JPH0356085B2 - - Google Patents
Info
- Publication number
- JPH0356085B2 JPH0356085B2 JP59158863A JP15886384A JPH0356085B2 JP H0356085 B2 JPH0356085 B2 JP H0356085B2 JP 59158863 A JP59158863 A JP 59158863A JP 15886384 A JP15886384 A JP 15886384A JP H0356085 B2 JPH0356085 B2 JP H0356085B2
- Authority
- JP
- Japan
- Prior art keywords
- filter
- filtration
- filter aid
- flocculant
- precoat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000001914 filtration Methods 0.000 claims description 43
- 239000000706 filtrate Substances 0.000 claims description 15
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 10
- 239000000126 substance Substances 0.000 claims description 10
- 239000002245 particle Substances 0.000 claims description 6
- 239000000843 powder Substances 0.000 claims description 6
- 239000002131 composite material Substances 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- 239000003463 adsorbent Substances 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 239000000047 product Substances 0.000 claims description 4
- 238000003756 stirring Methods 0.000 claims description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 3
- 239000005909 Kieselgur Substances 0.000 claims description 3
- 229910021536 Zeolite Inorganic materials 0.000 claims description 3
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 3
- 239000010457 zeolite Substances 0.000 claims description 3
- 229920001661 Chitosan Polymers 0.000 claims description 2
- 229920000881 Modified starch Polymers 0.000 claims description 2
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 claims description 2
- 159000000007 calcium salts Chemical class 0.000 claims description 2
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- 229920002678 cellulose Polymers 0.000 claims description 2
- 239000001913 cellulose Substances 0.000 claims description 2
- 150000002505 iron Chemical class 0.000 claims description 2
- 235000019426 modified starch Nutrition 0.000 claims description 2
- 239000010451 perlite Substances 0.000 claims description 2
- 235000019362 perlite Nutrition 0.000 claims description 2
- 229920002401 polyacrylamide Polymers 0.000 claims description 2
- 239000008187 granular material Substances 0.000 claims 2
- 101000856234 Clostridium acetobutylicum (strain ATCC 824 / DSM 792 / JCM 1419 / LMG 5710 / VKM B-1787) Butyrate-acetoacetate CoA-transferase subunit A Proteins 0.000 claims 1
- 239000011550 stock solution Substances 0.000 description 16
- 238000000034 method Methods 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 239000010802 sludge Substances 0.000 description 6
- 239000002002 slurry Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 229910001385 heavy metal Inorganic materials 0.000 description 5
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 4
- 239000004744 fabric Substances 0.000 description 4
- 239000010419 fine particle Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 229910052698 phosphorus Inorganic materials 0.000 description 4
- 239000011574 phosphorus Substances 0.000 description 4
- 239000004576 sand Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 239000003921 oil Substances 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 239000000306 component Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005189 flocculation Methods 0.000 description 2
- 230000016615 flocculation Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 230000000274 adsorptive effect Effects 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000012851 eutrophication Methods 0.000 description 1
- 239000012065 filter cake Substances 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Landscapes
- Filtration Of Liquid (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Description
技術分野
本発明は、濾過助剤を一旦凝集させてからこれ
をプリコート(precoat)した後、原液の濾過工
程に入るプリコート濾過方法に関するものであ
る。
従来技術
従来のプリコート濾過方法は、市販の濾過助剤
をそのままプリコートして原液の濾過工程に入つ
ていた。このプリコートを行う目的は、濾過助剤
によつて形成される濾液流路の改善による「粒子
捕捉効果の向上」にあり、物理的作用による。
従つて濾過助剤固有の粒度分布や多孔性等によ
つて、粒子捕捉効果が左右され、原液の性状、例
えばコロイド状の場合などには高い濾過効率が得
られなかつた。
このような場合、単位時間当たりの濾液を多く
得ようとすれば、粒度分布の粗い濾過助剤を使用
する必要があるが、そうすると満足な清澄液が得
られず、一方細かい濾過助剤を使用すると所望の
濾液量が得られないという欠点があつた。しかも
プリコート層が比較的に不安定で、プリコート時
や濾過工程中にプリコート層のクラツクや崩落を
起こし易く、そのため濾過不能に陥つたり、濾液
の清澄性が著しく劣る結果を生じるなど、安定な
濾過操業を続けることは必ずしも容易でなかつ
た。
発明の課題
本発明は、上述の如き従来のプリコート法の欠
陥を取り除くと共に、(1)濾過原液中の微粒子の除
去効果の向上はもとより、(2)従来の濾過助剤に吸
着性物質を添加することにより、濾過原液中の溶
解性物質、例えば、燐成分、油、窒素成分、重金
属等の微量成分の除去・回収をも可能とする濾過
方法を提供せんとするものである。
課題を解決するための手段
さて、本発明の濾過方法について詳述する。
濾過助剤は多孔質の粉体で、濾材として濾布や
金網を付けた真空ドラムフイルターや加圧リーフ
フイルター等の濾過面上にプリコート層を形成
し、濾液流路の改善を立体的に可能ならしむるも
ので、濾過助剤には、ケイソウ土、パーライト、
セルロース、木粉、活性炭、微粉炭質等があり、
用途によつてはそれらの混合品もある。
かかる濾過助剤を水又は濾液等の比較的清澄な
液の入つたプリコートタンクに懸濁させる。その
濃度はタンクの大きさやフイルターの機種、大き
さ等によつて異なるが、0.1〜30重量%の範囲と
する。
プリコートタンクの攪拌機で攪拌を行い、これ
に凝集剤を添加する。凝集剤はポリ塩化アルミニ
ウム、硫酸アルミニウム、鉄塩等の無機凝集剤又
はポリアクリルアミド、デンプン誘導体、キトー
サン等の高分子凝集剤等で、その添加濃度は、凝
集剤の種類、濾過原液中の微粒子群の量、性質に
よつて異なるが、0.1mg/〜10g/の範囲が
一般的である。
攪拌して凝集剤が均一に混じり合つた後(通常
数分後)、プリコートを開始する。真空ドラム型
プリコートフイルターの場合は、真空ポンプを駆
動し、濾材に金網や濾布を巻いたドラムを回転
し、プリコートタンクから濾過助剤懸濁液を濾過
槽に入れ濾材面上に濾過助剤層を形成させてプリ
コートを完成する。プリコート層の厚さは連続運
転所望時間により任意であるが、通常30〜100mm
前後とする。一般に厚く付けた方が連続運転の時
間を長くできるので有利である。
次に濾過槽に原液を入れ濾過を開始する。プリ
コート層の面上において原液中の粒子群が捕捉さ
れ濾滓を形成するが、これをプリコート層の表面
部と共にスクレーパーで薄く削りとり常に新鮮な
プリコート面で濾過を行う。加圧型のプリコート
フイルターでは、液をポンプによつて圧送し濾過
を行う。濾材には真空ドラムプリコートフイルタ
ーと同様の濾布や金網を付けたものや、シート状
のもの、セラミツクス製、リング状のもの等種々
あり、濾材の形状によつて、リーフフイルター、
フイルタープレス、キヤンドルフイルター等があ
る。
プリコートの方法は、プリコートタンクと濾液
を閉回路とし、濾過助剤懸濁液をポンプによつて
圧送して循環濾過を行う。プリコートの厚さは1
〜30mm程度である。次に原液の濾過にコツクを切
替え濾過を開始する。
本発明方法の理解を助けるため、濾過助剤を用
いた汚泥の濾過装置例の系統図を添付図面に示
す。
なおこの濾過装置自体は既知である。
図中1はスラリーポンプであり、汚泥の混じつ
ている濾過原液をくみ上げて砂除去槽(デサンダ
ー)2へ送る。
砂除去槽2で砂を除去した原液をさらに沈澱槽
(デシルター)3に送る。
沈澱槽3で、ある程度の沈澱を行つた原液を第
2のスラリーポンプ4でくみ上げてヘツドタンク
5に送る。ヘツドタンク5より原液をプリコート
フイルター6に送る。
一方このプリコートフイルター6の下部の濾過
槽中には、濾過助剤タンク8中の濾過助剤と濾液
または水の混合液を第3スラリーポンプ9で供給
してある。
本発明による凝集剤の添加はこの工程で行う。
プリコートフイルター6は図示の例では真空ド
ラムフイルターであり、真空ポンプ12によつて
ドラムの内側を真空とする。このプリコートフイ
ルター6で前述の如く30〜100mmのプリコートが
完成した状態でヘツドタンク5よりの原液の供給
を行つて清澄濾過を行う。
図中7はアドバンシングナイフまたはスクレー
パであり、プリコート濾過面に沈着する濾滓を削
りとつてゆき、常に新鮮な濾過面で濾過を行う。
図中11は濾液槽であり、プリコートフイルタ
ー6で濾過された濾液を集めるタンクである。
かくして得られた濾液は濾液ポンプ10で所望
のところへ供給される。
前記の濾過助剤用粉粒体に吸着性物質を添加し
たものを複合品と呼称し、以下複合濾過助剤と略
称する。この吸着性物質は、濾過原液中の微量溶
解性物質、例えば燐成分、油類、窒素成分、重金
属類等を吸着できるもので、活性炭、ゼオライ
ト、カルシウム塩、ホワイトカーボン等があり、
通常0.1〜10重量%の範囲で使用する。
実施例
次いで実施例によつて本発明をより具体的に説
明する。
実施例
濾過原液として霞ケ浦の浚渫した底質汚泥(底
泥)を用いて、濾過面積2.0m2の真空ドラム型プ
リコートフイルターで、従来のプリコート法と本
発明のプリコート法を比較実験した。
その結果は次表の如くなつた。表中で実験No.
1、3は本発明の方法、2、4は従来のプリコー
ト法による結果である。
TECHNICAL FIELD The present invention relates to a precoat filtration method in which a filter aid is once agglomerated and then precoated, followed by a filtration step of the stock solution. Prior Art In the conventional precoat filtration method, a commercially available filter aid is precoated as it is and the filtration process of the stock solution is started. The purpose of this precoating is to "improve the particle trapping effect" by improving the filtrate flow path formed by the filter aid, and is based on a physical action. Therefore, the particle trapping effect is affected by the particle size distribution, porosity, etc. specific to the filter aid, and high filtration efficiency cannot be obtained depending on the nature of the stock solution, for example, when it is colloidal. In such cases, in order to obtain a large amount of filtrate per unit time, it is necessary to use a filter aid with a coarse particle size distribution, but this does not result in a satisfactory clear solution; This resulted in a drawback that the desired amount of filtrate could not be obtained. Moreover, the pre-coat layer is relatively unstable and tends to crack or collapse during the pre-coating or filtration process, resulting in impossibility of filtration or extremely poor clarity of the filtrate. It was not always easy to continue the filtration operation. Problems of the Invention The present invention eliminates the deficiencies of the conventional precoating method as described above, and also (1) improves the effect of removing fine particles in the filtration stock solution, and (2) adds an adsorbent substance to the conventional filter aid. By doing so, it is an object of the present invention to provide a filtration method that also makes it possible to remove and recover soluble substances in the filtration stock solution, such as trace components such as phosphorus components, oils, nitrogen components, and heavy metals. Means for Solving the Problems Now, the filtration method of the present invention will be explained in detail. Filter aid is a porous powder that forms a precoat layer on the filtration surface of vacuum drum filters and pressurized leaf filters that have filter cloth or wire mesh attached as a filter medium, making it possible to improve the filtrate flow path three-dimensionally. Filter aids include diatomaceous earth, perlite,
There are cellulose, wood flour, activated carbon, pulverized carbon, etc.
Depending on the application, there are also mixtures of these products. Such filter aids are suspended in a precoat tank containing a relatively clear liquid such as water or filtrate. The concentration varies depending on the size of the tank and the type and size of the filter, but should be in the range of 0.1 to 30% by weight. Stir with the stirrer in the pre-coat tank, and add the flocculant to this. The flocculant is an inorganic flocculant such as polyaluminum chloride, aluminum sulfate, or iron salt, or a polymer flocculant such as polyacrylamide, starch derivative, chitosan, etc. The concentration of the flocculant added depends on the type of flocculant and the fine particle group in the filtration stock solution. Although it varies depending on the amount and nature of the amount, it is generally in the range of 0.1 mg/-10 g/. After stirring to uniformly mix the flocculant (usually after several minutes), precoating begins. In the case of a vacuum drum type pre-coat filter, the vacuum pump is driven to rotate a drum wrapped with wire mesh or filter cloth around the filter medium, and the filter aid suspension is poured from the pre-coat tank into the filter tank and the filter aid is coated on the surface of the filter medium. A layer is formed to complete the precoat. The thickness of the precoat layer is arbitrary depending on the desired continuous operation time, but it is usually 30 to 100 mm.
Before and after. In general, it is advantageous to apply thicker layers because the continuous operation time can be extended. Next, pour the stock solution into the filtration tank and start filtration. Particles in the stock solution are captured on the surface of the precoat layer to form a filter cake, which is scraped off with a scraper along with the surface of the precoat layer, and filtration is always performed using a fresh precoat surface. In a pressurized precoat filter, the liquid is pumped and filtered. There are various types of filter media, such as those with filter cloth or wire mesh similar to vacuum drum pre-coated filters, sheet-shaped ones, ceramics, ring-shaped ones, etc. Depending on the shape of the filter media, leaf filters,
There are filter presses, candle filters, etc. In the precoating method, the precoat tank and the filtrate are connected in a closed circuit, and the filter aid suspension is pumped through a pump to perform circulation filtration. The thickness of the precoat is 1
~30mm. Next, switch the filter to filtration of the stock solution and start filtration. To assist in understanding the method of the present invention, a system diagram of an example of a sludge filtration device using a filter aid is shown in the accompanying drawings. Note that this filtration device itself is known. In the figure, 1 is a slurry pump that pumps up the filtration solution mixed with sludge and sends it to a sand removal tank (desander) 2. The undiluted solution from which sand has been removed in the sand removal tank 2 is further sent to a sedimentation tank (desilter) 3. The stock solution, which has been precipitated to some extent in the settling tank 3, is pumped up by the second slurry pump 4 and sent to the head tank 5. The stock solution is sent from the head tank 5 to the precoat filter 6. On the other hand, a mixture of the filter aid and filtrate or water in the filter aid tank 8 is supplied to the filtration tank below the precoat filter 6 by a third slurry pump 9. The addition of the flocculant according to the invention takes place in this step. In the illustrated example, the precoat filter 6 is a vacuum drum filter, and the inside of the drum is evacuated by a vacuum pump 12. After a precoat of 30 to 100 mm has been completed with this precoat filter 6 as described above, the stock solution is supplied from the head tank 5 to perform clarifying filtration. In the figure, numeral 7 denotes an advancing knife or scraper, which scrapes away filter slag deposited on the pre-coated filter surface, thereby always performing filtration with a fresh filter surface. In the figure, 11 is a filtrate tank, which is a tank for collecting the filtrate filtered by the precoat filter 6. The filtrate thus obtained is supplied to a desired location by a filtrate pump 10. A product obtained by adding an adsorptive substance to the above-mentioned powder or granular filter aid is called a composite product, and hereinafter abbreviated as composite filter aid. This adsorbent substance can adsorb trace amounts of soluble substances in the filtration stock solution, such as phosphorus components, oils, nitrogen components, heavy metals, etc., and includes activated carbon, zeolite, calcium salts, white carbon, etc.
It is usually used in a range of 0.1 to 10% by weight. Examples Next, the present invention will be explained in more detail with reference to Examples. Example Using dredged bottom sludge from Kasumigaura as a filtration stock solution, a comparison experiment was conducted between the conventional precoat method and the precoat method of the present invention using a vacuum drum type precoat filter with a filtration area of 2.0 m 2 . The results were as shown in the table below. Experiment No. in the table.
1 and 3 are the results obtained by the method of the present invention, and 2 and 4 are the results obtained by the conventional precoating method.
【表】
(備 考)
実験方法:ケイソウ土濾過助剤60Kgを400容量
プリコートタンクに入れて攪拌し、実験No.1、
3ではポリ塩化アルミニウム(PAC)を400g
(濃度1000mg/)添加攪拌し、5分後にプリ
コートを開始し、60mmのプリコート層を形成し
た後、濃度100g/の底泥の脱水濾過に移行
した。スクレーパーの切削進行速度は0.05mm/
分で、ドラム回転数は1r.p.m.の条件で濾過を
行い、プリコート層が10mmになつた時点で濾過
を終了し、プリコート層の内部に汚泥粒子がど
の位貫入しているかを観察した。濾材には濾布
を使用したがその汚れ具合は実験No.1、3では
きれいだつたがNo.2、4では汚れており、汚泥
による目詰まりが認められた。
本発明の効果は、実施例に一部記載の如くであ
るがこれをまとめると次のようになる。
(1) 従来法に比べプリコートが安定し、真空ドラ
ム型プリコートフイルターの場合は、崩落の心
配がなく、中断することなく安心して濾過操業
が維持できる。
(2) 本発明の方法によれば、真空ドラム型プリコ
ートフイルターのプリコートは、実施例の如
く、原液中の微粒子群を表面で捕捉する効果が
強く、従来のプリコートのように微粒子群の貫
入がないため、清澄な液が得られると同時に、
濾材面での目詰まりがなく濾過速度が早い。濾
材の洗浄も大幅に減らすことができる。
(3) 従来の原液に凝集剤を添加し、凝集処理する
場合と比べると、本発明の方法の凝集処理液は
再利用できるので凝集剤の量が少なくて済む。
(4) 本発明の複合濾過助剤のプリコート濾過法に
よつて微量溶解性物質の除去・回収を行い得
る。吸着性物質の活性炭は油分や重金属類の除
去に、ゼオライトは窒素成分に、炭酸カルシウ
ムは燐成分に特に効果を発揮し、ホワイトカー
ボンは、もつと溶解性物質濃度の薄いものに汎
用的に使用できる。
周知の如く「水環境の富栄養化対策」の重要性
を近年増すばかりで、生活排水の浄化や畜産屎尿
の処理、処分や湖沼、内湾の富栄養化防止の対策
の一つとして、窒素・燐の除去に寄与できる。
又重金属の除去・回収は、金属メツキ排水の処
理や水中の微量金属の回収、例えば水銀やカドミ
ウムの除去・回収、あるいは浚渫汚泥中の重金属
成分の除去などにも寄与し得る。[Table] (Notes) Experimental method: 60 kg of diatomaceous earth filter aid was placed in a 400 capacity pre-coat tank and stirred.
3: 400g of polyaluminum chloride (PAC)
(concentration 1000 mg/) was added and stirred, and after 5 minutes precoating was started to form a 60 mm precoat layer, followed by dehydration filtration of bottom mud with a concentration of 100 g/. The cutting progress speed of the scraper is 0.05mm/
The filtration was performed at a drum rotation speed of 1 r.pm, and the filtration was terminated when the precoat layer reached 10 mm, and the extent to which the sludge particles had penetrated into the precoat layer was observed. A filter cloth was used as the filter medium, and although it was clean in Experiment Nos. 1 and 3, it was dirty in Experiments No. 2 and 4, and clogging with sludge was observed. The effects of the present invention are partially described in the Examples, but can be summarized as follows. (1) Compared to conventional methods, the precoat is more stable, and in the case of vacuum drum type precoat filters, there is no fear of collapse, and filtration operations can be maintained without interruption. (2) According to the method of the present invention, the precoat of the vacuum drum type precoat filter has a strong effect of capturing fine particles in the stock solution on the surface, as in the embodiment, and prevents the penetration of fine particles unlike the conventional precoat. Because there is no
There is no clogging on the filter media surface and the filtration speed is fast. Cleaning of filter media can also be significantly reduced. (3) Compared to the conventional method of adding a flocculant to a stock solution and performing flocculation treatment, the flocculation treatment solution of the method of the present invention can be reused, so the amount of flocculant can be reduced. (4) Trace soluble substances can be removed and recovered by the precoat filtration method using the composite filter aid of the present invention. Activated carbon, which is an adsorbent substance, is particularly effective for removing oil and heavy metals, zeolite is particularly effective for nitrogen components, calcium carbonate is particularly effective for phosphorus components, and white carbon is commonly used for substances with a low concentration of soluble substances. can. As is well known, the importance of "countermeasures against eutrophication of the water environment" has only increased in recent years. Nitrogen and It can contribute to the removal of phosphorus. The removal and recovery of heavy metals can also contribute to the treatment of metal plating wastewater, the recovery of trace metals in water, for example, the removal and recovery of mercury and cadmium, and the removal of heavy metal components in dredged sludge.
図面は本発明の濾過方法に用いられる濾過装置
の1実施例の系統図である。
1……スラリーポンプ、2……砂除去槽、3…
…沈澱槽、4……スラリーポンプ、5……ヘツド
タンク、6……プリコートフイルター、7……ア
ドバンシングナイフ(スクレーパ)、8……濾過
助剤タンク、9……スラリーポンプ、10……濾
液ポンプ、11……濾液槽、12……真空ポン
プ。
The drawing is a system diagram of one embodiment of a filtration device used in the filtration method of the present invention. 1...Slurry pump, 2...Sand removal tank, 3...
... Sedimentation tank, 4 ... Slurry pump, 5 ... Head tank, 6 ... Precoat filter, 7 ... Advancing knife (scraper), 8 ... Filter aid tank, 9 ... Slurry pump, 10 ... Filtrate pump , 11...filtrate tank, 12...vacuum pump.
Claims (1)
粉粒体の単品又は複合品を、水又は比較的に清澄
な濾液に添加し、次いで撹拌混合して懸濁させ、
これに0.1mg/〜10g/の範囲の、所要の濃
度を得る凝集剤を添加し、撹拌した後、圧力差方
式プリコート フイルターを用いて所定の厚さま
でプリコート フイルター層を形成し、かく形成
したプリコート フイルター層の濾過面をスクレ
ーパ等により切削して常に新鮮なプリコート濾過
面が現れるようにし、かつ圧力差を用いて原液濾
過を行うことを特徴とする凝集処理した濾過助剤
をプリコートする濾過方法。 2 濾過助剤用粉粒体が、ケイソウ土、パーライ
ト、セルロース、カーボン質等単一又はその混合
物からなる特許請求の範囲第1項記載の濾過方
法。 3 濾過助剤用粉粒体の複合品が、活性炭、ゼオ
ライト、カルシウム塩、ホワイトカーボン等の吸
着性物質の0.1〜10重量%を含んだ濾過助剤用粉
粒体よりなる特許請求の範囲第1項または第2項
に記載の濾過方法。 4 凝集剤がポリ塩化アルミニウム、硫酸アルミ
ニウム、鉄塩等の無機凝集剤又は、ポリアクリル
アミド、デンプン誘導体、キトーサン等の高分子
凝集剤である特許請求の範囲第1ないし第3項の
いずれか1項記載の濾過方法。[Claims] 1. Adding a single or composite filter aid powder having an average particle size of 3 to 150 μm to water or a relatively clear filtrate, and then stirring and mixing to suspend the filter aid. ,
A flocculant to obtain the desired concentration in the range of 0.1 mg/~10 g/ is added to this, and after stirring, a pre-coat filter layer is formed to a predetermined thickness using a pressure differential pre-coat filter, and the thus formed pre-coat A filtration method for precoating an agglomerated filter aid, characterized in that the filtration surface of a filter layer is cut with a scraper or the like so that a fresh precoated filtration surface always appears, and the undiluted solution is filtered using a pressure difference. 2. The filtration method according to claim 1, wherein the filter aid powder is made of diatomaceous earth, perlite, cellulose, carbon, or a mixture thereof. 3. Claim No. 3, wherein the composite product of powder and granular material for filter aid consists of powder and granular material for filter aid containing 0.1 to 10% by weight of an adsorbent substance such as activated carbon, zeolite, calcium salt, white carbon, etc. The filtration method according to item 1 or 2. 4. Any one of claims 1 to 3, wherein the flocculant is an inorganic flocculant such as polyaluminum chloride, aluminum sulfate, or iron salt, or a polymeric flocculant such as polyacrylamide, a starch derivative, or chitosan. Filtration method as described.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59158863A JPS6138611A (en) | 1984-07-31 | 1984-07-31 | Filtering method by precoating filter aid subjected to flocculation treatment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59158863A JPS6138611A (en) | 1984-07-31 | 1984-07-31 | Filtering method by precoating filter aid subjected to flocculation treatment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6138611A JPS6138611A (en) | 1986-02-24 |
JPH0356085B2 true JPH0356085B2 (en) | 1991-08-27 |
Family
ID=15681040
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59158863A Granted JPS6138611A (en) | 1984-07-31 | 1984-07-31 | Filtering method by precoating filter aid subjected to flocculation treatment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6138611A (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE9103661D0 (en) * | 1991-12-12 | 1991-12-12 | Kemira Kemi Ab | PROCEDURES FOR PREPARING A COAGULATING CHEMICAL |
JP2640901B2 (en) * | 1993-02-05 | 1997-08-13 | 公彦 岡上 | Liquid filtration device |
JP2841008B2 (en) * | 1993-05-10 | 1998-12-24 | 公彦 岡上 | Liquid filtration device |
US6866704B2 (en) * | 2002-01-31 | 2005-03-15 | Koslow Technologies Corporation | Microporous filter media with intrinsic safety feature |
JP4557566B2 (en) * | 2003-02-26 | 2010-10-06 | 株式会社大本組 | Disposal methods for contaminated water, contaminated mud, and other contaminants |
US7591952B2 (en) | 2003-12-23 | 2009-09-22 | Wing Yip Young | Water treatment mixture and methods and system for use |
US7438828B2 (en) * | 2003-12-23 | 2008-10-21 | Wing Yip Young | Water treatment mixture |
JP5620153B2 (en) * | 2010-06-04 | 2014-11-05 | 中国化薬株式会社 | Method and apparatus for producing calcium ion water |
JP2012087005A (en) * | 2010-10-19 | 2012-05-10 | Asahi Kagaku Kogyo Co Ltd | Method for manufacturing high-purity sodium aluminate, and high-purity sodium aluminate |
JP5768487B2 (en) * | 2011-05-16 | 2015-08-26 | 栗田工業株式会社 | Filtration device |
RU2588630C2 (en) | 2011-07-29 | 2016-07-10 | Торэй Индастриз, Инк. | Method of making auxiliary filtration material |
NZ717970A (en) | 2013-08-19 | 2017-05-26 | Paul Koenig | Waste processing system |
WO2023171644A1 (en) * | 2022-03-08 | 2023-09-14 | 東レ株式会社 | Filter aid, filtering processing method, and cellulase production method |
-
1984
- 1984-07-31 JP JP59158863A patent/JPS6138611A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6138611A (en) | 1986-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0356085B2 (en) | ||
US3227650A (en) | Turbidity and color removal by filter aid filters | |
US4507208A (en) | Process for handling waste from oil well operations | |
JPH04227808A (en) | Method for filtering potable water and chemical, phamaceutical liquid and filter aid mixture therefor | |
JP5277997B2 (en) | Water purification method | |
US5279718A (en) | Method of electroosmotically dehydrating sludge | |
CA1225519A (en) | Clarification of high density brine fluids | |
CN101186401B (en) | Oil mud harmless treatment and resource reclamation method | |
JPH02500419A (en) | Method for separating and removing hydrocarbons from wastewater | |
JP2004025011A (en) | Method of treating muddy water | |
JP2989964B2 (en) | Radioactive waste liquid treatment equipment | |
JP3496773B2 (en) | Advanced treatment method and apparatus for organic wastewater | |
JP2007152344A (en) | Powder muddy water treatment agent, muddy water dehydrating method, and muddy water volume-reduction device | |
JPS60206480A (en) | Treatment of waste water | |
JP2009119427A (en) | Method of treating muddy water | |
JP2007260572A (en) | Concentration process of surplus sludge and sludge coagulant aid | |
JPH06343999A (en) | Dehydration process for sludge | |
JP2003154370A (en) | Method for water treatment/sludge treatment without using chemical | |
US3648847A (en) | Filter aid conditioners | |
JPH0838818A (en) | Top feed-type continuous vacuum precoat filtration and its device | |
US1954236A (en) | Filtering material and method | |
SU710583A1 (en) | Method of flushing cake on filtering apparatus | |
SU608769A1 (en) | Method of flushing sediments | |
SU1641390A1 (en) | Pulsating filter | |
JPS6291217A (en) | Filtration process of suspension |