JPH0356134A - Reactive distillation apparatus - Google Patents

Reactive distillation apparatus

Info

Publication number
JPH0356134A
JPH0356134A JP2168262A JP16826290A JPH0356134A JP H0356134 A JPH0356134 A JP H0356134A JP 2168262 A JP2168262 A JP 2168262A JP 16826290 A JP16826290 A JP 16826290A JP H0356134 A JPH0356134 A JP H0356134A
Authority
JP
Japan
Prior art keywords
reaction
solid
liquid
reactor
liquid contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2168262A
Other languages
Japanese (ja)
Inventor
Junzo Masamoto
正本 順三
Junzo Otake
大竹 準三
Mamoru Kawamura
河村 守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP2168262A priority Critical patent/JPH0356134A/en
Publication of JPH0356134A publication Critical patent/JPH0356134A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To increase the concn. of a reaction product in a vapor phase by recirculating a solution containing a reactive substance and the reaction product in a reactor packed with a solid acid or base catalyst and bringing the vapor of a reaction solution subjected to solid-liquid contact into gas-liquid contact with a liquid subjected to solid-liquid contact. CONSTITUTION:A liquid containing a reactive substances bringing about reaction equilibrium of two or more components and a solid acid catalyst (e.g., cation exchange resin) or a solid base catalyst (e.g., K supported activated carbon) are subjected to solid-liquid contact and components rich in one component of reaction products accompanied by reaction equilibrium is obtained as distillate components. At this time, a plurality of reactors A - C packed with the solid acid or base catalyst are provided. In one or more reactor among them, a liquid containing two or more reactive substances and two or more reaction products is recirculated and the vapor of the reaction liquid subjected to solid- liquid contact in at least one reactor is forcibly recirculated in the other reactor to be subjected to solid-liquid contact and subjected to the gas-liquid contact with a liquid containing the reactive substances and the reaction products to increase the concn. of one component of the reaction products in a vapor phase.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、2成分以上の反応平衡を伴う反応性物質を原
料として、2成分以上の反応平衡を伴う反応生成物が生
ずる系で、その反応が反応平衡を伴う場合の反応蒸留の
効率的な装置に関する。さらに、詳しくは、固体酸もし
くは固体塩基を使用する反応蒸留装置に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a system in which a reactive substance with a reaction equilibrium of two or more components is used as a raw material to produce a reaction product with a reaction equilibrium of two or more components. This invention relates to an efficient apparatus for reactive distillation when the reaction involves reaction equilibrium. More specifically, the present invention relates to a reactive distillation apparatus using a solid acid or a solid base.

(従来の技術) 酸性触媒もしくは塩基性触媒を使用する平衡反応におい
て、硫酸あるいは水酸化ナトリウムを使用することはよ
く知られている。
(Prior Art) The use of sulfuric acid or sodium hydroxide in equilibrium reactions using acidic or basic catalysts is well known.

一例として、メタノールと酢酸との反応による酢酸メチ
ルと水との生成がある。
An example is the reaction of methanol and acetic acid to produce methyl acetate and water.

反応が酸性触媒下で有利に進む場合には硫酸が使用され
、また、塩基性触媒下で進む場合には水酸化ナトリウム
が使用される。
Sulfuric acid is used when the reaction proceeds advantageously under acidic catalysis, and sodium hydroxide is used when the reaction proceeds under basic catalysis.

しかしながら、硫酸の場合には、金属材質の腐食をもた
らし、また、水酸化ナトリウムの場合には、反応生成物
の他成分との分離が面倒である。
However, in the case of sulfuric acid, it causes corrosion of metal materials, and in the case of sodium hydroxide, it is troublesome to separate the reaction product from other components.

他の典型的な例は、メタノールとホルムアルデヒド(ま
たはホルマリン)との反応によるメチラールと水との生
成である。
Another typical example is the formation of methylal and water by the reaction of methanol and formaldehyde (or formalin).

メチラールは、酸性触媒の存在下でメタノールとホルム
アルデヒドとの縮合反応により合或される。
Methyral is synthesized by a condensation reaction of methanol and formaldehyde in the presence of an acidic catalyst.

2C}130}1  +  cuzo   −+  C
HxOCHzOCHi  +  HzOメチラールの合
或方法として、例えば、溶剤ハンドブック(講談社出版
、昭和51年)は、塩化亜鉛、塩化第2鉄、塩酸のよう
な酸性触媒を用いることを開示している。
2C}130}1 + cuzo −+ C
As a method for combining HxOCHzOCHi + HzO methylal, for example, Solvent Handbook (Kodansha Publishing, 1976) discloses the use of an acidic catalyst such as zinc chloride, ferric chloride, or hydrochloric acid.

メタノールとホルムアルデヒドとからメチラールを合成
する反応は、水を副生ずる平衡反応であるために、反応
収率の向上には制約があった。
The reaction of synthesizing methylal from methanol and formaldehyde is an equilibrium reaction that produces water as a by-product, so there are limitations to improving the reaction yield.

これらの問題を解決するために、特公昭4〇一1500
5号公報は、メタノールとホルマリン水溶液の原料混合
体を陽イオン交換体を用いて前アセタール化を施し、か
つ、陽イオン交換体を用いた反応器から流出する液体の
一部を原料混合物の供給個所の上方から再度供給するこ
とを提案している。
In order to solve these problems, the special public
Publication No. 5 discloses that a raw material mixture of methanol and formalin aqueous solution is pre-acetalized using a cation exchanger, and a part of the liquid flowing out from the reactor using the cation exchanger is used to supply the raw material mixture. It is proposed that the water be resupplied from above.

この方法は、反応収率を高めるという点では優れた特徴
を有するが、工業的実施には以下の問題を有する。
Although this method has an excellent feature in increasing the reaction yield, it has the following problems in industrial implementation.

イオン交換樹脂を長期間にわたって使用していると、形
状が粒状から微粉末となり、崩壊したり、金属イオ?の
置換、有機物の細孔への蓄積、あるいはスルホン酸基の
脱離などのために触媒活性が低下、消失する問題がある
。該公報の方法では、陽イオン交換体を蒸留塔内に充填
する方式を提案しているために、触媒能が低下するたび
に、メチラールの製造を中止し、蒸留塔から陽イオン交
換体を取り出し、再生、触媒の補給等の操作を行わなけ
ればならない。そのために、該方法の工業的実施には繁
雑な問題点を有していた。
When ion exchange resin is used for a long period of time, its shape changes from granular to fine powder, disintegrates, and metal ions form. There is a problem that the catalytic activity decreases or disappears due to substitution of organic substances, accumulation of organic substances in pores, or elimination of sulfonic acid groups. The method in this publication proposes a method in which the cation exchanger is packed into the distillation column, so whenever the catalytic ability decreases, the production of methylal is stopped and the cation exchanger is taken out from the distillation column. , regeneration, catalyst replenishment, etc. must be performed. Therefore, the industrial implementation of this method has had complicated problems.

一方、特開昭56−147739号公報では、反応収率
を高めるために、バラホルムアルデヒドを使用すること
を推奨している。また、メタノールについては、反応の
化学N?aモル比は2であるが、それ以上に用いる必要
があることをあげている。しかしながら、この方法では
パラホルムアルデヒドを用いること、また、その反応収
率もホルムアルデヒド基準にして、たかだか90%であ
るなど、工業的実施に難点がある。
On the other hand, JP-A-56-147739 recommends the use of paraformaldehyde in order to increase the reaction yield. Also, regarding methanol, the chemistry of the reaction N? Although the molar ratio of a is 2, it is mentioned that it is necessary to use more than that. However, this method has disadvantages in industrial implementation, such as the use of paraformaldehyde and the reaction yield, which is at most 90% based on formaldehyde.

(発明が解決しようとする課題) 本発明は、2成分以上の反応平衡を伴う反応性物質(以
下、反応性物質という)を原料として、2成分以上の反
応平衡を伴う反応生成物(以下、反応生成物という)が
生ずる系で、その反応が反応平衡を伴う場合の反応蒸留
に当たり、前記従来の技術のような問題点のない効率的
な反応蒸留装置を提供するものである。
(Problems to be Solved by the Invention) The present invention uses a reactive substance (hereinafter referred to as "reactive substance") with reaction equilibrium of two or more components as a raw material to produce a reaction product (hereinafter referred to as "reactive substance") with reaction equilibrium of two or more components. The present invention provides an efficient reactive distillation apparatus that does not have the problems of the prior art when performing reactive distillation in a system in which reaction products (referred to as reaction products) are produced and the reaction involves reaction equilibrium.

(課題を解決するための千段) 本発明者らは、前記の課題を解決するため鋭意検討を行
った結果、固体酸、固体塩基の有用性を見出し、反応平
衡を伴う場合の固体酸または固体塩基を用いた一般的反
応蒸留装置を開発するに至った。
(A Thousand Steps to Solving the Problem) As a result of intensive studies to solve the above problem, the present inventors discovered the usefulness of solid acids and solid bases, and found that solid acids and solid bases are useful when reaction equilibrium is involved. A general reactive distillation apparatus using a solid base was developed.

すなわち、本発明は、2成分以上の反応性物質を含む液
体と固体酸または固体塩基触媒とを固液接触させ、2成
分以上の反応生成物の1成分に冨む成分を留出成分とし
て得る装置であって、少なくとも2個以上の、固体酸ま
たは固体塩基触媒を充填した反応器からなり、そのうち
の少なくとも1個以上の反応器には2rv.分以上の反
応性物質と2成分以上の反応生成物とを含む液が強制的
に循環され、少なくとも1個の反応器で固液接触した反
応液の蒸気が、他の反応器で強制的に循環されて固液接
触した後の反応性物質と反応生成物とを含む液体と気液
接触して、蒸気相中の反応生戒吻の一つの成分濃度が高
められるようにしたことを特徴とする反応蒸留装置であ
る。
That is, the present invention brings a liquid containing two or more reactive substances into solid-liquid contact with a solid acid or solid base catalyst to obtain a component enriched in one component of a reaction product of two or more components as a distillate component. The apparatus comprises at least two reactors filled with a solid acid or solid base catalyst, at least one of which has a 2rv. A liquid containing a reactive substance and a reaction product of two or more components is forcibly circulated, and the vapor of the reaction liquid that has come into solid-liquid contact in at least one reactor is forcibly circulated in another reactor. The liquid containing the reactive substance and the reaction product after being circulated and brought into solid-liquid contact is brought into gas-liquid contact to increase the concentration of one component of the reactant in the vapor phase. This is a reactive distillation device.

本発明の反応蒸留装置による反応としては、固体塩基を
使用する場合、例えば、ベンゼンの水素化二量化反応、
メタノールとケトンあるいはニトリルとの反応により対
応するα,β一不飽和化合物を生威する反応等が挙げら
れる。
When a solid base is used, the reactions performed by the reactive distillation apparatus of the present invention include, for example, benzene hydrodimerization reaction,
Examples include reactions in which a corresponding α,β monounsaturated compound is produced by reacting methanol with a ketone or a nitrile.

この時使用できる固体塩基には、ベンゼンの水素化二量
化反応においては、例えば、カリウムを活性炭あるいは
アルミナに担持したもの等が、α.β一不飽和化合物を
生威する反応においては、例えば、MgOにFe” ,
 Cr3“を数%添加したもの等が挙げられる。
In the hydrodimerization reaction of benzene, solid bases that can be used at this time include, for example, potassium supported on activated carbon or alumina. In the reaction that produces β-unsaturated compounds, for example, Fe”,
Examples include those to which several percent of Cr3'' is added.

次に、固体酸を使用する反応としては、例えば、アルコ
ールとアルデヒドよりアセタールを得るアセタール生或
反応またはその逆反応、酸とアルコールよりエステルを
得るエステル化反応またはその逆反応、アルコールより
エーテルを得るエーテル化反応、炭化水素の異性化反応
等が挙げられる。
Next, reactions using solid acids include, for example, acetal production or its reverse reaction to obtain acetal from alcohol and aldehyde, esterification reaction to obtain ester from acid and alcohol or its reverse reaction, and ether to obtain ether from alcohol. Examples include etherification reaction, hydrocarbon isomerization reaction, and the like.

反応例として、例えば、メタノールとホルムアルデヒド
よりメチラールを得る反応(以下、メチラール生成反応
という)、ジオキシメチレンジメチルエーテルと水より
ホルムアルデヒドとメタノールを得る反応、メタクリル
酸とエタノールより?タクリル酸エチルを得る反応、酢
酸ブチルと水より酢酸とブタノールを得る反応、t−ブ
チルアルコールとメタノールよりt−プチルメチルエー
テルを得る反応、ペンタンよりイソベンクンを得る反応
等がある。
Examples of reactions include the reaction to obtain methylal from methanol and formaldehyde (hereinafter referred to as methylal production reaction), the reaction to obtain formaldehyde and methanol from dioxymethylene dimethyl ether and water, and the reaction between methacrylic acid and ethanol? These include a reaction to obtain ethyl taacrylate, a reaction to obtain acetic acid and butanol from butyl acetate and water, a reaction to obtain t-butyl methyl ether from t-butyl alcohol and methanol, and a reaction to obtain isobencune from pentane.

これらの反応で使用する固体酸触媒として、例エハ、カ
チオン交換樹脂、フッ素化アルキレン樹脂スルホン酸基
誘導体、結晶性アルミノシリケート、ゼオライト、Ti
O■−Sing等が挙げられる。
Solid acid catalysts used in these reactions include, for example, cation exchange resins, fluorinated alkylene resin sulfonic acid group derivatives, crystalline aluminosilicate, zeolite, Ti
Examples include O■-Sing.

カチオン交換樹脂としてはカルボン酸基誘導体、スルホ
ンHa誘導体のいずれも使用できるが、スルホン酸基誘
導体が反応収率が高い点で好ましい。
As the cation exchange resin, both carboxylic acid group derivatives and sulfone Ha derivatives can be used, but sulfonic acid group derivatives are preferred in terms of high reaction yield.

また、イオン交換樹脂のタイプとしては、ゲル型カチオ
ン交換樹脂、巨大網目状カチオン交換樹脂のいずれも使
用できるが、巨大網目状カチオン交換樹脂が反応の収率
が高い点で望ましい。イオン交換樹脂の具体例としては
、スチレンージビニルベンゼン共重合体、アクリル酸−
ジビニルベンゼン共重合体、メタクリル酸一ジビニルベ
ンゼン共重合体等が挙げられる。
Further, as the type of ion exchange resin, either a gel type cation exchange resin or a giant network cation exchange resin can be used, but the giant network cation exchange resin is preferable because it has a high reaction yield. Specific examples of ion exchange resins include styrene-divinylbenzene copolymer, acrylic acid-
Examples include divinylbenzene copolymer, methacrylic acid-divinylbenzene copolymer, and the like.

フッ素化アルキレン樹脂スルホン酸基誘導体として、テ
トラエチレン樹脂スルホン酸基誘導体(商品名:ナフイ
オンH)が望ましい。
As the fluorinated alkylene resin sulfonic acid group derivative, a tetraethylene resin sulfonic acid group derivative (trade name: Nafion H) is preferable.

結晶性アルミノシリケートとしては、特公昭62−41
656号公報で示されるシリカ対アル主ナのモル比が1
0以上のものが使用される。
As crystalline aluminosilicate, Japanese Patent Publication No. 62-41
The molar ratio of silica to alkali as shown in Publication No. 656 is 1
0 or more are used.

本発明で云う固体酸または固体塩基を充填した反応器と
は、固体酸または固体塩基が存在し、その中で反応性物
質を含む液が固液接触し、反応生成物のうち濃度が高め
られた一成分を生戒するものであればどういう形状のも
のでもよい。例えば、固体酸または固体塩基がぎっしり
と充填された槽または塔、あるいは固体酸または固体塩
基がスラI一状で分散した槽または塔、あるいは固体酸
または固体塩基がゆるやかに充填されている槽または塔
などが例として挙げられる。本発明の特徴は、この反応
器の中を反応性物質、反応生成物を含む液が強制的に循
環されるようになっていることである。
In the present invention, a reactor filled with a solid acid or a solid base is a reactor in which a solid acid or a solid base exists, in which a liquid containing a reactive substance comes into solid-liquid contact, and the concentration of the reaction product is increased. It may be of any shape as long as it contains one ingredient. For example, a tank or tower tightly packed with solid acid or solid base, a tank or tower with solid acid or solid base dispersed in a slurry, or a tank or tower with loosely packed solid acid or solid base. An example is a tower. A feature of the present invention is that a liquid containing reactive substances and reaction products is forcibly circulated through the reactor.

本発明で用いられる固体酸または固体塩基を含む反応器
、固体酸と固液接触した反応性物質、反応生底物を含む
液体と、反応生成物のうち濃度が高められたー成分を含
む蒸気との気液接触の様式には特に制限はない。
A reactor containing a solid acid or a solid base used in the present invention, a reactive substance in solid-liquid contact with the solid acid, a liquid containing reacted raw materials, and a vapor containing a component with an increased concentration among the reaction products. There are no particular restrictions on the mode of gas-liquid contact with.

例えば、バブルキャップトレー、シープトレーバ・ツフ
ルトレーなどの段塔、ラッシヒリング、ディクソンバッ
キング、グッドロールパッキングなどの充填剤を用いた
充填塔などによって気液接触を行うことができる。
For example, the gas-liquid contact can be carried out using a plate column such as a bubble cap tray or a Scheeptreber-Zuffle tray, or a packed column using a filler such as Raschig ring, Dixon backing, or Goodroll packing.

本発明は、反応性物質、反応生戊物を含む液を強制循環
できる固体酸または固体塩基を充填した反応器が少なく
とも2個以上からなり、複数の反応器から得られる反応
液が、連続的に気液接触して蒸留されるようになってい
る。
The present invention consists of at least two reactors filled with a solid acid or solid base capable of forcibly circulating a liquid containing reactive substances and reaction products, and the reaction liquid obtained from the plurality of reactors is continuously It is designed to be distilled by contacting the gas with liquid.

例えば、好ましい装置として、固体酸または固体塩基を
充填した反応器を蒸留塔に連結した装置が挙げられる。
For example, a preferred device includes a device in which a reactor filled with a solid acid or a solid base is connected to a distillation column.

具体的な例として、第1図に示すような装置が挙げられ
る。第1図において、A.B,Cはそれぞれ固体酸また
は固体塩基を充填した反応器であり、蒸留塔Eの中段か
ら抜き出した液を反応器で強制循環し、反応させ、蒸留
塔已に戻す。反応液は蒸留塔E内で気液接触し蒸留され
る。
A specific example is a device as shown in FIG. In FIG. 1, A. B and C are reactors filled with a solid acid or a solid base, respectively, and the liquid extracted from the middle stage of distillation column E is forcibly circulated in the reactor, reacted, and returned to the bottom of the distillation column. The reaction solution is brought into contact with gas and liquid in the distillation column E and distilled.

反応器の数は、多い方が反応効率が高く、反応率を大き
くするために有効である。しかし、反応器数が多すぎる
と設備費が多くなり好ましくない。
The larger the number of reactors, the higher the reaction efficiency, which is effective for increasing the reaction rate. However, if the number of reactors is too large, equipment costs will increase, which is not preferable.

好ましい反応器数は3〜lO個、さらに好ましくは3〜
5個である。
The preferred number of reactors is 3 to 10, more preferably 3 to 10.
There are 5 pieces.

蒸留塔から反応器への抜き出し位置、反応液の蒸留塔へ
の戻し位置は、特に制限はなく任意に選ぶことができる
。反応液組威などから最適位置を決めることが好ましい
The position of extraction from the distillation column to the reactor and the position of return of the reaction liquid to the distillation column are not particularly limited and can be arbitrarily selected. It is preferable to determine the optimum position based on the composition of the reaction liquid.

本発明で云う反応性物質の供給様式は、反応生成物と反
応性物質の沸点により任意に行うことができ、特に制限
はない。一つの実施形態は、反応生威物と反応性物質の
沸点差が大きい場合、例えば、メチラール生戒反応にお
いて、塔頂に最も近い蒸留塔に連結した反応器にメタノ
ールを供給し、強制循環し、この反応器より上部の段に
ホルマリンを供給する。他の実施形態は、塔頂に最も近
い反応器にホルムアルデヒドおよびメタノールを供給す
る、また、別に反応器よりも上方の供給段にホルムアル
デヒドを含む水溶液を供給し、蒸留塔内を上昇するメチ
ラール、メタノールを含む蒸気と気液接触させる。この
際、塔頂に最も近い反応器内の液は強制循環が行われる
場合もあれば、行われない場合もある。強制循環が行わ
れていない場合には、反応の効率を高めるために、この
反応器よりも下方の蒸留塔と連結した反応器で強制循環
が行われている。
The manner in which the reactive substance is supplied in the present invention can be arbitrarily determined depending on the boiling points of the reaction product and the reactive substance, and is not particularly limited. In one embodiment, when the boiling point difference between the reaction product and the reactive substance is large, for example, in the methylal biochemical reaction, methanol is supplied to the reactor connected to the distillation column closest to the top of the column, and forced circulation is performed. , formalin is supplied from this reactor to the upper stage. Another embodiment is to feed formaldehyde and methanol to the reactor closest to the top of the column, and to separately feed an aqueous solution containing formaldehyde to a feed stage above the reactor so that the methylal and methanol rise in the distillation column. contact with vapor containing vapor. At this time, the liquid in the reactor closest to the top of the column may or may not be forcedly circulated. When forced circulation is not performed, forced circulation is performed in a reactor connected to a distillation column located below this reactor in order to increase the efficiency of the reaction.

他の実施形態は、反応生成物と反応性物質の沸点差が小
さい場合、例えば、酢酸とメタノールより酢酸メチルを
得るエステル化反応において、塔頂に最も近い蒸留塔に
連結した反応器にメタノールを供給し、強制循環し、こ
の反応器より上部の段に酢酸を供給する。反応の効率を
高めるためには、この反応器よりも下方の蒸留塔と連結
した反応器にメタノールを供給し、強制循環が行われて
いる。メチラール合威反応における、その一例を第1図
により説明する。
In another embodiment, when the boiling point difference between the reaction product and the reactive substance is small, for example, in an esterification reaction to obtain methyl acetate from acetic acid and methanol, methanol is added to the reactor connected to the distillation column closest to the top of the column. Acetic acid is supplied to the upper stage from this reactor through forced circulation. In order to increase the efficiency of the reaction, methanol is supplied to a reactor connected to a distillation column below this reactor, and forced circulation is performed. An example of the methylal synthesis reaction will be explained with reference to FIG.

第1図では、原料としてホルマリン水溶液およびメタノ
ールがそれぞれ、フィード管1および2を経て蒸留塔に
供給される。固体酸を充填した3基の反応器ASB,C
内をメタノール、ホルムアルデヒド、メチラール、水を
含んだ液体が強制的に循環されている。
In FIG. 1, a formalin aqueous solution and methanol are fed as raw materials to a distillation column via feed pipes 1 and 2, respectively. Three reactors ASB,C filled with solid acid
A liquid containing methanol, formaldehyde, methylal, and water is forcibly circulated inside.

反応器Bで固液接触した液体からなる蒸気は、反応器A
で固液接触し、メチラールを生威した液体と蒸留塔内で
気液接触する。塔頂3より反応生成物であるメチラール
が、塔底4より未反応のメタノール、ホルムアルデヒド
および副生成物である水が排出される. 本発明では、ホルムアルデヒド原料として、例えば、ホ
ルマリン水溶液、トリオキサン、パラホルムアルデヒド
等を用いることができるが、取り扱い、経済性の点から
ホルマリン水溶液が望ましい。
The vapor consisting of the liquid that has come into solid-liquid contact in reactor B is transferred to reactor A.
Solid-liquid contact is made in the distillation column, and the liquid containing methylal is brought into gas-liquid contact in the distillation column. Methylal, a reaction product, is discharged from the top 3 of the column, and unreacted methanol, formaldehyde, and water, a by-product, are discharged from the bottom 4 of the column. In the present invention, as the formaldehyde raw material, for example, an aqueous formalin solution, trioxane, paraformaldehyde, etc. can be used, but an aqueous formalin solution is preferable from the viewpoint of handling and economy.

使用するメタノールは、ホルムアルデヒドに対する反応
量論比2に対して通常は1.  0倍以上で用いられる
。メタノールはホルムアルデヒドに対して化学量論比の
1.0〜1.2倍、特に1.0〜1.1倍の範囲で用い
ることが好ましい。ここで留出物として、メチラール〜
メタノール共沸混合物(メチラール92%、メタノール
8%)を得る場合には、化学量論比の1.1倍、メチラ
ールのみを得る場合には1.0倍、その中間を得る場合
には1.0〜1.1倍で用いられる。
The methanol used is usually in a reaction stoichiometric ratio of 1 to 2 to formaldehyde. Used at 0 times or more. It is preferable to use methanol in a stoichiometric ratio of 1.0 to 1.2 times, particularly 1.0 to 1.1 times, relative to formaldehyde. Here, as a distillate, methylal ~
When obtaining a methanol azeotrope (92% methylal, 8% methanol), the stoichiometric ratio is 1.1 times, when only methylal is obtained, it is 1.0 times, and when obtaining something in between, it is 1. It is used at 0 to 1.1 times.

また、メチラール〜メタノールは共沸成分(メヂラール
92%、メタノール8%)をつくる。95%以上のメチ
ラール、特に98%以上のメチラールを得るには、原料
ホルマリン水溶液を蒸留塔に連結した反応器よりも上部
から供給し、蒸留塔内を上昇するメチラール、メタノー
ルを含む蒸気と気液接触させると、所望のメチラールが
得られることが見出された。
In addition, methylal to methanol forms an azeotropic component (92% methylal, 8% methanol). In order to obtain 95% or more methylal, especially 98% or more methylal, the raw material formalin aqueous solution is supplied from above the reactor connected to the distillation column, and the vapor and gaseous liquid containing methylal and methanol rise inside the distillation column. It has been found that upon contacting, the desired methylal is obtained.

メチラール合戒原料としてのホルマリン水溶液には、ト
リオキサンが含まれていてもよい。
The formalin aqueous solution as a raw material for methylal synthesis may contain trioxane.

(実施例) 以下、本発明の反応蒸留装置を用いて反応蒸留を行う実
施例について説明するが、本発明は、これらの実施例の
範囲に限定されるものではない。
(Examples) Examples in which reactive distillation is carried out using the reactive distillation apparatus of the present invention will be described below, but the present invention is not limited to the scope of these examples.

実施例1 第1図に示した反応蒸留塔を使用した。反応器の数は3
基である。それぞれの反応器A,B,Cには、巨大網目
状強酸性カチオン交換樹脂(商品名:アンバーライト2
00C)を150cc充填する。フィード管1および2
より、それぞれ40%ホルマリン水溶液を毎時300g
、メタノールを毎時283g供給した。
Example 1 The reactive distillation column shown in FIG. 1 was used. The number of reactors is 3
It is the basis. Each of the reactors A, B, and C was filled with a giant reticulated strongly acidic cation exchange resin (trade name: Amberlite 2).
Fill 150cc of 00C). Feed tubes 1 and 2
300g of 40% formalin aqueous solution per hour.
, 283 g of methanol was supplied per hour.

蒸留塔Eには塔高1.5mの充填塔を使用した。As the distillation column E, a packed column with a column height of 1.5 m was used.

蒸留塔Eの中段には、それぞれ液成分を抜き出す段を設
け、ポンプで反応器ASB,Cに循環させ、触媒と固液
接触をせしめるようにした。反応器A、B,Cを出たメ
チラールを含有する反応液は蒸留塔内に戻され、それぞ
れ蒸留塔の塔底より塔頂に向かってくる蒸気と気液接触
し、メチラールの濃度が高められる。塔頂温度が42゜
Cを保つように還流液が戻された。塔頂3より毎時32
7gの留出液を抜き出した。留出液中の組戒は、メチラ
ール92%、メタノール8%であった。塔底4よりホル
ムアルデヒド0.5%、メタノール1.3%を含む水溶
液が毎時256g排出された。ホルムアルデヒド基準の
反応収率は99%であった。
A stage was provided in the middle of distillation column E to extract liquid components, and the liquid components were circulated to reactors ASB and C using pumps to bring them into solid-liquid contact with the catalyst. The methylal-containing reaction liquids leaving reactors A, B, and C are returned to the distillation column, where they come into gas-liquid contact with the vapor coming from the bottom of the distillation column toward the top, increasing the concentration of methylal. . The reflux liquid was returned to maintain the top temperature at 42°C. 32 per hour from tower top 3
7 g of distillate was extracted. The composition of the distillate was 92% methylal and 8% methanol. 256 g of an aqueous solution containing 0.5% formaldehyde and 1.3% methanol was discharged from the bottom 4 of the tower per hour. The reaction yield based on formaldehyde was 99%.

比較例1 実施例1において、反応器B,Cを取りはずし、反応器
Aのみを使用し、その他は同様の操作を行った。塔頂よ
り毎時258gの留出物を得た。留出物の組成は、メチ
ラール92%、メタノール8%であった。塔底よりホル
ムアルデヒド7.2%、メタノール17.6%を含む水
溶液を毎時283g抜き出した。ホルムアルデヒド基準
の反応収率は83%であった。この例の反応収率は明ら
かに実施例1より低い。
Comparative Example 1 In Example 1, reactors B and C were removed and only reactor A was used, and the other operations were the same. 258 g of distillate per hour was obtained from the top of the column. The composition of the distillate was 92% methylal and 8% methanol. From the bottom of the tower, 283 g of an aqueous solution containing 7.2% formaldehyde and 17.6% methanol was extracted per hour. The reaction yield based on formaldehyde was 83%. The reaction yield in this example is clearly lower than in Example 1.

実施例2 実施例lにおいて、反応器Cの下方にさらに第4番目の
反応器F(図示していない)を設置し、実施例1と同様
の操作を行った。塔頂より毎時329gの留出物を得た
。留出物中の組戒は、メチラール92%、メタノール8
%であった。また、塔底よりホルムアルデヒド0.2%
、メタノール0.7%を含む水溶液が毎時254g排出
された。
Example 2 In Example 1, a fourth reactor F (not shown) was further installed below reactor C, and the same operation as in Example 1 was performed. 329 g of distillate per hour was obtained from the top of the column. The composition of the distillate is 92% methylal and 8% methanol.
%Met. In addition, 0.2% formaldehyde was added from the bottom of the tower.
, 254 g of an aqueous solution containing 0.7% methanol was discharged per hour.

ホルムアルデヒド基準の反応収率は99.6%であった
The reaction yield based on formaldehyde was 99.6%.

実施例3 実施例2において、反応器Fの下方にさらに第5番目の
反応器G(図示していない)を設置し、実施例2と同様
の操作を行った。塔頂より毎時330gの留出物を得た
。留出物中の組成は、メチラール92%、メタノール8
%であった。また、塔底より排出された水溶液中には、
ホルムアルデヒドおよびメタノールは検出されなかった
。ホルムアルデヒド基準の反応収率は99.9%であっ
た。
Example 3 In Example 2, a fifth reactor G (not shown) was further installed below reactor F, and the same operation as in Example 2 was performed. 330 g of distillate per hour was obtained from the top of the column. The composition of the distillate is 92% methylal and 8% methanol.
%Met. In addition, in the aqueous solution discharged from the bottom of the tower,
Formaldehyde and methanol were not detected. The reaction yield based on formaldehyde was 99.9%.

実施例4〜7 固体酸触媒として、巨大綱目状強酸性カチオン交換樹脂
を用いる代わりに、種々の固体酸を用いるほかは、実施
例1と同様の操作を行った。結果を第1表にまとめる。
Examples 4 to 7 The same operations as in Example 1 were carried out, except that various solid acids were used instead of the macromolecular strongly acidic cation exchange resin as the solid acid catalyst. The results are summarized in Table 1.

実施例8 40%ホルマリン水溶液の代わりに20%ホルマリン水
溶液を毎時600g供給した他は、実施例3と同様の操
作を行った。塔頂より毎時329gの留出物を得た。留
出物中の組或は、メチラール92%、メタノール8%で
あった。また、塔底よりホルムアルデヒド0.1%、メ
タノール0.3%を含む水溶液が毎時554g排出され
た。ホルムアルデヒド基準の反応収率は99.6%であ
った。
Example 8 The same operation as in Example 3 was performed except that 600 g of a 20% formalin aqueous solution was supplied per hour instead of the 40% formalin aqueous solution. 329 g of distillate per hour was obtained from the top of the column. The composition of the distillate was 92% methylal and 8% methanol. Additionally, 554 g of an aqueous solution containing 0.1% formaldehyde and 0.3% methanol was discharged from the bottom of the tower per hour. The reaction yield based on formaldehyde was 99.6%.

実施例9 実施例1において、フィード管1よりエチレングリコー
ルを毎時140g、フィード管2より40%ホルマリン
を毎時170g供給した。塔頂の温度を72゜Cに保つ
ように還流液を戻すほかは、実施例1と同様の操作を行
った。塔頂3より1,3−ジオキソラン93%、水7%
を含む液を毎時178g抜き出した。塔底4よりエチレ
ングリコール1.1%、ホルムアルデヒド0.5%を含
む水溶液が毎時132g排出された。エチレングリコー
ル基準の反応収率は99%であった。
Example 9 In Example 1, 140 g of ethylene glycol was supplied per hour from the feed pipe 1, and 170 g of 40% formalin per hour was supplied from the feed pipe 2. The same operation as in Example 1 was carried out, except that the reflux liquid was returned so as to maintain the temperature at the top of the column at 72°C. 1,3-dioxolane 93%, water 7% from column top 3
178g of liquid containing 100% was extracted per hour. 132 g of an aqueous solution containing 1.1% ethylene glycol and 0.5% formaldehyde was discharged from the bottom 4 of the column per hour. The reaction yield based on ethylene glycol was 99%.

実施例10 実施例lにおいて、フィード管lよりt−プチルアルコ
ールを毎時115g、フィード管2よりメタノールを5
0g供給した。塔頂の温度を55゜Cに保つように還流
液を戻すほかは、実施例lと同様の操作を行った。塔頂
3より毎時131gの留出液を抜き出した。留出液中の
組戒は、L−ブチルメチルエーテル97.1%、メタノ
ール2.9%であった。塔底4よりむープチルアルコー
ル23.5%を含む水溶液が毎時34g排出された。
Example 10 In Example 1, 115 g of t-butyl alcohol was supplied per hour from feed pipe 1, and 5 g of methanol was supplied from feed pipe 2 per hour.
0g was supplied. The same operation as in Example 1 was carried out, except that the reflux liquid was returned so as to maintain the temperature at the top of the column at 55°C. 131 g of distillate was extracted per hour from the top 3 of the column. The composition of the distillate was 97.1% L-butyl methyl ether and 2.9% methanol. 34 g of an aqueous solution containing 23.5% of mumbutyl alcohol was discharged from the bottom 4 of the column per hour.

t−ブチルアルコールを基準とした反応収率は93%で
あった。
The reaction yield was 93% based on t-butyl alcohol.

実施例11 第2図に示した反応蒸留塔を使用した。反応器の数は4
基である。それぞれの反応器A,B,C、Dには、シリ
カーチタニア固体酸触媒を5 0 0 m(1充填する
。フィード管lよりメタクリル酸を毎時150g、フィ
ード管2より反応器A,B,C、Dヘエタノールを各々
毎時100g供給した。
Example 11 The reactive distillation column shown in FIG. 2 was used. The number of reactors is 4
It is the basis. Reactors A, B, C, and D are each filled with 500 m (1 ml) of silica titania solid acid catalyst. 150 g of methacrylic acid is fed per hour from feed pipe 1, and reactors A, B, and B are fed from feed pipe 2. 100 g of ethanol was supplied to C and D each hour.

蒸留塔には塔高2.5mの充填塔を使用した.蒸留塔の
中段には、それぞれ液成分を抜き出す段を設け、ポンプ
で反応器A,B,C,Dに循環させ、触媒と固液接触を
行わせるようにした。反応IA,B,C..Dを出たメ
タクリル酸エチルを含有する反応液は蒸留塔内に戻され
、それぞれ蒸留塔の塔底より塔頂に向かってくる蒸気と
気液接触し、メタクリル酸エチルの濃度が高められる。
A packed column with a height of 2.5 m was used as the distillation column. A stage was provided in the middle of the distillation column to extract the liquid component, and the liquid component was circulated to the reactors A, B, C, and D using a pump, so as to bring about solid-liquid contact with the catalyst. Reactions IA, B, C. .. The reaction solution containing ethyl methacrylate exiting D is returned to the distillation column, where it comes into contact with the vapor coming from the bottom of the distillation column toward the top, increasing the concentration of ethyl methacrylate.

塔頂3より毎時345gの留出液を抜き出した。留出液
中の組或は、エタノール89.8%、水10.2%であ
った。塔底4より毎時204gの液を抜き出した。塔底
液中の組或は、メタクリル酸エチル97.8%、メタク
リル酸2.2%であった。
345 g of distillate was extracted per hour from the top 3 of the column. The composition of the distillate was 89.8% ethanol and 10.2% water. 204 g of liquid was extracted from the bottom 4 of the tower per hour. The composition of the bottom liquid was 97.8% ethyl methacrylate and 2.2% methacrylic acid.

メタクリル酸基準の反応収率は97%であった。The reaction yield based on methacrylic acid was 97%.

実施例l2 実施例11において、フィード管1より酢酸を毎時12
0g,フィード管2より反応器A..B,C,Dへメタ
ノールを各々毎時110g供給し、実施例9と同様の操
作を行った。塔頂3より毎時522gの留出液を得た。
Example 12 In Example 11, acetic acid was supplied from feed pipe 1 at 12% per hour.
0g, feed tube 2 to reactor A. .. 110 g of methanol was supplied per hour to each of B, C, and D, and the same operation as in Example 9 was performed. 522 g of distillate per hour was obtained from the top 3 of the column.

留出液中のU或は、酢酸メチル28%、メタノール72
%であった。また、塔底4より酢酸6、4%、水93.
6%を含む水溶液を毎時38g抜き出した。酢酸基準の
反応収率は98%であった。
U in distillate or methyl acetate 28%, methanol 72
%Met. Also, from the bottom 4 of the tower, 6.4% acetic acid and 93% water were added.
38 g of an aqueous solution containing 6% was extracted per hour. The reaction yield based on acetic acid was 98%.

実施例13 実施例Iにおいて、フィード管lよりジオキシメチレン
ジメチルエーテルを毎時130g,フィード管2より水
を毎時150g供給し、還流比1として、実施例lと同
様の操作を行った。塔頂3より毎時241gの留出液を
抜き出した。留出液中の組或はメタノール32.4%、
ホルムアルデヒド30.3%を含む水溶液であった。塔
底4より、ジオキシメチレンジメチルエーテル1.7%
を含む水溶液が毎時39g排出された。ジオキシメチレ
ンジメチルエーテル基準の加水分解率は99.5%であ
った。
Example 13 In Example I, 130 g of dioxymethylene dimethyl ether was supplied per hour from feed pipe 1, and 150 g of water was supplied per hour from feed pipe 2, and the same operation as in Example 1 was performed, with the reflux ratio being 1. 241 g of distillate was extracted per hour from the top 3 of the column. Methanol in the distillate 32.4%,
It was an aqueous solution containing 30.3% formaldehyde. Dioxymethylene dimethyl ether 1.7% from column bottom 4
39g of an aqueous solution containing was discharged per hour. The hydrolysis rate based on dioxymethylene dimethyl ether was 99.5%.

(発明の効果) (1)固体触媒を用いるために、未反応の反応性物質お
よび副生或物などの液体と触媒との分離は容易である。
(Effects of the Invention) (1) Since a solid catalyst is used, it is easy to separate the catalyst from liquids such as unreacted reactive substances and by-products.

硫酸などの均一触媒では、これらの触媒と反応液との分
離には蒸留、中和などの操作が必要であるが、本発明で
は特に必要がない。
Homogeneous catalysts such as sulfuric acid require operations such as distillation and neutralization to separate the catalyst from the reaction liquid, but this is not particularly necessary in the present invention.

(2)長時間の連続運転が可能である。反応器は外部か
らの強制循環であるために、予備の反応器を設置すると
、触媒の再生、交換、取り出しは、予備の反応器を通し
て行うことができるので、製造を中止する必要がない。
(2) Continuous operation for long periods of time is possible. Since the reactor is forced circulation from the outside, if a spare reactor is installed, catalyst regeneration, replacement, and removal can be performed through the spare reactor, so there is no need to stop production.

(3)反応の収率が高い。特に、メチラール生成反応で
は、ホルムアルデヒド基準で98%以上の反応収率.を
容易に達或することが可能である。
(3) High reaction yield. In particular, in the methylal production reaction, the reaction yield is 98% or more based on formaldehyde. can be easily achieved.

(4)メチラール生成反応において原料にホルマリン水
溶液を使用することができる。
(4) An aqueous formalin solution can be used as a raw material in the methylal production reaction.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1において使用した本発明装置の説明図
、第2図は実施例11において使用した本発明装置の説
明図である。 1.2・・・フィード管   3・・・塔頂4・・・塔
底  A,B,C,D・・・反応器E ・蒸留塔 (ほかl名)
FIG. 1 is an explanatory diagram of the apparatus of the present invention used in Example 1, and FIG. 2 is an explanatory diagram of the apparatus of the present invention used in Example 11. 1.2...Feed pipe 3...Tower top 4...Tower bottom A, B, C, D...Reactor E ・Distillation column (and 1 other name)

Claims (2)

【特許請求の範囲】[Claims] (1)2成分以上の反応平衡を伴う反応性物質を含む液
体と固体酸または固体塩基触媒とを固液接触させ、反応
平衡を伴う反応生成物の一成分に富む成分を留出成分と
して得る装置であって、少なくとも2個以上の、固体酸
または固体塩基触媒を充填した反応器からなり、そのう
ちの少なくとも1個以上の反応器には2成分以上の反応
性物質と2成分以上の反応生成物とを含む液が強制的に
循環され、少なくとも1個の反応器で固液接触した反応
液の蒸気が、他の反応器で強制的に循環されて固液接触
した後の反応性物質と反応生成物とを含む液体と気液接
触して、蒸気相中の反応生成物の一つの成分濃度が高め
られるようにしたことを特徴とする反応蒸留装置。
(1) A liquid containing a reactive substance with reaction equilibrium of two or more components is brought into solid-liquid contact with a solid acid or solid base catalyst to obtain a component enriched in one component of the reaction product with reaction equilibrium as a distillate component. An apparatus comprising at least two or more reactors filled with a solid acid or solid base catalyst, at least one of which reacts with a reaction product of two or more reactive substances and two or more components. The vapor of the reaction liquid that has come into solid-liquid contact in at least one reactor is forcibly circulated in another reactor and is in contact with the reactive substance that has come into solid-liquid contact. A reactive distillation apparatus characterized in that the concentration of one component of the reaction product in the vapor phase is increased by bringing the liquid containing the reaction product into gas-liquid contact.
(2)固体酸または固体塩基触媒を充填した反応器が蒸
留塔に連結している請求項1記載の反応蒸留装置。
(2) The reactive distillation apparatus according to claim 1, wherein the reactor filled with a solid acid or solid base catalyst is connected to a distillation column.
JP2168262A 1990-06-28 1990-06-28 Reactive distillation apparatus Pending JPH0356134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2168262A JPH0356134A (en) 1990-06-28 1990-06-28 Reactive distillation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2168262A JPH0356134A (en) 1990-06-28 1990-06-28 Reactive distillation apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP1020834A Division JPH01287051A (en) 1988-02-03 1989-02-01 Production of formamide and derivative thereof

Publications (1)

Publication Number Publication Date
JPH0356134A true JPH0356134A (en) 1991-03-11

Family

ID=15864751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2168262A Pending JPH0356134A (en) 1990-06-28 1990-06-28 Reactive distillation apparatus

Country Status (1)

Country Link
JP (1) JPH0356134A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996011178A1 (en) * 1994-10-07 1996-04-18 Asahi Kasei Kogyo Kabushiki Kaisha Method of refining methylal
JP2006289158A (en) * 2005-04-05 2006-10-26 Mitsubishi Heavy Ind Ltd Catalyst for synthesis of acetal and method of manufacturing acetal
JP2008523014A (en) * 2004-12-09 2008-07-03 ティコナ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for producing acetal
JP2014507371A (en) * 2010-11-09 2014-03-27 イオネス パラフォルム ゲーエムベーハー ウント コムパニー カーゲー How to make pure methylal
US11807599B2 (en) 2019-08-30 2023-11-07 Shell Usa, Inc. Organic carbonate production process

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01287051A (en) * 1988-02-03 1989-11-17 Asahi Chem Ind Co Ltd Production of formamide and derivative thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01287051A (en) * 1988-02-03 1989-11-17 Asahi Chem Ind Co Ltd Production of formamide and derivative thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996011178A1 (en) * 1994-10-07 1996-04-18 Asahi Kasei Kogyo Kabushiki Kaisha Method of refining methylal
CN1058696C (en) * 1994-10-07 2000-11-22 旭化成工业株式会社 Method of refining methylal
US6160185A (en) * 1994-10-07 2000-12-12 Asahi Kasei Kogyo Kabushiki Kaisha Process for purification of methylal
JP2008523014A (en) * 2004-12-09 2008-07-03 ティコナ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for producing acetal
JP2013064006A (en) * 2004-12-09 2013-04-11 Ticona Gmbh Method for producing acetal
JP2006289158A (en) * 2005-04-05 2006-10-26 Mitsubishi Heavy Ind Ltd Catalyst for synthesis of acetal and method of manufacturing acetal
JP2014507371A (en) * 2010-11-09 2014-03-27 イオネス パラフォルム ゲーエムベーハー ウント コムパニー カーゲー How to make pure methylal
US11807599B2 (en) 2019-08-30 2023-11-07 Shell Usa, Inc. Organic carbonate production process

Similar Documents

Publication Publication Date Title
Saha et al. Recovery of dilute acetic acid through esterification in a reactive distillation column
KR100663853B1 (en) A method of producing ethyl acetate and an equipment for carrying out this method
US8748545B2 (en) Process for producing bio-resourced polymer-grade acrylic acid from glycerol
Dupont et al. Heteropolyacids supported on activated carbon as catalysts for the esterification of acrylic acid by butanol
US5362918A (en) Process for producing acetaldehyde dimethylacetal
KR101668571B1 (en) Method of manufacturing diethyl carbonate
US20120165570A1 (en) Process for producing acetic acid and dimethyl ether using a zeolite catalyst
US20060129000A1 (en) Processes for the manufacture of acetals
US20170121264A1 (en) Process for the co-production of acetic acid and dimethyl ether
US20190112253A1 (en) Catalytic Performance in Processes for Preparing Acetic Acid
NZ202877A (en) Producing isobutene from t-butanol
CN102036947B (en) Method for producing n-propyl acetate
CN103119007B (en) The preparation method of allyl acetate
US20130165690A1 (en) Method for manufacturing polymer-grade bio-based acrylic acid from glycerol
JPH0356134A (en) Reactive distillation apparatus
TWI529159B (en) Method for continuously preparing carboxylic acid esters
US8143454B2 (en) Method for synthesis of acrolein from glycerol
Mahajani Reactions of glyoxylic acid with aliphatic alcohols using cationic exchange resins as catalysts
JP2002088022A (en) Method of manufacturing hydroxyalkyl(meth)acrylate
JPS61238745A (en) Production of allyl alcohol
US20180086686A1 (en) Process for the production of glycolic acid
Mirjalili et al. An efficient protocol for acetalization of carbonyl compounds using Zr (HSO 4) 4 at room temperature under solvent-free conditions
JPS60112736A (en) Production of cinnamic acid
JPH05279297A (en) Production of aliphatic carboxylic acid ester
JPH0449250A (en) Method for reactive extraction