JPH0356141A - Reactivation of catalyst - Google Patents

Reactivation of catalyst

Info

Publication number
JPH0356141A
JPH0356141A JP1190470A JP19047089A JPH0356141A JP H0356141 A JPH0356141 A JP H0356141A JP 1190470 A JP1190470 A JP 1190470A JP 19047089 A JP19047089 A JP 19047089A JP H0356141 A JPH0356141 A JP H0356141A
Authority
JP
Japan
Prior art keywords
catalyst
phosphoric acid
phosphorus
reaction
phosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1190470A
Other languages
Japanese (ja)
Inventor
Tadashi Komiyama
小味山 忠志
Hisaharu Kuboyama
久春 久保山
Takashi Jinbo
神保 隆志
Takayoshi Watabe
渡部 恭吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP1190470A priority Critical patent/JPH0356141A/en
Priority to US07/551,086 priority patent/US5082972A/en
Priority to CA002020993A priority patent/CA2020993A1/en
Priority to EP90113520A priority patent/EP0409116B1/en
Priority to DE69012906T priority patent/DE69012906T2/en
Publication of JPH0356141A publication Critical patent/JPH0356141A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To reactivate a catalyst and to extend the life thereof by adding a phosphorus-containing substance to a used catalyst and replenishing an eluted phosphoric acid component. CONSTITUTION:A phosphorus-containing substance such as phosphoric acid or phosphoric ester is dissolved or suspended in a solvent such as water, methyl alcohol or ethyl alcohol and a catalyst lowered in its function during use and containing phosphoric acid or a condensate thereof is immersed in the resulting solution or suspension and drained to be dried. This reactivation can be carried out without taking out the catalyst from a reactor in a case using a fixed bed system. In the case of a batchwise system, the phosphorus-containing substance is also added other than the catalyst in reacting ammonia or ethylenediamine with monoethanolamine to reactivate the catalyst.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、アンモニアもしくはエチレンジア果ンとモノ
エタノールアξンとを反応させて、エチレンジアミン、
ジエチレントリアミン、トリエチレンテトラミン等の非
環状のエチレンアミン類を製造する際に使用した触媒の
再活性化法に関するものである. 〔従来の技術〕 エチレンアミン類の製造方法として、リン含有物質の存
在下でアンモニアもしくはエチレンジアミンとモノエタ
ノールとを反応させる方法が知られている (例えば特
開昭61−183249 、特開昭51−147600
), 〔発明が解決しようとする課題〕 しかしながら、前記した触媒(リン含有物質)は寿命が
短いという欠点があった.本発明の課題は、前記した触
媒の寿命を長くする方法を提供することにある. (課題を解決するための手段〕 本発明者らは、前記の問題点を解決するために使用ずみ
触媒の解析を行い、寿命が短い原因は触媒からのリン酸
分の溶出であることを見い出し、使用ずみ触媒の再活性
化方法を検討し、本発明を完威させるに至った. すなわち、本発明は、 アンモニアもしくはエチレンジアミンとモノエタノール
アξンをリン酸もしくはその縮合吻を含有する触媒の存
在下で反応させて非環状のエチレンアミン類を製造する
に際し、該触媒にリン含有物質を添加して触媒を再活性
化することを特徴とする触媒の再活性化法である。
Detailed Description of the Invention [Industrial Application Field] The present invention is directed to reacting ammonia or ethylene diamine with monoethanolamine to produce ethylene diamine,
This paper relates to a method for reactivating catalysts used in the production of acyclic ethyleneamines such as diethylenetriamine and triethylenetetramine. [Prior Art] As a method for producing ethyleneamines, a method is known in which ammonia or ethylenediamine is reacted with monoethanol in the presence of a phosphorus-containing substance (for example, JP-A-61-183249, JP-A-51- 147600
), [Problems to be Solved by the Invention] However, the above-mentioned catalyst (phosphorus-containing substance) had the disadvantage of a short lifespan. An object of the present invention is to provide a method for extending the life of the above-mentioned catalyst. (Means for solving the problem) In order to solve the above problems, the present inventors analyzed the used catalyst and found that the cause of the short life was the elution of phosphoric acid from the catalyst. investigated a method for reactivating a used catalyst and completed the present invention.That is, the present invention is based on the method of reactivating a spent catalyst by combining ammonia or ethylenediamine and monoethanolamine with phosphoric acid or a catalyst containing phosphoric acid or a condensation thereof. This is a catalyst reactivation method characterized by adding a phosphorus-containing substance to the catalyst to reactivate the catalyst when producing acyclic ethylene amines by reacting in the presence of the present invention.

本発明で使用するリン酸もしくはその縮金物を含有する
触媒としては、リン酸、ピロリン酸、三リン酸、ポリリ
ン酸、リン酸アンモニウム、ピロリン酸アンモニウム、
三リン酸アンモニウム等をシリカ、アルミナ、シリカー
アルミナ、珪藻土、粘土のような担体に但持させたもの
や、リン酸、ビロリン酸、三リン酸、ポリリン酸の金属
塩がある.リン酸の金属塩を例にして具体例を挙げると
、リン酸三水素ベリリウム、リン酸二水素マグネシウム
、リン酸二水素カルシウム、リン酸二水素ストロンチウ
ム、リン酸二水素バリウム、リン酸一水素ベリリウム、
リン酸一水素マグネシウム、リン酸一水素カルシウム、
リン酸一水素ストロンチウム、リン酸一水素バリウム、
および周期律表3A族金属化合物とリン酸との反応生成
物でP/金属の原子比l〜6なる組成物、例えば、スカ
ンジウム、イットリウム、ランタン、セリウム、プラセ
オジム、ネオジム、サマリウム、ユーロピウム、ガドリ
ニウム、テルビウム、ジスプロシウム、ホルξウム、エ
ルビウム、ツリウム、イッテルビウム、ルテチウムの水
酸化物もしくは酸化物とリン酸との反応生戒物が挙げら
れる. また周期律表4A族金属化合物とリン酸との反応生威物
でP/金属の原子比l〜6なる組戊物、例えば、チタン
、ジルコニウム、ハフニウムの水酸化物もしくは酸化物
とリン酸との反応生戒物がある.具体的な化合物名とし
て知られているものにリン酸一水素チタン、リン酸一水
素ジルコニウム、リン酸一水素ハフニウム等がある.ま
た周期律表5A族金属化合物とリン酸との反応生底物で
P/金属の原子比1〜6なる&ll戒物、例えば、バナ
ジウム、二オブ、タンタルの水酸化物もしくは酸化物と
リン酸との反応生戒物がある。
Examples of the catalyst containing phosphoric acid or its condensate used in the present invention include phosphoric acid, pyrophosphoric acid, triphosphoric acid, polyphosphoric acid, ammonium phosphate, ammonium pyrophosphate,
There are ammonium triphosphate, etc. supported on a carrier such as silica, alumina, silica alumina, diatomaceous earth, and clay, as well as metal salts of phosphoric acid, birophosphoric acid, triphosphoric acid, and polyphosphoric acid. Specific examples of metal salts of phosphoric acid include beryllium trihydrogen phosphate, magnesium dihydrogen phosphate, calcium dihydrogen phosphate, strontium dihydrogen phosphate, barium dihydrogen phosphate, and beryllium monohydrogen phosphate. ,
Magnesium monohydrogen phosphate, calcium monohydrogen phosphate,
Strontium monohydrogen phosphate, barium monohydrogen phosphate,
and a reaction product of a group 3A metal compound of the periodic table and phosphoric acid, with a P/metal atomic ratio of 1 to 6, such as scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, Examples include reaction products of hydroxides or oxides of terbium, dysprosium, ξium, erbium, thulium, ytterbium, and lutetium and phosphoric acid. Also, reaction products of Group 4A metal compounds of the periodic table and phosphoric acid, such as compositions with a P/metal atomic ratio of 1 to 6, such as hydroxides or oxides of titanium, zirconium, and hafnium, and phosphoric acid. There are several reactions to this. Specific compound names that are known include titanium monohydrogen phosphate, zirconium monohydrogen phosphate, and hafnium monohydrogen phosphate. In addition, the reaction of a metal compound of group 5A of the periodic table with phosphoric acid is a raw material with a P/metal atomic ratio of 1 to 6, such as vanadium, niobium, tantalum hydroxide or oxide and phosphoric acid. There is a reaction to this.

具体的な化合物名として知られているものにリン酸二水
素バナジル(P/V原子比 2)等がある.また金属リ
ン酸塩の項で例示した金属と同様の金属とビロリン酸、
三リン酸またはポリリン酸との塩も同様に使用される. 本発明の方法でアンモニアとモノエタノールアミンとを
反応させるときには、通常アンモニア/モノエタノール
アミンのモル比を1以上にして反応させる.このアンモ
ニア/モノエタノールアミンのモル比が1未満のまま反
応させると、ピペラジン、アξノエチルビペラジン等の
環状物質が多量に生戒する.好ましくはこのモル比を6
〜50の範囲とする.このモル比が大きくなる程、環状
物質の生戒が抑えられるが、生産能率は悪くなる。
Known specific compound names include vanadyl dihydrogen phosphate (P/V atomic ratio 2). In addition, metals similar to those exemplified in the section of metal phosphates and birophosphoric acid,
Salts with triphosphoric acid or polyphosphoric acid are also used. When ammonia and monoethanolamine are reacted in the method of the present invention, the reaction is usually carried out at an ammonia/monoethanolamine molar ratio of 1 or more. If the reaction is carried out while the ammonia/monoethanolamine molar ratio is less than 1, a large amount of cyclic substances such as piperazine and ξnoethylbiperazine will be produced. Preferably this molar ratio is 6
~50. As this molar ratio increases, the production of cyclic substances is suppressed, but the production efficiency becomes worse.

エチレンジアミンとモノエタノールアξンとを反応させ
るときには通常、エチレンジアミン/モノエタノールア
ξンのモル比を0.1〜10にして実施する.このモル
比が0.1未満のまま反応させると、ビペラジン、ア稟
ノエチルピペラジン等の環状物質が多量に生成する.好
ましくはこのモル比を1〜5の範囲とする.このモル比
が大きくなるほど、環状物賞の生或が抑えられるが、生
産能率は悪くなる. 反応温度は150〜400゜Cである.150゜C未満
では反応速度が遅く、400゜Cを越えると生威したポ
リアミン類の熱分解が大きくなる.好ましくは200〜
350″Cである. 反応圧力はアンモニアとモノエタノールアξンとを反応
させるときには通常1〜1000kg/cdである.圧
力が高いほど非環状のエチレンアミン類への選択性が高
い.エチレンジアミンとモノエタノールアミンとを反応
させるときには、通常1〜200kg/cdである. 本反応はバッチ式及び連続式のいずれの方法においても
実施できる.バッチ式の場合の触媒量はモノエタノール
アミン1モルにつき触媒をリン元素換算で0.01〜1
モル使用する.0.01モル未満では反応速度が遅い.
1モルで十分な反応速度があり、通常それ以上の添加を
必要としない。反応時間は通常30分〜10時間程度で
ある.連続式の場合には、移動床等も使用できるが、固
定床方式が便利である.その際、反応物の供給速度は0
.05〜30好ましくは0.2〜10g総反応物/(g
触媒・hr)を採用する.この際、触媒はシリカ、アル
ミナ、シリカーアルミナ、珪藻土、粘土等のような物質
上に但持させることもできる.担体としてはシリカが好
ましい.例えばリン酸とチタンの化合物もしくはジルコ
ニウムの化合物との反応生底物を触媒として使用する場
合には、担体にシリカを用いて、触媒の強度を強くする
ことが好ましい。
When ethylenediamine and monoethanolamine are reacted, the reaction is usually carried out at a molar ratio of ethylenediamine/monoethanolamine of 0.1 to 10. If the reaction is carried out while this molar ratio is less than 0.1, a large amount of cyclic substances such as viperazine and atomethylpiperazine will be produced. Preferably, this molar ratio is in the range of 1-5. As this molar ratio increases, the production of cyclic compounds can be suppressed, but the production efficiency deteriorates. The reaction temperature is 150-400°C. If the temperature is less than 150°C, the reaction rate will be slow, and if it exceeds 400°C, the thermal decomposition of viable polyamines will increase. Preferably 200~
350"C. The reaction pressure is usually 1 to 1000 kg/cd when ammonia and monoethanolamine are reacted. The higher the pressure, the higher the selectivity to acyclic ethylene amines. Ethylene diamine and mono When reacting with ethanolamine, it is usually 1 to 200 kg/cd. This reaction can be carried out in either a batch method or a continuous method. In the case of a batch method, the amount of catalyst is 1 mole of monoethanolamine. 0.01 to 1 in terms of phosphorus element
Use moles. If it is less than 0.01 mol, the reaction rate is slow.
One mole is sufficient for the reaction rate and usually no further addition is required. The reaction time is usually about 30 minutes to 10 hours. In the case of a continuous type, a moving bed can also be used, but a fixed bed type is more convenient. At that time, the feed rate of the reactant is 0
.. 05-30 preferably 0.2-10g total reactants/(g
Catalyst/hr) is adopted. At this time, the catalyst can also be supported on a material such as silica, alumina, silica-alumina, diatomaceous earth, clay, etc. Silica is preferred as the carrier. For example, when using a reaction product of phosphoric acid and a titanium compound or a zirconium compound as a catalyst, it is preferable to use silica as a carrier to increase the strength of the catalyst.

反応液からの生成物の分離は、例えば蒸留により容易に
実施できる.その際分離したアンモニア、エチレンジア
ミン、モノエタノールアミンは反応器に戻し、再使用す
ることができる. 触媒の再活性化は、該触媒にリン含有物質を添加するこ
とにより行う.その方法としては例えば溶剤にリン含有
物質を溶解または懸濁させ、その中に触媒を浸漬し、次
いで液切り後、触媒を乾燥することにより行うことがで
きる.溶剤としては水、メチルアルコール、エチルアル
コール、イソプロビルアルコール、モノエタノールアミ
ン等を用いることができる. 触媒の乾燥温度には制限はなく、通常lO〜700℃で
好ましくは50〜200℃である.乾燥に引き続いて触
媒を焼成することもできるが必須ではない.10〜40
0゜Cで乾燥するときには、通常乾燥の雰囲気としては
窒素、アルゴン等であり、酸素ガスの不存在下で実施す
る. 400゜C以上で乾燥する際には、触媒に付着している
有機物を燃焼除去できるので、酸素ガスが存在してもよ
い.乾燥時間は特に制限はなく通常1〜10時間程度で
ある. この触媒の再活性化は、固定床方式を使用する場合には
、反応器から触媒を取り出さずに実施することも可能で
ある. またバッチ式の場合には、アンモニアもしくはエチレン
ジアミンとモノエクノールアごンとを反応させる際に、
触媒の他にリン含有物質も添加して触媒を再活性化させ
ると共に、非環状のエチレンアミン類を製造することも
できる. 本発明の方法で使用するリン含有物質としては、リン酸
もしくはその縮合物を含有する物質の他にアンモニアも
しくはエチレンジアミンとモノエタノールアミンとの反
応の条件下でリン酸もしくはその縮合物を含有する物質
に変換されるものも使用できる. リン含有物質としては、リン酸、ビロリン酸、三リン酸
、ポリリン酸、亜リン酸、リン酸アンモニウム、ビロリ
ン酸アンモニウム、三リン酸アンモニウム、ポリリン酸
アンモニウム、亜リン酸アンモニウムや、夫々の酸と炭
素数1ないし4のアルコールとのエズテルも用いられる
.例えばリン酸エステルとしては、リン酸モノメチル、
リン酸ジメチル、リン酸トリメチル、リン酸モノエチル
、リン酸ジエチル、リン酸トリエチル、リン酸モノブロ
ビル、リン酸ジプロピル、リン酸トリプロビル、リン酸
モノブチル、リン酸ジブチル、リン酸トリブチル等があ
る.これらのリン含有物質は単独でも、2種以上の混合
物としても使用できる.これらリン含有物質の添加量は
、目標とする触媒のP/金属原子比に応じて決める(触
媒の細孔容積や、P/金属比等が決まればリン含有物質
の添加量の計算は可能である.)。
Separation of the product from the reaction solution can be easily carried out, for example, by distillation. The ammonia, ethylenediamine, and monoethanolamine separated at this time can be returned to the reactor and reused. Reactivation of the catalyst is carried out by adding a phosphorus-containing substance to the catalyst. This can be carried out, for example, by dissolving or suspending a phosphorus-containing substance in a solvent, immersing the catalyst therein, draining the liquid, and then drying the catalyst. As the solvent, water, methyl alcohol, ethyl alcohol, isopropyl alcohol, monoethanolamine, etc. can be used. There is no limit to the drying temperature of the catalyst, and it is usually 10 to 700°C, preferably 50 to 200°C. Following drying, the catalyst can be calcined, but this is not necessary. 10-40
When drying at 0°C, the drying atmosphere is usually nitrogen, argon, etc., and is carried out in the absence of oxygen gas. When drying at 400°C or higher, oxygen gas may be present since organic matter adhering to the catalyst can be burned off. The drying time is not particularly limited and is usually about 1 to 10 hours. This reactivation of the catalyst can also be carried out without removing the catalyst from the reactor when using a fixed bed system. In addition, in the case of a batch method, when reacting ammonia or ethylenediamine with monoechnolamine,
In addition to the catalyst, a phosphorus-containing substance can also be added to reactivate the catalyst and produce acyclic ethylene amines. The phosphorus-containing substances used in the method of the present invention include, in addition to substances containing phosphoric acid or its condensates, substances containing phosphoric acid or its condensates under the conditions of the reaction between ammonia or ethylenediamine and monoethanolamine. You can also use those that are converted to . Phosphorus-containing substances include phosphoric acid, birophosphoric acid, triphosphoric acid, polyphosphoric acid, phosphorous acid, ammonium phosphate, ammonium birophosphate, ammonium triphosphate, ammonium polyphosphate, ammonium phosphite, and each acid and Esters with alcohols having 1 to 4 carbon atoms are also used. For example, phosphoric acid esters include monomethyl phosphate,
Examples include dimethyl phosphate, trimethyl phosphate, monoethyl phosphate, diethyl phosphate, triethyl phosphate, monobrobyl phosphate, dipropyl phosphate, triprobyl phosphate, monobutyl phosphate, dibutyl phosphate, and tributyl phosphate. These phosphorus-containing substances can be used alone or as a mixture of two or more. The amount of these phosphorus-containing substances added is determined according to the target P/metal atomic ratio of the catalyst (Once the pore volume of the catalyst, P/metal ratio, etc. are determined, it is possible to calculate the amount of phosphorus-containing substances added. be.).

また触媒の再活性化を行う際に、あらかしめ触媒を酸素
を含むガスで熱処理して触媒に付着している有機物を燃
焼除去した後、触媒にリン含有物質を添加することもで
きる(通常400〜600℃で熱処理を実施する.)シ
かしこれは必ずしも必要ではない. 本発明の方法によりアンモニアもしくはエチレンジア果
ンとモノエタノールアミンよりエチレンジアミン、ジエ
チレントリアξン、トリエチレンテトラミン等の非環状
のアミンを高収率で製造することが可能になり、その工
業的価値は極めで大きいものである. 〔実施例〕 実施例1 触媒 二酸化チタン39.95 gに85%リン酸172.9
4 gを添加し混錬した.次いで微細なシリカゲル97
.61g及び水190 gを添加して混錬し、押し出し
成型した(径3噛).その後l50゜Cで3時間乾燥し
、次いで500℃で5時間焼戒した.このようにして製
造した触媒を長さ3(1)に切断した。
In addition, when reactivating the catalyst, it is also possible to heat-treat the catalyst with oxygen-containing gas to burn off organic matter adhering to the catalyst, and then add a phosphorus-containing substance to the catalyst (usually 400% Heat treatment is carried out at ~600°C.) However, this is not absolutely necessary. The method of the present invention makes it possible to produce acyclic amines such as ethylenediamine, diethylenetriamine, and triethylenetetramine in high yield from ammonia or ethylenediafruit and monoethanolamine, and its industrial value is extremely high. It's big. [Example] Example 1 39.95 g of catalytic titanium dioxide and 172.9 g of 85% phosphoric acid
4 g was added and kneaded. Next, fine silica gel 97
.. 61 g and 190 g of water were added, kneaded, and extruded (3 holes in diameter). Thereafter, it was dried at 150°C for 3 hours, and then burned at 500°C for 5 hours. The catalyst thus produced was cut into lengths of 3(1).

この触媒54.84 gを内径25.8国のステンレス
鋼製の反応器に充填し、モノエタノールアミンl3.5
g/hr,アンモニア56.5g/hrの速度で供給し
、温度280 ’C、圧力400kg/cd Gの条件
で4000時間反応を行った.その後、冷却して反応を
停止し、触媒を抜き出した.この抜き出した活性の低下
した触媒のP/Ti原子比はl.55であった(反応開
始前のP/Ti原子比は3.00) .触媒の再活性化 リン酸水溶液20cc中にリン酸を11.0 g含有す
る溶液に前記した活性の低下した触媒10g(予め12
0″Cで3時間窒素気流中で乾燥したもの)を浸漬し、
3時間保持した.次いで触媒を液から取り出し、液切り
を行い、窒素気流中で120゜Cで3時間乾燥し触媒を
再活性化させた(P/Ti原子比2.95) , 反応 内径lO園、長さ766mn+の反応管に、再活性化さ
せた触媒10gを充填した.モノエタノールアミン2.
46 g /hr,アンモニア10.30g/hrの速
度で反応管に供給し、温度280’C、圧力400 k
g / c+a Gの条件で反応を行った.結果を第1
表に示した.比較例1 再活性化する前の活性の低下した触媒を10g使用し、
他は実施例1と同じ条件で反応を行った.結果を第1表
に示した. 参考例l 4000時間の反応を行う前の新触媒をlog使用し、
他は実施例lと同じ条件で反応を行った.結果を表1に
示した. 第 1 表 反応で消費されたMEAのモル数 〔発明の効果] 第1表に記載したように、アンモニアとモノエタノール
アミンとの反応に使用して活性の低下した触媒(比較例
1)にリン酸を添加して製造した触媒(実施例1)は、
新触媒(参考例1)とほぼ同し程度にまで再活性化され
ていることがモノエタノールアξンの転化率及び三威分
への選択率を見て明らかである.
54.84 g of this catalyst was packed into a stainless steel reactor with an inner diameter of 25.8 mm, and 3.5 g of monoethanolamine was added.
The reaction was carried out for 4000 hours at a temperature of 280'C and a pressure of 400kg/cdG. Thereafter, the reaction was stopped by cooling, and the catalyst was extracted. The P/Ti atomic ratio of the extracted catalyst with decreased activity is l. 55 (P/Ti atomic ratio before the start of the reaction was 3.00). Reactivation of the Catalyst Add 10 g of the catalyst with reduced activity (12 g in advance) to a solution containing 11.0 g of phosphoric acid in 20 cc of phosphoric acid aqueous solution.
(dried in a nitrogen stream) at 0″C for 3 hours,
It was held for 3 hours. Next, the catalyst was taken out of the solution, drained, and dried in a nitrogen stream at 120°C for 3 hours to reactivate the catalyst (P/Ti atomic ratio 2.95), reaction inner diameter 10 mm, length 766 mn+. A reaction tube was filled with 10 g of the reactivated catalyst. Monoethanolamine2.
46 g/hr, ammonia was supplied to the reaction tube at a rate of 10.30 g/hr, and the temperature was 280'C and the pressure was 400 K.
The reaction was carried out under the conditions of g/c+aG. Results first
It is shown in the table. Comparative Example 1 Using 10g of a catalyst with reduced activity before reactivation,
The reaction was otherwise carried out under the same conditions as in Example 1. The results are shown in Table 1. Reference example 1 Using log of the new catalyst before conducting the reaction for 4000 hours,
The reaction was otherwise carried out under the same conditions as in Example 1. The results are shown in Table 1. Table 1 Number of moles of MEA consumed in the reaction [Effects of the invention] As described in Table 1, the catalyst (Comparative Example 1) with reduced activity used in the reaction between ammonia and monoethanolamine was phosphorused. The catalyst produced by adding acid (Example 1) was
It is clear from the conversion rate of monoethanol ξ and the selectivity to the three components that the catalyst was reactivated to almost the same extent as the new catalyst (Reference Example 1).

Claims (1)

【特許請求の範囲】[Claims] 1 アンモニアもしくはエチレンジアミンとモノエタノ
ールアミンをリン酸もしくはその縮合物を含有する触媒
の存在下で反応させて非環状のエチレンアミン類を製造
するに際し、該触媒にリン含有物質を添加して触媒を再
活性化することを特徴とする触媒の再活性化法。
1 When ammonia or ethylenediamine and monoethanolamine are reacted in the presence of a catalyst containing phosphoric acid or its condensate to produce acyclic ethyleneamines, a phosphorus-containing substance is added to the catalyst to regenerate the catalyst. A method for reactivating a catalyst characterized by activation.
JP1190470A 1989-07-17 1989-07-25 Reactivation of catalyst Pending JPH0356141A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1190470A JPH0356141A (en) 1989-07-25 1989-07-25 Reactivation of catalyst
US07/551,086 US5082972A (en) 1989-07-17 1990-07-11 Process for preparation of acyclic ethyleneamines
CA002020993A CA2020993A1 (en) 1989-07-17 1990-07-12 Process for preparation of acyclic ethyleneamines
EP90113520A EP0409116B1 (en) 1989-07-17 1990-07-14 Process for preparation of acyclic ethyleneamines
DE69012906T DE69012906T2 (en) 1989-07-17 1990-07-14 Process for the production of acyclic ethylene amines.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1190470A JPH0356141A (en) 1989-07-25 1989-07-25 Reactivation of catalyst

Publications (1)

Publication Number Publication Date
JPH0356141A true JPH0356141A (en) 1991-03-11

Family

ID=16258650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1190470A Pending JPH0356141A (en) 1989-07-17 1989-07-25 Reactivation of catalyst

Country Status (1)

Country Link
JP (1) JPH0356141A (en)

Similar Documents

Publication Publication Date Title
JP5933695B2 (en) Improved process for catalytic dehydration of lactic acid to acrylic acid
JPH0445505B2 (en)
JPS59157037A (en) Production of tertiary olefin
EP0115138A1 (en) Regenerative process for the preparation of linear polyethylenepolyamines using a supported catalyst
JPH0717581B2 (en) Method for producing diethylenetriamine
AU2004240910A1 (en) Phosphorus/vanadium catalyst preparation
JP2015180663A (en) Poly-hydroxy compound dehydration system, catalyst composition and method
EP0701998A1 (en) Catalyst for production of tertiary n-alkenyl carboxylic acid amide, and process for production of tertiary n-alkenyl carboxylic acid amide using said catalyst
KR950006529B1 (en) Process for producing methacrylic acid
US5082972A (en) Process for preparation of acyclic ethyleneamines
JPH0356141A (en) Reactivation of catalyst
EP0385714B1 (en) method for regeneration of catalyst for producing aziridine compounds
JPH0356142A (en) Regeneration of catalyst for preparing ethyleneamines
JP2001017862A (en) Production of transestrification catalyst
JPS63147549A (en) Method of regenerating catalyst and oxidative dehydrogenation method applying said method
JPH0348643A (en) Production of non-cyclic ethyleneamines
JP2938093B2 (en) Method for producing acyclic ethyleneamines
JPH08500608A (en) Method for Isomerizing Lactone to Pentenoic Acid with Acidic or Basic Catalyst
US4950690A (en) Process for the animation of alcohols using activated phosphorus-containing catalysts
JP6855753B2 (en) Method for producing bicyclic amine
JPS60243071A (en) Production of 1,3-dimethyl-2-imidazolidinone
SU1033431A1 (en) Method for producing carbon oxide
JP2000167400A (en) Preparation of carbonylation catalyst and acid ester
KR880001062B1 (en) Mixed metal phosphorus oxide catalyst composition
JPS62277342A (en) Production of aliphatic carboxylic acid ester