル
間隙等のセルロースの非晶域をアセチル化処理
し、かくして得られた処理木材の該ミセル間隙等
のセルロース非晶域を含む木材空隙に疎水性合成
樹脂を充填硬化してなる、特に寸法安定性と耐汚
染性とに優れた改質木材の製造方法に関する。 木材は、古くから建築材料、家具用材料、およ
びその他の広範な用途に使用されているが、各種
菌類の侵蝕や白蟻などの虫害を受けて腐朽し易い
という欠点を有するほか、汚染しやすいうえに、
水、湿気などの吸収、放散の繰り返しによつて、
反り、割れ、ねじれ、伸縮などの変形を生じ易い
という、構造材料および表面材料としての決定的
な欠陥を有している。このことは専ら木材組織中
の微細空隙、すなわち、セルロースの非晶化率の
高い領域、特に細胞壁内のミセル間隙等の微少空
隙が、水蒸気等の侵入により押し広げられること
に起因する。 この様な汚染性および寸法不安定性を改善する
手段として、木材をアシル化剤、ウレタン化剤、
エーテル化剤、特にアセチル化剤で処理するこ
と、および木材に樹脂を含浸させて硬化させるこ
となどが既に知られている。しかしながら、いず
れの方法も、以下に述べる理由で満足し得るもの
とはいい難い。 即ち、前者は、木材をアシル化剤、ウレタン化
剤、エーテル化剤で処理することにより、木材成
分、特にセルロースの水酸基を化学修飾し、木材
をBulkingさせることにより、上記の欠陥を軽減
しようとするものであるが、緩和な条件下では木
材成分中の水酸基は残存し、十分な化学修飾を達
成することができず、従つて、通常、硫酸または
過塩素酸などを用いてセルロース結晶領域を非晶
化することにより、化学修飾効率を上げるという
手段がとられている。この様な方法により、化学
修飾率は上昇するが、同時に、使用した強酸の作
用により木材の本質的な特長である軽量性、靭
性、加工性、比強度および自然な杢目の美しさが
損なわれるという不利益が生じる。更に、汚染物
質の木材中への侵入を防ぐこともできなかつた。 一方、木材に樹脂を含浸、硬化させたものは、
多量の樹脂を含浸させた場合でも、寸法安定性と
耐汚染性とはさほど改善されない。これは、樹脂
液が木材中の大きな空隙、特に細胞内腔
(Lumen)にのみ侵入し、かつ、樹脂どうしがホ
モ重合するに過ぎないからである。即ち、樹脂が
細胞壁内のミセル間隙等の微少空隙まで侵入した
り、細胞壁内壁面に密着してこそ、寸法安定性と
耐汚染性とが大幅に改善されると期待されるので
あるが、従来のものは細胞壁と樹脂との間に隙間
があつたり、密着が悪く、水や汚染物質が容易に
侵入し、所期の目的を達成することができなかつ
た。 本発明者らは、上記の従来技術のうち、最適な
条件の2つを組み合わせ、その相互の密接な作用
により、木材の細胞壁内部のミセル間隙等の微少
空隙に容易に水性物質が侵入しない様にすること
により、寸法安定性および耐汚染性に優れた改質
木材を得ることに成功し、本発明を完成するに至
つた。 即ち、本発明は、木材薄板の細胞壁内部のミセ
ル間隙等のセルロース非晶域をアセチル化し、該
ミセル間隙を含む木材空隙中に疎水性合成樹脂を
充填硬化したものである。 本発明により得られたものは、セルロース結晶
領域を非晶化するものでないから、木材が脆弱化
することなく、かつ、セルロース水酸基のアセチ
ル化により、木材のミセル間隙等の微少空隙に疎
水性合成樹脂液を含浸させる際に障害となる障害
物を発生させることなく親和性を高めるので、木
材の細胞内腔に樹脂液が含浸するのは勿論のこ
と、ミセル間隙等の微少空隙が疎水性合成樹脂液
により押し広げられ、疎水性合成樹脂が容易に侵
入することができる。また、細胞壁内壁面への投
錨効果と疎水性合成樹脂との親和性が高められる
ので、細胞壁内や細胞壁内壁面での疎水性合成樹
脂の硬化が生じ、水や汚染物質の侵入が少なくな
り、木材の本質的な特性を損なうことなく、寸法
安定性と耐汚染性を著しく改善することができ
る。 以下に本発明をより詳細に説明する。 本発明で使用し得る木材の樹種には特に制限は
なく、かつ、本発明の処理工程に付す前に特別の
前処理を施す必要もない。しかし、アセチル化を
容易にしたり、樹脂液の含浸をより容易にするた
めに、予め煮沸、蒸煮したり、アルカリ水溶液ま
たは熱水で可溶成分を除去しておいてもよい。 木材成分中のセルロース非晶領域をアセチル化
する手段は公知の方法を用いればよい。即ち、無
水酢酸又は無水酢酸と脂肪酸の混合物(例えば、
無水クロル酢酸と酢酸の混合物)を木材成分中の
特にセルロースの非晶域の水酸基と化学的に反応
させる。 上記アセチル化剤には、木材成分との反応を促
進するための触媒および/または、アセチル化剤
の木材細胞壁内部のミセル間隙等の微少空隙への
浸透を促進するための触媒を添加してもよいが、
既述した理由で、木材の結晶領域を非晶化するよ
うな強力な触媒の使用は避けるべきである。従つ
て、代表的なアセチル化剤である無水酢酸を使用
する場合、酢酸ナトリウムまたは酢酸カリウムを
触媒として使用し、溶媒の存在下または非存在
下、緩和な条件下で処理するのが好ましい。 以上述べたアセチル化剤を木材と接触させるに
は、例えば木材を反応体中に浸漬するか、あるい
は反応体を気化せしめ、これに木材をさらせばよ
い。また、この様な方法を減圧下、加圧下あるい
は減圧加圧法により行い、木材へのアセチル化剤
の含浸を促進させることができる。この反応は、
木材の著しい強度低下や熱可塑化を防ぐためにセ
ルロースの非晶域をアセチル化することによつて
得られる処理木材の重量増加率が30%を超えない
様に、調節するのが好ましい。 この様にして反応体で処理した木材を、水また
は適当な溶媒で洗浄した後乾燥し、次の疎水性合
成樹脂の充填硬化工程に付す。 この工程は、主に疎水性の重合性モノマー単独
又は疎水性の重合性プレポリマーを主成分とした
樹脂液に処理木材を浸漬するか、あるいは処理木
材にこの樹脂液を塗布、注入することからなり、
この操作は減圧下、加圧下あるいは減圧加圧下に
行なうことができる。 この工程で使用される疎水性の重合性モノマー
としては、スチレンモノマー、メチルメタクリレ
ート、スチレンオキシド、エピクロルヒドリン、
ジビニルベンゼン、などが挙げられる。 重合性プレポリマーとしては、ビニル重合系ア
クリレート、メラミン重合型アクリルプレポリマ
ー、不飽和ポリエステルプレポリマー、アクリル
ウレタンプレポリマー、エポキシプレポリマーな
どが挙げられる。 上記の樹脂液には、適宜、反応開始剤、可塑
剤、着色剤および/または難燃剤を添加すること
ができる。 上記の方法で樹脂液を含浸させた処理木材を、
次の硬化工程に付す。この工程は、要すれば木材
を80〜250℃で加圧加熱するか又は樹脂液が飛散
しない様にラツピングし、常圧下で加熱すること
からなる。この処理により、木材中の細胞壁内部
のミセル間隙等の微少空隙にまで浸透した疎水性
の重合性モノマーや重合性プレポリマーが互いに
重合し、あるいは樹脂の種類によつては木材成分
とグラフトポリマーを形成するに至る。 以上の一連の操作によつて、寸法安定性や耐汚
染性のみならず、構造材料および表面材料として
の望ましい諸性質、例えば耐水性、耐腐巧性、強
度、硬度などが著しく改善された改質木材を得る
ことができる。 実施例 1 0.6mm厚のベイツガ薄板を、5重量%の酢酸ナ
トリウムを含有する130℃の無水酢酸中に10分間
浸漬し、重量増加率(絶乾重量比)20%のアセチ
ル化単板を得た。このアセチル化単板に、オリゴ
エステルアクリレート:メチルメタクリレート=
50:50の混合液に少量の重合開始剤(過酸化ベン
ゾイル)を添加した溶液を、減圧加圧下に注入し
た。注入後、130℃で30分間熱圧硬化させ、改質
単板Aを得た。 実施例 2 オリゴエステルアクリレートの代わりに汎用飽
和ポリエステル:スチレン=50:50を用いるほか
は実施例1と同様の操作を行ない、改質単板Bを
得た。 実施例 3 上記重合性プレポリマーのかわりにメチルメタ
クリレートを単独で使用するほかは実施例2と同
様の操作を行ない改質単板Cを得た。 試験例 1 実施例1の中間物質であるアセチル化単板を各
種溶媒に常温で24時間浸漬した時の伸び率を無処
理のものと比較した。結果を以下の表1に示す。
The present invention relates to modified wood that has particularly excellent dimensional stability and stain resistance, and more specifically, the present invention relates to modified wood that has excellent dimensional stability and stain resistance, and more specifically, the acetylation treatment of amorphous regions of cellulose such as the micellar spaces of wood, and the properties of the treated wood thus obtained. The present invention relates to a method for producing modified wood particularly excellent in dimensional stability and stain resistance, which is obtained by filling and curing a hydrophobic synthetic resin into wood voids including cellulose amorphous regions such as micellar spaces. Wood has been used for a long time as a building material, furniture material, and for a wide range of other purposes, but it has the drawbacks of being susceptible to decay due to attack by various fungi and insects such as termites, as well as being easily contaminated. To,
Through repeated absorption and dissipation of water, moisture, etc.
It has a decisive defect as a structural material and a surface material: it is susceptible to deformation such as warping, cracking, twisting, and expansion/contraction. This is due to the fact that fine voids in the wood structure, that is, areas where cellulose is highly amorphous, particularly microscopic voids such as micellar spaces within cell walls, are expanded by the intrusion of water vapor and the like. As a means to improve such staining properties and dimensional instability, wood is treated with acylating agents, urethanizing agents,
It is already known to treat wood with etherifying agents, especially acetylating agents, and to impregnate and harden wood with resins. However, it is difficult to say that either method is satisfactory for the reasons described below. That is, the former attempts to alleviate the above defects by treating wood with an acylating agent, urethanizing agent, or etherifying agent to chemically modify the hydroxyl groups of wood components, especially cellulose, and bulking the wood. However, under mild conditions, the hydroxyl groups in the wood components remain and sufficient chemical modification cannot be achieved. Measures have been taken to increase the efficiency of chemical modification by making it amorphous. Although this method increases the chemical modification rate, at the same time, the essential characteristics of wood, such as lightness, toughness, workability, specific strength, and natural beauty of the grain, are impaired by the action of the strong acid used. There will be a disadvantage of being exposed. Furthermore, it was not possible to prevent contaminants from entering the wood. On the other hand, wood is impregnated with resin and hardened.
Even when impregnated with a large amount of resin, dimensional stability and stain resistance are not significantly improved. This is because the resin liquid only enters large voids in the wood, especially into the cell lumens, and the resins simply homopolymerize with each other. In other words, it is expected that the dimensional stability and contamination resistance will be significantly improved only when the resin penetrates into minute voids such as micellar gaps in the cell wall and adheres closely to the inner wall surface of the cell wall. However, there were gaps between the cell wall and the resin, and the adhesion was poor, allowing water and contaminants to easily penetrate, making it impossible to achieve the intended purpose. The present inventors have combined two of the optimal conditions of the above-mentioned conventional techniques, and by their close interaction, we have developed a system that prevents aqueous substances from easily penetrating into minute voids such as micellar gaps within the cell walls of wood. By doing so, we succeeded in obtaining modified wood with excellent dimensional stability and stain resistance, and completed the present invention. That is, in the present invention, cellulose amorphous regions such as micellar spaces within the cell wall of a thin wood board are acetylated, and a hydrophobic synthetic resin is filled and hardened into the wood voids including the micelle spaces. Since the product obtained by the present invention does not amorphize the cellulose crystalline region, the wood does not become brittle, and by acetylating the cellulose hydroxyl groups, hydrophobic synthesis is achieved in minute voids such as micellar gaps in the wood. Since the affinity is increased without creating any obstacles during impregnation with the resin liquid, not only the resin liquid impregnates the cell lumen of the wood, but also the minute voids such as micellar gaps are hydrophobically synthesized. It is spread out by the resin liquid, allowing the hydrophobic synthetic resin to easily penetrate. In addition, because the anchoring effect on the inner wall surface of the cell wall and the affinity with the hydrophobic synthetic resin are enhanced, the hydrophobic synthetic resin hardens within the cell wall and on the inner wall surface of the cell wall, reducing the intrusion of water and pollutants. Dimensional stability and stain resistance can be significantly improved without compromising the essential properties of wood. The present invention will be explained in more detail below. There are no particular restrictions on the species of wood that can be used in the present invention, and there is no need to perform any special pretreatment before subjecting it to the treatment process of the present invention. However, in order to facilitate acetylation or impregnation with resin liquid, soluble components may be removed in advance by boiling or steaming, or with an alkaline aqueous solution or hot water. A known method may be used to acetylate the cellulose amorphous region in the wood component. That is, acetic anhydride or a mixture of acetic anhydride and fatty acids (e.g.
A mixture of chloroacetic anhydride and acetic acid) is chemically reacted with the hydroxyl groups in the wood components, particularly in the amorphous region of cellulose. A catalyst may be added to the above acetylating agent to promote the reaction with wood components and/or a catalyst to promote the penetration of the acetylating agent into minute voids such as micellar gaps within the wood cell wall. Good, but
For the reasons already mentioned, the use of strong catalysts that would amorphize the crystalline regions of the wood should be avoided. Therefore, when using acetic anhydride, a typical acetylating agent, it is preferable to use sodium acetate or potassium acetate as a catalyst and to treat under mild conditions in the presence or absence of a solvent. In order to bring the above-mentioned acetylating agent into contact with wood, for example, the wood may be immersed in the reactant, or the reactant may be vaporized and the wood may be exposed to this. Further, such a method can be carried out under reduced pressure, under increased pressure, or by a reduced pressure method to promote impregnation of the acetylating agent into the wood. This reaction is
In order to prevent significant strength reduction and thermoplasticization of the wood, it is preferable to adjust the weight increase rate of the treated wood obtained by acetylating the amorphous region of cellulose so that it does not exceed 30%. The wood thus treated with the reactant is washed with water or a suitable solvent, dried, and subjected to the next step of filling and hardening with a hydrophobic synthetic resin. This process mainly consists of immersing the treated wood in a resin solution mainly composed of a hydrophobic polymerizable monomer alone or a hydrophobic polymerizable prepolymer, or applying or injecting this resin solution onto the treated wood. Become,
This operation can be carried out under reduced pressure, increased pressure, or reduced pressure. Hydrophobic polymerizable monomers used in this step include styrene monomer, methyl methacrylate, styrene oxide, epichlorohydrin,
Examples include divinylbenzene. Examples of the polymerizable prepolymer include vinyl polymerized acrylate, melamine polymerized acrylic prepolymer, unsaturated polyester prepolymer, acrylic urethane prepolymer, and epoxy prepolymer. A reaction initiator, plasticizer, colorant and/or flame retardant may be added to the resin liquid as appropriate. Treated wood impregnated with resin liquid by the above method,
Subjected to the next curing process. This step consists of heating the wood under pressure at 80 to 250°C, if necessary, or wrapping the wood to prevent the resin liquid from scattering and heating it under normal pressure. Through this treatment, hydrophobic polymerizable monomers and polymerizable prepolymers that have penetrated into minute voids such as micelle gaps inside the cell walls of the wood polymerize with each other, or depending on the type of resin, wood components and graft polymers may form. It comes to form. Through the above series of operations, the modified material has significantly improved not only dimensional stability and stain resistance, but also desirable properties as a structural material and surface material, such as water resistance, corrosion resistance, strength, and hardness. You can get quality wood. Example 1 A 0.6 mm thick hemlock thin board was immersed in acetic anhydride at 130°C containing 5% by weight of sodium acetate for 10 minutes to obtain an acetylated veneer with a weight increase rate (absolute dry weight ratio) of 20%. Ta. On this acetylated veneer, oligoester acrylate: methyl methacrylate =
A solution prepared by adding a small amount of a polymerization initiator (benzoyl peroxide) to a 50:50 mixture was injected under reduced pressure. After injection, heat and pressure curing was performed at 130° C. for 30 minutes to obtain a modified veneer A. Example 2 Modified veneer B was obtained by carrying out the same operation as in Example 1, except that general-purpose saturated polyester:styrene=50:50 was used instead of oligoester acrylate. Example 3 A modified veneer C was obtained in the same manner as in Example 2, except that methyl methacrylate was used alone instead of the polymerizable prepolymer. Test Example 1 When the acetylated veneer, which is the intermediate material of Example 1, was immersed in various solvents at room temperature for 24 hours, the elongation rate was compared with that of the untreated one. The results are shown in Table 1 below.

【表】 浸漬後 浸漬前
*伸び率(%)= −
の長さ の長さ
[Table] After immersion Before immersion
*Elongation rate (%) = −
length length

Claims (1)

【特許請求の範囲】[Claims] 1 木材薄板を緩和な条件下でアセチル化処理す
ることにより、該木材薄板のセルロース非晶域を
アセチル化し、得られた処理木材薄板を疎水性合
成樹脂液で処理することにより該非晶域を含む木
材空〓に疎水性合成樹脂を充填し、次いで充填さ
れた樹脂を硬化せしめることを特徴とする改質木
材の製造方法。
1. By acetylating a thin wood board under mild conditions, the cellulose amorphous region of the thin wood board is acetylated, and the resulting treated thin wood board is treated with a hydrophobic synthetic resin liquid to contain the amorphous region. A method for producing modified wood, which comprises filling a wood cavity with a hydrophobic synthetic resin and then curing the filled resin.
JP4679785A 1985-03-09 1985-03-09 Improved wood Granted JPS60242003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4679785A JPS60242003A (en) 1985-03-09 1985-03-09 Improved wood

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4679785A JPS60242003A (en) 1985-03-09 1985-03-09 Improved wood

Publications (2)

Publication Number Publication Date
JPS60242003A JPS60242003A (en) 1985-12-02
JPH0226573B2 true JPH0226573B2 (en) 1990-06-11

Family

ID=12757321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4679785A Granted JPS60242003A (en) 1985-03-09 1985-03-09 Improved wood

Country Status (1)

Country Link
JP (1) JPS60242003A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62236702A (en) * 1986-04-07 1987-10-16 大建工業株式会社 Manufacture of woody decorative board
JPS63214402A (en) * 1987-03-02 1988-09-07 エヌテイ日東産業株式会社 Resin-treated wood
JPH02155604A (en) * 1988-12-07 1990-06-14 Sanyo Kokusaku Pulp Co Ltd Preparation of modified wood
GB2271570A (en) * 1992-10-15 1994-04-20 David George Rogers Treating lignocellusosic material with acetic anhydride
GB0901910D0 (en) * 2009-02-06 2009-03-11 Kurawood Plc Chemical modification of lignocellulosic material
CN107000243B (en) * 2014-07-16 2019-11-08 特里科亚科技有限公司 Make the method for wood acetylation
FR3067275B1 (en) 2017-06-07 2022-08-12 Timothee Boitouzet PROCESS FOR PARTIAL DELIGNIFICATION BY SUPERCRITICAL OR SUBCRITICAL ROUTE AND FILLING OF A LIGNO-CELLULOSIC MATERIAL
FR3077895B1 (en) 2018-02-09 2020-02-28 Sas Woodoo TACTILE DETECTION DEVICE WITH TACTILE INTERFACE IN COMPOSITE MATERIAL

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WOOD SCIENCE=1981 *

Also Published As

Publication number Publication date
JPS60242003A (en) 1985-12-02

Similar Documents

Publication Publication Date Title
DE60104891T2 (en) FURANPOLYMER-IMPREGNATED WOOD, METHOD OF PREPARING THEREOF AND USES THEREOF
JPH0226573B2 (en)
JPS59209103A (en) Method of improving woody material
JP4551894B2 (en) Formulation for wood treatment
JPH0536202B2 (en)
JPH0313041B2 (en)
JPH0356642B2 (en)
JPH04259506A (en) Manufacture of modified wood
JPH0584201B2 (en)
JPS5825904A (en) Method of improving woody material
JP3198471B2 (en) Method for producing modified wood
JPS61290001A (en) Method of improving wood
KR100543652B1 (en) Dimensional stability method of wood product
JPH02206613A (en) Quick-curing oil
JPH05138615A (en) Production of modified timber
JP2935378B2 (en) Synthetic resin-injected wood material and method for producing the same
JPH04259505A (en) Manufacture of modified wood
IL31122A (en) Method for refining wood or wood products by means of chemical treatment of the wood or the wood surface in such a way that a penetration of quality-improving agents into the wood is facilitated
JPH05318416A (en) Production of modified lumber
JPH0482707A (en) Production of modified wood
JP3377845B2 (en) Manufacturing method of wood material with stabilized water resistance
JPH0311245B2 (en)
JPH0482708A (en) Production of modified wood
JPH0929710A (en) Pretreating method for timber and manufacture of modified timber using the same
JPH0482703A (en) Production of modified wood

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term