JPH0356199A - Improving method for water quality - Google Patents
Improving method for water qualityInfo
- Publication number
- JPH0356199A JPH0356199A JP1190108A JP19010889A JPH0356199A JP H0356199 A JPH0356199 A JP H0356199A JP 1190108 A JP1190108 A JP 1190108A JP 19010889 A JP19010889 A JP 19010889A JP H0356199 A JPH0356199 A JP H0356199A
- Authority
- JP
- Japan
- Prior art keywords
- water
- water quality
- underwater
- blower
- air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 102
- 238000000034 method Methods 0.000 title claims description 19
- 238000010248 power generation Methods 0.000 claims abstract description 7
- 238000005273 aeration Methods 0.000 claims description 13
- 238000009423 ventilation Methods 0.000 claims description 3
- 238000000354 decomposition reaction Methods 0.000 abstract description 3
- 239000000126 substance Substances 0.000 abstract description 2
- 238000010276 construction Methods 0.000 abstract 5
- 206010021143 Hypoxia Diseases 0.000 abstract 1
- 238000010348 incorporation Methods 0.000 abstract 1
- 230000002265 prevention Effects 0.000 abstract 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 12
- 230000000694 effects Effects 0.000 description 12
- 229910052760 oxygen Inorganic materials 0.000 description 12
- 239000001301 oxygen Substances 0.000 description 12
- 238000010586 diagram Methods 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 238000009360 aquaculture Methods 0.000 description 2
- 244000144974 aquaculture Species 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 241001474374 Blennius Species 0.000 description 1
- 241000238413 Octopus Species 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000006213 oxygenation reaction Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/80—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
- Y02A40/81—Aquaculture, e.g. of fish
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P60/00—Technologies relating to agriculture, livestock or agroalimentary industries
- Y02P60/60—Fishing; Aquaculture; Aquafarming
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Farming Of Fish And Shellfish (AREA)
- Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明は赤潮現象や青潮現象の発生し易い湖沼や海域や
、水質改善を必要とする各種の養殖施設における水質改
善に適用できる、水質の改善方法に関する。[Detailed Description of the Invention] <Industrial Application Field> The present invention can be applied to water quality improvement in lakes and sea areas where red tide phenomena and blue tide phenomena are likely to occur, and in various aquaculture facilities that require water quality improvement. Regarding improvement methods.
〈従来の技術〉
一般に赤潮現象はプランクトンの異常増殖により発生し
、又、青潮現象は停滞水域の水面近くに明確な水温躍層
が形威されて水の鉛直混合がなくなると、低層に無(貧
〉酸素氷塊が発達し、この氷塊が湧昇することで発生す
ることが知られている。<Prior art> In general, red tide phenomenon occurs due to abnormal proliferation of plankton, and green tide phenomenon occurs when a clear thermocline forms near the water surface of a stagnant water area and vertical mixing of water disappears, resulting in no water at low levels. (Poor) Oxygen is known to occur when an ice mass develops and this ice mass upwells.
赤潮現象又は青潮現象が発生すると、水中生息物の酸欠
による死滅等その生態系に大きな害を及ぼす。When a red tide phenomenon or a blue tide phenomenon occurs, it causes great harm to the ecosystem, such as the death of underwater organisms due to lack of oxygen.
現在、水質を改善する方法として次の二つの方法が知ら
れている。Currently, the following two methods are known as methods for improving water quality.
(1)水中に空気を強制的に送って、溶存酸素量を増や
して水質を改善する曝気方法。(1) An aeration method that forcibly sends air into the water to increase the amount of dissolved oxygen and improve water quality.
(2)生息施設を水中に設置し、水中生息物の食物連鎖
を利用して水質改善を計る方法。(2) A method of installing habitat facilities underwater and using the food chain of aquatic organisms to improve water quality.
〈本発明が解決しようとする問題点〉
前記した従来の水質改善方法には次のような問題点があ
る。<Problems to be Solved by the Present Invention> The conventional water quality improvement methods described above have the following problems.
〈イ〉 曝気方法にあっては、陸上の酸素供給設備が大
型化して配線費や設備費が高いことや、曝気設備を連続
稼働するために陸上の電力を利用することから、維持費
が莫大なものとなる。<B> Regarding the aeration method, maintenance costs are enormous due to the large size of onshore oxygen supply equipment and high wiring and equipment costs, and the use of onshore electricity to continuously operate the aeration equipment. Become something.
又、設備が固定式であるから、特定の限定水域に対応で
きるが、任意の水域や広域の水質改善には不向きである
。Furthermore, since the equipment is fixed, it can be applied to specific limited water areas, but it is not suitable for improving water quality in arbitrary water areas or wide areas.
〈口〉 水中生息物の食物連鎖を利用した改善方法は、
水中生息物が大量に付着して過密化すると、水中生息物
の死滅や大量の排せつ物が原因となって食物連鎖の関係
が崩れてしまい、水質改善効果がほとんど期待できない
。<Mouth> The improvement method using the food chain of aquatic organisms is
When a large amount of aquatic organisms adheres to an area and the area becomes overcrowded, the relationship in the food chain is disrupted due to the death of the aquatic organisms and large amounts of excrement, so that little improvement in water quality can be expected.
又、正常な食物連鎖が成されるための良好な環境(好気
的環境)を長期間に亘り維持管理することが困難である
。Furthermore, it is difficult to maintain and manage a good environment (aerobic environment) for a normal food chain over a long period of time.
さらに、水質改善効果がみられるまでに長期間を要し、
即効性に乏しい。Furthermore, it takes a long time before water quality improvement effects are seen.
Lack of immediate effect.
さらに又、赤潮や青潮現象が発生した水域は、水中生息
物が生息し難い環境(嫌気的環境)となるから、このよ
うな現象が発生する時期になると水質改善効果が著しく
低下する問題もある。Furthermore, the water area where red tide or blue tide phenomena occur becomes an environment in which it is difficult for aquatic organisms to live (anaerobic environment), so there is the problem that the water quality improvement effect decreases significantly during the period when such phenomena occur. be.
〈本発明の目的〉
本発明は以上の問題点を解決するために成されたもので
、次の水質の改善方法を提供することを目的とする。<Objective of the present invention> The present invention was made to solve the above-mentioned problems, and an object of the present invention is to provide the following method for improving water quality.
〈イ〉 赤潮や青潮現象等の突発的な水質悪化の解消に
有効に機能する水質の改善方法。<A> Water quality improvement method that is effective in resolving sudden water quality deterioration such as red tide and blue tide phenomena.
〈口〉 任意の水域や広域であっても対応できる、水質
の改善方法。<Mouth> A water quality improvement method that can be applied to any water body or wide area.
〈ハ〉 短期間で、しかも経済的に水質改善を行える、
水質の改善方法。<C> Water quality can be improved in a short period of time and economically.
How to improve water quality.
〈二〉 水質が最も悪化し易い夏期に水質改善効率が向
上する、水質の改善方法。<2> A water quality improvement method that improves water quality improvement efficiency during the summer when water quality is most likely to deteriorate.
〈ホ〉 水質改善機能を長期間持続できる、水質の改善
方法。<E> A water quality improvement method that can maintain the water quality improvement function for a long period of time.
水質の改善方法を提供することにある。The purpose is to provide a method for improving water quality.
〈問題点を解決するための手段〉
すなわち、本発明は、水中に水中生息物の生息施設であ
る多孔質性の水中構造物を設けると共に、水中構造物内
に通気性を有する散気管を配置し、水上側には散気管に
送気するブロワーと、ブロワー稼働電源用のソーラー発
電設備とを配備し、水中構造物内で連続して曝気させて
水質を改善する、水質の改善方法に関する。<Means for Solving the Problems> That is, the present invention provides a porous underwater structure that is a habitat for underwater creatures, and also arranges an air diffuser pipe with air permeability inside the underwater structure. The present invention also relates to a method for improving water quality, in which a blower for supplying air to an aeration pipe and solar power generation equipment for powering the blower are installed on the water side, and the water quality is improved by continuous aeration within an underwater structure.
〈本発明の構成〉 以下、本発明について説明する。<Configuration of the present invention> The present invention will be explained below.
〈イ〉水質改善のための基本設備 第1図に水質の改善方法のシステム概念図を示す。<B> Basic equipment for improving water quality Figure 1 shows a conceptual diagram of the system for improving water quality.
本発明では通気性を有する散気管10と、散気管10に
送気するためのブロワー20と、ブロワー20に給電手
段であるソーラーパネル30とを使用する。In the present invention, an air diffuser 10 having ventilation properties, a blower 20 for supplying air to the air diffuser 10, and a solar panel 30 serving as a power supply means for the blower 20 are used.
散気管10は水中で空気を放出する有孔管で、任意の位
置に移動して使用する。The air diffuser 10 is a perforated pipe that releases air underwater, and can be moved to any position for use.
送気ホース40は散気管10と水上のブロワー20の間
に接続される。The air supply hose 40 is connected between the air diffuser pipe 10 and the above-water blower 20.
本発明ではソーラーパネル30で太陽の放射エネルギー
を電気的エネルギーに変え、この電気的エネルギーによ
りブロワー20を駆動する。In the present invention, the solar panel 30 converts solar radiant energy into electrical energy, and the blower 20 is driven by this electrical energy.
ブロワー20の駆動はA/Dコンバータ50を介して行
ってもよい。The blower 20 may be driven via the A/D converter 50.
従って、従来の曝気方法のように陸上側の電源を利用し
ないでよい。Therefore, unlike conventional aeration methods, there is no need to use a land-side power source.
又、夜間にブロワー20を稼働する必要がある場合は、
バッテリー等の蓄電設備60を設けておくとよい。Also, if it is necessary to operate the blower 20 at night,
It is preferable to provide power storage equipment 60 such as a battery.
さらに又、ブロワー20に温度センサー70や溶存酸素
量計測センサー71を組み合わせて、水温や溶存酸素量
が設定値に達したときにブロワー20が自動運転するよ
うに構成してもよい。Furthermore, the blower 20 may be configured to be combined with a temperature sensor 70 and a dissolved oxygen amount measurement sensor 71 so that the blower 20 automatically operates when the water temperature or dissolved oxygen amount reaches a set value.
ブロワー20を自動運転させるためには、例えば赤潮や
青潮現象の兆候が現れるときの水温や溶存酸素量のデー
タを予め設定しておく必要がある。In order to automatically operate the blower 20, it is necessary to set in advance data on the water temperature and dissolved oxygen amount when, for example, signs of red tide or blue tide appear.
このようにすれば、赤潮や青潮現象の兆候がみられれば
自動的にブロワー20が稼働して、水質悪化を未然に防
止できる。In this way, if any signs of red tide or blue tide are observed, the blower 20 will automatically operate to prevent water quality from deteriorating.
又、散気管10から放出されて浮上する気泡が上昇水流
を形威する。Further, the air bubbles released from the air diffuser 10 and floating form an upward water flow.
この上昇水流は、水質悪化要因の一つとされている水面
近くに起きる所謂「水温躍層」を解消することに役立つ
。This rising water flow helps eliminate the so-called "thermocline" that occurs near the water surface, which is considered to be one of the causes of water quality deterioration.
〈口〉水中構造物との組み合わせ
第2図に散気管10と多数の多孔質ブロック体で構成し
た多孔質性の水中構造物80を組み合わせた設置例を示
す。<Exposure> Combination with underwater structure FIG. 2 shows an installation example in which a diffuser pipe 10 is combined with a porous underwater structure 80 composed of a large number of porous blocks.
水中構造物80を単独で停滞水域で用いた場合は、汚染
水域特有の水中生物が過剰に付着して溶存酸素量を低下
させたり腐敗物が堆積して、水中構造物80の周辺部一
帯が嫌気的環境となることが予想される。If the underwater structure 80 is used alone in a stagnant water area, the area around the underwater structure 80 may be damaged due to excessive attachment of aquatic organisms peculiar to contaminated water areas, lowering the amount of dissolved oxygen, and accumulation of rotten matter. An anaerobic environment is expected.
そこで、水中構造物80内に可撓性を有し耐圧性に富む
散気管10を設置すれば、散気管10から放出された空
気が多孔質性の水中構造物80の間隙を通り、水中構造
物80の周辺部一帯を好気的環境にする。Therefore, if the flexible and pressure-resistant air diffuser 10 is installed inside the underwater structure 80, the air released from the air diffuser 10 will pass through the gaps in the porous underwater structure 80, and the underwater structure The entire area around object 80 is made into an aerobic environment.
従って、停滞水域であっても水中に放出された気泡が水
底に堆積した排せつ物等の有機物の分解を促進したり、
水中構造物8oに付着した水中生物の活性を高め、生物
による有機物の取り込み速度を促進したりするため、良
好な水質環境が形成される。Therefore, even in stagnant waters, the air bubbles released into the water promote the decomposition of organic matter such as excrement deposited on the bottom of the water.
Since the activity of the underwater organisms attached to the underwater structure 8o is increased and the rate of uptake of organic matter by the organisms is accelerated, a good water quality environment is formed.
水中構造物80の周辺の水質環境が良好であれば水中生
息物の蛸集効果も必然的に促進される。If the water quality environment around the underwater structure 80 is good, the effect of attracting octopus from underwater creatures will also be promoted.
このように、散気管10と水中構造物80とを組み合わ
せると、水中生息物の食物連鎖による水質改善効果と、
曝気による水質改善効果が相乗的に発揮される。In this way, when the aeration pipe 10 and the underwater structure 80 are combined, the effect of improving water quality through the food chain of aquatic organisms,
The water quality improvement effect of aeration is synergistic.
〈実施例1〉 第3図に本発明の一実施例を示す。<Example 1> FIG. 3 shows an embodiment of the present invention.
本実施例は陸上側にソーラーパネル30を設置したもの
である。In this embodiment, a solar panel 30 is installed on the land side.
陸上側のブロワー20と、水中構造物80内に設置した
複数の散気管10の間を送気ホース40で接続してある
。A blower 20 on the land side and a plurality of air diffuser pipes 10 installed in an underwater structure 80 are connected by an air supply hose 40.
本実施例は送電線がまったくなく陸地に比較的近い水域
の水質改善に好適である。This embodiment is suitable for improving water quality in water areas that are relatively close to land and have no power transmission lines.
本実施例のソーラーパネル30を屋根材として構成する
ことにより、休息施設としても利用できる。By configuring the solar panel 30 of this embodiment as a roof material, it can also be used as a rest facility.
〈実施例2〉
第4図に水上に水質改善施設の一部を浮揚させた場合の
実施例を示す。<Example 2> Fig. 4 shows an example in which a part of the water quality improvement facility is floated on water.
90は浮体構造物で、水面上に露出する最上部にソーラ
ーパネル30と灯標91とを有し、任意の位置に投下し
た重量物のシンカー92に係留される。A floating structure 90 has a solar panel 30 and a light beacon 91 on the top exposed above the water surface, and is moored to a heavy sinker 92 dropped at an arbitrary position.
浮体構造物90は内部に図示しないブロワーを収容して
いる。The floating structure 90 accommodates a blower (not shown) inside.
送気ホース40はブロワーと散気管の間を接続している
。The air supply hose 40 connects between the blower and the air diffuser pipe.
本実施例によれば、陸地から遠く離れた水域であっても
陸上に電源を求めずにブロワーの電源を確保できる。According to this embodiment, even in a body of water far away from land, a power source for the blower can be secured without requiring a power source on land.
〈実施例3〉 第5図に電力の有効利用を図るための実施例を示す。<Example 3> FIG. 5 shows an embodiment for effective use of electric power.
浮体構造物90内にブロワー20を内蔵することは前記
実施例と同様であるが、本実施例は浮体構造物90内に
水槽93と送水ポンプ94を備えている点で前記した実
施例2と相違する。The fact that the blower 20 is built into the floating structure 90 is similar to the embodiment described above, but this embodiment is different from the embodiment 2 described above in that the floating structure 90 includes a water tank 93 and a water pump 94. differ.
本実施例は、ブロワー20から空気を送って水槽93内
の水を溶存酸素量の多いものにし、この富酸素状態にな
った水槽93内の水を送水ボンブ94と送水ホース95
を介して水底の水中構造物80内に放水する方式である
。In this embodiment, air is sent from the blower 20 to make the water in the water tank 93 rich in dissolved oxygen, and the oxygen-rich water in the water tank 93 is transferred to the water bomb 94 and the water hose 95.
This is a system in which water is discharged into the underwater structure 80 at the bottom of the water through the water.
本実施例では、ブロヮー20及び送水ポンブ94の電源
をソーラーパネル30に求めることになる。In this embodiment, the blower 20 and the water pump 94 are powered by the solar panel 30.
本実施例では次の理由により、先の水中で曝気させる場
合と比べて消費電力が少なくて済む。In this example, power consumption is lower than in the case of aeration in water for the following reason.
即ち、水槽93内の水深が数十cm程度であるため、水
底で曝気させる場合に比べ小能力のブロワ−20でよい
。That is, since the water depth in the water tank 93 is approximately several tens of centimeters, the blower 20 may have a smaller capacity than when aeration is carried out at the bottom of the water.
ブロワー20の小能力化により、消費電力の低減と、ソ
ーラパネル30の小型化が可能となる。By reducing the capacity of the blower 20, it is possible to reduce power consumption and downsize the solar panel 30.
さらに送水に関しては配管抵抗のみで済むから、送水ボ
ンブ94の消費電力が少なくてよい。Furthermore, since water supply requires only piping resistance, the power consumption of the water bomb 94 can be reduced.
尚、富酸素状態になった水槽93内の水は、送水ホース
95で直接水中構造物80内に放水するか、或は散気管
を接続して散気管10から放水してもよい。The oxygen-rich water in the water tank 93 may be directly discharged into the underwater structure 80 using the water supply hose 95, or may be discharged from the aeration pipe 10 by connecting an aeration pipe.
又、水槽93内の水は浮体構造物90外から取り入れて
補給される。Further, water in the water tank 93 is taken in from outside the floating structure 90 and replenished.
〈実施例4〉
第1図に示す散気管10を水底に任意の形に設置すれば
、散気管10の全長に亘り気泡によるエアーカーテンが
形威されるため、これを養殖イケスとして利用すること
もできる。<Example 4> If the air diffuser 10 shown in Fig. 1 is installed on the bottom of the water in an arbitrary shape, an air curtain of air bubbles will be formed over the entire length of the air diffuser 10, and this can be used as a cultivation cage. You can also do it.
本実施例の場合、昼夜連続して空気を供給するために、
蓄電設備60を併用する必要がある。In the case of this example, in order to supply air continuously day and night,
It is necessary to use the power storage equipment 60 together.
〈本発明の効果〉 本発明によれば次の効果を得ることができる。<Effects of the present invention> According to the present invention, the following effects can be obtained.
〈イ〉 水中生息物の生息施設である水中構造物内で曝
気することにより、水中構造物内外の溶存酸素量の低下
を阻止できると同時に、腐敗物の分解を促進できる。<B> By aerating inside underwater structures that are habitats for underwater creatures, it is possible to prevent a decrease in the amount of dissolved oxygen inside and outside the underwater structures, and at the same time, it is possible to promote the decomposition of putrefying substances.
特に、水質悪化が進行する夏季において、悪化した水域
であれば多大の水質改善効果を発揮し、良好な水域であ
れば水質の悪化を未然に防止できる。Particularly in the summer when water quality continues to deteriorate, a water area that has deteriorated will have a great water quality improvement effect, and a water area that is in good condition can prevent the deterioration of water quality.
〈口〉水中構造物の周辺部一帯の好気的環境を持続する
ことができる。<Mouth> It is possible to maintain an aerobic environment around the underwater structure.
そのため、水中生息物の活性を高め、水質の改善効果が
促進される。Therefore, the activity of aquatic organisms is increased, and the effect of improving water quality is promoted.
特に、浮上する気泡が垂直方向の水流を形戒して水温躍
層を解消すると共に、低層の貧(無)酸素氷塊の形戒を
防止するために、青潮現象の防止対策として有効に機能
する。In particular, the floating bubbles prevent the vertical water flow, eliminating the thermocline, and also prevent the formation of oxygen-poor (non-)ice ice blocks at low levels, making it effective as a preventive measure against the blue tide phenomenon. do.
〈ハ〉 発電施設やブロワー等を浮体構造物に組み込む
ことで、任意の水域に移動して水質改善を行える。<C> By incorporating power generation facilities, blowers, etc. into floating structures, they can be moved to any water body and improve water quality.
〈二〉 太陽の放射エネルギーを利用して発電するため
、ランニングコストがかからない。(2) Since it uses the sun's radiant energy to generate electricity, there are no running costs.
しかも、送電が不可能な沖合であっても水質の改善が行
える。Moreover, water quality can be improved even in offshore areas where power transmission is impossible.
〈ホ〉 蓄電設備を併用すると空気の連続放出が可能と
なり、養殖イケスや、深夜に呼吸する藻場等多目的に利
用できる。<E> When used in conjunction with electricity storage equipment, it becomes possible to continuously release air, which can be used for multiple purposes such as aquaculture, seaweed beds that breathe late at night, etc.
第1図二本発明の水質改善方法のシステム概念図第2図
:水中構造物と散気管を組み合わせた説明第3図:
第4図:
第5図;
発電設備やブロワーを陸上に配備した実施例1の説明図
発電設備やブロワーを水上の浮体構造物に組み込んだ実
施例2の説明図
冨酸素状態の水を水中に送水して水質改善を図る実施例
3の説明図Figure 1 2 Conceptual diagram of the system of the water quality improvement method of the present invention Figure 2: Explanation of a combination of underwater structures and air diffusers Figure 3: Figure 4: Figure 5; Implementation with power generation equipment and blowers deployed on land An explanatory diagram of Example 1. An explanatory diagram of Example 2, in which power generation equipment and a blower are incorporated into a floating structure on the water.
Claims (1)
中構造物を設けると共に、 水中構造物内に通気性を有する散気管を配置し、 水上側には散気管に送気するブロワーと、 ブロワー稼働電源用のソーラー発電設備とを配備し、 水中構造物内で連続して曝気させて水質を改善する、 水質の改善方法。(1) In addition to installing a porous underwater structure that is a habitat for aquatic creatures underwater, a ventilation pipe with ventilation is placed inside the underwater structure, and a blower is installed above the water to supply air to the aeration pipe. A water quality improvement method that involves deploying solar power generation equipment to power the blower, and continuously aerating inside an underwater structure to improve water quality.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19010889A JP2782360B2 (en) | 1989-07-21 | 1989-07-21 | How to improve water quality |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19010889A JP2782360B2 (en) | 1989-07-21 | 1989-07-21 | How to improve water quality |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0356199A true JPH0356199A (en) | 1991-03-11 |
JP2782360B2 JP2782360B2 (en) | 1998-07-30 |
Family
ID=16252511
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19010889A Expired - Fee Related JP2782360B2 (en) | 1989-07-21 | 1989-07-21 | How to improve water quality |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2782360B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07125688A (en) * | 1993-10-29 | 1995-05-16 | Kajima Corp | Bubble generating device and its installation method |
JPH07251197A (en) * | 1994-03-16 | 1995-10-03 | Pub Works Res Inst Ministry Of Constr | Method for preventing propagation of suspended algae of inlet water basin |
JPH08312599A (en) * | 1995-05-11 | 1996-11-26 | Mitsubishi Heavy Ind Ltd | Drive controller of water flow generator |
JP2003155971A (en) * | 2001-11-19 | 2003-05-30 | Hokuriku Regional Development Bureau Ministry Land Infrastructure & Transport | Flowing water and pneumatic energy system |
JP2004330066A (en) * | 2003-05-07 | 2004-11-25 | Mie Prefecture | Water cleaning block and method for manufacturing the same, and water cleaning equipment using the water cleaning block |
JP2006141299A (en) * | 2004-11-19 | 2006-06-08 | Jfe Steel Kk | Method for modifying or constructing adhesion base of seaweed |
US7534350B2 (en) * | 2004-10-15 | 2009-05-19 | Pol Emanuilovich Blank | Liquid medium treatment method and device |
CN104094891A (en) * | 2014-07-03 | 2014-10-15 | 广州市金洋水产养殖有限公司 | Solar temperature-control aquaculture workshop |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51117356U (en) * | 1975-03-18 | 1976-09-22 | ||
JPS5442845A (en) * | 1977-09-12 | 1979-04-05 | Sanwa Setsubi Kogyo Kk | Gas spraying device for purifying water |
JPS59166657U (en) * | 1983-04-25 | 1984-11-08 | 城間 勉子 | air stone |
-
1989
- 1989-07-21 JP JP19010889A patent/JP2782360B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51117356U (en) * | 1975-03-18 | 1976-09-22 | ||
JPS5442845A (en) * | 1977-09-12 | 1979-04-05 | Sanwa Setsubi Kogyo Kk | Gas spraying device for purifying water |
JPS59166657U (en) * | 1983-04-25 | 1984-11-08 | 城間 勉子 | air stone |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07125688A (en) * | 1993-10-29 | 1995-05-16 | Kajima Corp | Bubble generating device and its installation method |
JPH07251197A (en) * | 1994-03-16 | 1995-10-03 | Pub Works Res Inst Ministry Of Constr | Method for preventing propagation of suspended algae of inlet water basin |
JPH08312599A (en) * | 1995-05-11 | 1996-11-26 | Mitsubishi Heavy Ind Ltd | Drive controller of water flow generator |
JP2003155971A (en) * | 2001-11-19 | 2003-05-30 | Hokuriku Regional Development Bureau Ministry Land Infrastructure & Transport | Flowing water and pneumatic energy system |
JP2004330066A (en) * | 2003-05-07 | 2004-11-25 | Mie Prefecture | Water cleaning block and method for manufacturing the same, and water cleaning equipment using the water cleaning block |
US7534350B2 (en) * | 2004-10-15 | 2009-05-19 | Pol Emanuilovich Blank | Liquid medium treatment method and device |
JP2006141299A (en) * | 2004-11-19 | 2006-06-08 | Jfe Steel Kk | Method for modifying or constructing adhesion base of seaweed |
CN104094891A (en) * | 2014-07-03 | 2014-10-15 | 广州市金洋水产养殖有限公司 | Solar temperature-control aquaculture workshop |
Also Published As
Publication number | Publication date |
---|---|
JP2782360B2 (en) | 1998-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9181105B2 (en) | Floating treatment streambed | |
US6231268B1 (en) | Apparatus and method for treatment of large water bodies by directed circulation | |
US5095851A (en) | Method and apparatus for mariculture utilizing converted hopper barges or the like | |
EP0146518A2 (en) | Fish breeding plant comprising at least one tank submergible to the desired depth and having an air chamber | |
EP2028160A2 (en) | Modular floating helophyt filter | |
JP3484079B2 (en) | Clean water system and its structure | |
JPH0356199A (en) | Improving method for water quality | |
KR100593405B1 (en) | Sub-type Water Purification System | |
KR101393721B1 (en) | Water purification device that is concealed by water plant island | |
KR100825917B1 (en) | A park on the water for leisure and ecology experience | |
JP2000342092A (en) | Aquatic plant culture mount | |
JPH07284355A (en) | Sea water-filtering device for fish culture preserve | |
JPS62204898A (en) | Aeration apparatus | |
CN214495871U (en) | Solar energy intelligence aeration water purification biological structure | |
JP2002010722A (en) | Method for culturing pearl and system therefor | |
Ashley et al. | Lake aeration in British Columbia: Applications and experiences | |
JPH07274767A (en) | Fish preserve for culture | |
JP2008220204A (en) | Culture equipment for fishery product on water and method for culturing fishery product on water | |
CN210855460U (en) | Multi-efficiency water body restoration device | |
NO20170445A1 (en) | Device by cage | |
JP2883771B2 (en) | Purification equipment for lakes and marshes | |
JP2003010887A (en) | Disinfected oxygen-rich water discharging/diffusing apparatus for disinfecting oxygen-rich water produced by mixing surface water, bottom water and oxygen in atmosphere on water area and land and discharging/ diffusing it to underwater | |
JP2001292659A (en) | Floating structure and culturing apparatus using the floating structure | |
KR100374747B1 (en) | an artificial water grass of lope type for bringing up a bio resources rearing and that is used to purify method of the quality of water | |
KR100374749B1 (en) | an artificial water grass of belt type for bringing up a bio resources rearing and that is used to purify method of the quality of water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090522 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |