JPH0355661B2 - - Google Patents

Info

Publication number
JPH0355661B2
JPH0355661B2 JP58101454A JP10145483A JPH0355661B2 JP H0355661 B2 JPH0355661 B2 JP H0355661B2 JP 58101454 A JP58101454 A JP 58101454A JP 10145483 A JP10145483 A JP 10145483A JP H0355661 B2 JPH0355661 B2 JP H0355661B2
Authority
JP
Japan
Prior art keywords
fuel ratio
oxygen sensor
oxygen
air
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58101454A
Other languages
Japanese (ja)
Other versions
JPS59226251A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP58101454A priority Critical patent/JPS59226251A/en
Publication of JPS59226251A publication Critical patent/JPS59226251A/en
Publication of JPH0355661B2 publication Critical patent/JPH0355661B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1477Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation circuit or part of it,(e.g. comparator, PI regulator, output)
    • F02D41/1479Using a comparator with variable reference

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、エンジンの空燃比制御装置、詳しく
は、酸素センサを用いた空燃比のフイードバツク
制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to an air-fuel ratio control device for an engine, and more particularly to an air-fuel ratio feedback control device using an oxygen sensor.

〔従来技術〕[Prior art]

近時、エンジンの吸入混合気の空燃比を精度よ
く目標値に制御するために、排気系に酸素センサ
を設けて、空燃比と相関関係をもつ排気中の酸素
濃度に応じて燃料供給量をフイードバツク制御し
ている。
Recently, in order to accurately control the air-fuel ratio of the engine intake air-fuel mixture to a target value, an oxygen sensor has been installed in the exhaust system, and the amount of fuel supplied is adjusted according to the oxygen concentration in the exhaust gas, which has a correlation with the air-fuel ratio. Feedback is controlled.

このような空燃比制御装置としては、例えば、
本出願人が先に特許出願した「空燃比検出方法」
(特開昭56−89051号)があり、第1図のように示
すことができる。第1図において、1は酸素セン
サであり、酸素センサ1は酸素濃度に応じて起電
力を発生する一種の酸素電池の原理を応用したも
ので、起電力を表わす電源2と内部抵抗3により
示される。すなわち、酸素センサ1は、酸素イオ
ン伝導性の固体電解質を挟んで、一方に基準電
極、他方に酸素電極を有している。基準電極には
電流供給手段4から流し込み電流Isが供給されて
おり、この流し込み電流Isは内側電極に基準酸素
分圧Paを発生させる。一方、酸素電極における
酸素分圧Pbは被測定ガスの有する酸素分圧であ
り、これらの酸素分圧Pa,Pbに基づいて両電極
間に、 E=(RT/4F)・1n(Pa/Pb) 但し、R:気体定数、T:絶対温度、 F:フアラデイ定数なるネルンストの式によつ
て表わされる起電力Eが発生する。そして、この
起電力Eは、所定の空燃比を境として希薄側から
過濃側に切り換つたとき、プラス側へ大きく急変
化し、その切り換り空燃比は前記流し込み電流Is
の値により変化する。また、酸素センサ1は内部
抵抗3を有しており、この内部抵抗3は酸素セン
サ1の活性状態に応じて変化する。したがつて、
酸素センサ1は電源2と内部抵抗3により示さ
れ、その出力Vsは比較器5のプラス端子に入力
されている。比較器5のマイナス端子には抵抗
6,7により分圧された比較基準値SLが入力さ
れており、比較基準値SLは、通常、理論空燃比
において、酸素センサ1の出力Vsが急変する値
の上限と下限の中間の電圧値に設定されている。
したがつて、比較器5はVs>SLのとき過濃信号
SRを、Vs<SLのとき希薄信号SLをフイードバツ
ク制御回路8に出力し、フイードバツク制御回路
8は比較器5からの信号に基づいて図示しない燃
料供給手段(例えば、インジエクタ)の供給する
燃料噴射量を制御して空燃比を目標空燃比に制御
している。そして、フイードバツク制御回路8は
運転状態に応じて目標空燃比を設定し、この目標
空燃比において酸素センサ1の出力Vsが急変化
するように流し込み電流Isを変化させる信号SI
電流供給手段4に出力している。電流供給手段4
はこのフイードバツク制御回路8からの信号SI
基づいて流し込み電流Isの大きさを制御してい
る。
As such an air-fuel ratio control device, for example,
“Air-fuel ratio detection method” for which the applicant previously applied for a patent
(Japanese Unexamined Patent Publication No. 56-89051), and it can be shown as shown in FIG. In Fig. 1, 1 is an oxygen sensor, which applies the principle of a type of oxygen battery that generates an electromotive force according to the oxygen concentration, and is represented by a power source 2 representing the electromotive force and an internal resistance 3. It will be done. That is, the oxygen sensor 1 has a reference electrode on one side and an oxygen electrode on the other side with an oxygen ion conductive solid electrolyte in between. An inflow current Is is supplied to the reference electrode from the current supply means 4, and this inflow current Is generates a reference oxygen partial pressure Pa at the inner electrode. On the other hand, the oxygen partial pressure Pb at the oxygen electrode is the oxygen partial pressure of the gas to be measured, and based on these oxygen partial pressures Pa and Pb, E=(RT/4F)・1n(Pa/Pb ) However, an electromotive force E is generated, which is expressed by the Nernst equation, where R: gas constant, T: absolute temperature, and F: Faraday constant. When this electromotive force E switches from the lean side to the rich side with a predetermined air-fuel ratio as the boundary, it changes greatly and suddenly to the positive side, and the switching air-fuel ratio changes with the injected current Is.
It changes depending on the value of. Further, the oxygen sensor 1 has an internal resistance 3, and this internal resistance 3 changes depending on the activation state of the oxygen sensor 1. Therefore,
The oxygen sensor 1 is represented by a power source 2 and an internal resistor 3, and its output Vs is input to the positive terminal of a comparator 5. A comparison standard value SL, which is voltage-divided by resistors 6 and 7, is input to the negative terminal of the comparator 5, and the comparison standard value SL is normally a value at which the output Vs of the oxygen sensor 1 suddenly changes at the stoichiometric air-fuel ratio. The voltage value is set between the upper and lower limits of .
Therefore, when Vs>SL, comparator 5 outputs an over-concentrated signal.
When Vs< SL , the feedback control circuit 8 outputs the lean signal S L to the feedback control circuit 8, and the feedback control circuit 8 outputs the fuel supplied by a fuel supply means (for example, an injector) (not shown) based on the signal from the comparator 5. The air-fuel ratio is controlled to the target air-fuel ratio by controlling the injection amount. Then, the feedback control circuit 8 sets a target air-fuel ratio according to the operating state, and sends a signal S I to the current supply means 4 to change the injected current Is so that the output Vs of the oxygen sensor 1 suddenly changes at this target air-fuel ratio. It is output to. Current supply means 4
controls the magnitude of the injected current Is based on the signal S I from the feedback control circuit 8.

したがつて、流し込み電流Isを変化させること
により、目標空燃比で酸素センサ1の出力Vsが
急変化し、この出力Vsの急変化に基づいて空燃
比を目標空燃比に制御することができる。
Therefore, by changing the injected current Is, the output Vs of the oxygen sensor 1 changes suddenly at the target air-fuel ratio, and the air-fuel ratio can be controlled to the target air-fuel ratio based on this sudden change in the output Vs.

しかしながら、このような従来の空燃比制御装
置にあつては、目標空燃比で急変化する酸素セン
サの出力と固定の比較基準値とを比較して、目標
空燃比より過濃か希薄かを判断し、空燃比が目標
空燃比となるよう制御しており、また、目標空燃
比で酸素センサの出力が急変化するように酸素セ
ンサに流し込み電流を供給する構成となつていた
ため、酸素センサの出力は内部抵抗と流し込み電
流を剰じた分の電圧が純起電力に加算されたもの
となり、酸素センサの出力は流し込み電流の大き
さにより変化することとなる。したがつて、流し
込み電流の大きさにより変化する酸素センサ出力
と固定の比較基準値とを比較して行う空燃比判断
が不正確となり、空燃比制御を高い精度で行うこ
とができないという問題点があつた。
However, with such conventional air-fuel ratio control devices, the output of the oxygen sensor, which changes rapidly at the target air-fuel ratio, is compared with a fixed comparison reference value to determine whether the air-fuel ratio is richer or leaner than the target air-fuel ratio. However, the air-fuel ratio was controlled to be the target air-fuel ratio, and the configuration was such that current was supplied to the oxygen sensor so that the output of the oxygen sensor suddenly changed at the target air-fuel ratio, so the output of the oxygen sensor is the voltage obtained by adding the internal resistance and the injected current to the pure electromotive force, and the output of the oxygen sensor changes depending on the magnitude of the injected current. Therefore, the air-fuel ratio judgment made by comparing the oxygen sensor output, which changes depending on the magnitude of the injected current, with a fixed comparison reference value becomes inaccurate, and there is a problem that the air-fuel ratio cannot be controlled with high precision. It was hot.

〔発明の目的〕[Purpose of the invention]

そこで、本発明は、流し込み電流に応じて比較
基準値も変化させることにより、比較基準値が常
に酸素センサ出力の上限と下限の中間の値に調整
し、空燃比判断を正確なものとして空燃比制御の
精度を向上させることを目的としている。
Therefore, the present invention changes the comparison reference value according to the injected current, so that the comparison reference value is always adjusted to a value between the upper and lower limits of the oxygen sensor output, and the air-fuel ratio is accurately determined. The purpose is to improve control accuracy.

〔発明の構成〕[Structure of the invention]

本発明の空燃比制御装置は、酸素イオン伝導性
の固体電解質を挟んで、一方に基準電極、他方に
被測定ガス中の酸素濃度に対応した酸素分圧の発
生する酸素電極を有し、両電極間の酸素分圧の差
に応じ目標空燃比において電圧値が急変化する信
号を出力する酸素センサと、酸素センサの基準電
極に基準酸素分圧を発生させ酸素センサ出力の急
変化する目標空燃比の値を決定する流し込み電流
を供給する電流供給手段と、酸素センサの出力信
号値を比較基準値と比較して空燃比が目標空燃比
より希薄であるか過濃であるかを判断して燃料の
供給量を制御するとともに運転状態に応じて電流
供給手段の供給する流し込み電流の大きさを決定
するフイードバツク制御手段と、流し込み電流の
大きさを検出し、該流し込み電流の大きさに対応
して前記比較基準値を変化させる比較基準値決定
手段と、を備えたものとすることにより、流し込
み電流に応じて比較基準値を変化させるものであ
る。
The air-fuel ratio control device of the present invention has a reference electrode on one side and an oxygen electrode that generates an oxygen partial pressure corresponding to the oxygen concentration in a gas to be measured, with an oxygen ion-conducting solid electrolyte in between. An oxygen sensor outputs a signal whose voltage value changes suddenly at a target air-fuel ratio according to the difference in oxygen partial pressure between electrodes, and a target air-fuel ratio generates a reference oxygen partial pressure at the reference electrode of the oxygen sensor, causing a sudden change in the oxygen sensor output. Current supply means for supplying an inflow current that determines the value of the fuel ratio, and comparing the output signal value of the oxygen sensor with a comparison reference value to determine whether the air-fuel ratio is leaner or richer than the target air-fuel ratio. Feedback control means that controls the amount of fuel supplied and determines the magnitude of the sinking current supplied by the current supply means according to the operating state; and a feedback control means that detects the magnitude of the sinking current and responds to the magnitude of the sinking current. and a comparison reference value determining means for changing the comparison reference value according to the injected current.

〔実施例〕〔Example〕

以下図面に従つて本発明の実施例を説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第2図は本発明の一実施例を示す図であり、本
実施例の説明にあたり第1図に示した従来例と同
一構成部分には同一符号を付しその説明を省略す
る。
FIG. 2 is a diagram showing an embodiment of the present invention. In explaining this embodiment, the same components as those of the conventional example shown in FIG.

まず、構成を説明すると、第2図において、酸
素センサ1には電流供給手段4から流し込み電流
Isが供給されており、流し込み電流Isの大きさは
抵抗R1の両端電圧がバツフアアンプBA1,BA2
を介して入力される電流値検出回路11により検
出される。電流値検出回路11は抵抗R2,R3
R4およびオペアンプOP1により構成されており、
抵抗R1の端子間電圧に比例、すなわち流し込み
電流Isの大きさに比例した電圧Viを比較基準値決
定回路12に出力している。比較基準値決定回路
12は抵抗R5,R6,R7,R8,R9,R10およびオ
ペアンプOP2,OP3より構成されており、抵抗
R7,R8により分圧決定される基準電圧Voに電流
検出回路11から入力される電圧ViをK倍
(K:定数)した電圧を加算して比較基準値SLと
して比較器5のマイナス端子に出力している。す
なわち、比較基準値SLは次式により表わされる。
First, to explain the configuration, in FIG. 2, current is supplied to the oxygen sensor 1 from the current supply means 4.
Is is supplied, and the magnitude of the injected current Is is determined by the voltage across the resistor R 1 and the buffer amplifier BA 1 , BA 2
The current value is detected by the current value detection circuit 11 inputted via the current value detection circuit 11. The current value detection circuit 11 includes resistors R 2 , R 3 ,
Consists of R 4 and operational amplifier OP 1 ,
A voltage Vi proportional to the voltage between the terminals of the resistor R1 , that is, proportional to the magnitude of the injected current Is, is output to the comparison reference value determining circuit 12. The comparison reference value determination circuit 12 is composed of resistors R 5 , R 6 , R 7 , R 8 , R 9 , R 10 and operational amplifiers OP 2 and OP 3 .
A voltage obtained by multiplying the voltage Vi input from the current detection circuit 11 by K (K: constant) is added to the reference voltage Vo determined by dividing the voltage by R 7 and R 8 , and a comparison reference value SL is obtained at the negative terminal of the comparator 5. It is output to. That is, the comparison reference value SL is expressed by the following equation.

SL=Vo+KVi(K:定数) したがつて、この比較基準値SLは流し込み電
流Isの大きさに対応して変化しており、上記電流
検出回路11および比較基準値決定回路12は比
較基準値決定手段13を構成している。そして、
比較器5のプラス端子にはバツフアアンプBA2
介して酸素センサ1の出力電圧Vsが入力されて
おり、比較器5は、Vs>SLのとき過濃信号SR
を、Vs<SLのとき稀薄信号SLをフイードバツク
制御回路8に出力する。フイードバツク制御回路
8は比較器5からの信号SR,SLに基づいて制御信
号SQを図示しない燃料供給手段(例えば、インジ
エクタ)に出力することにより制御してエンジン
に供給する燃料噴射量を制御し、空燃比が目標空
燃比となるように制御している。このフイードバ
ツク制御回路8は運転状態に最適な目標空燃比を
設定し、この目標空燃比において酸素センサ1の
出力Vsが急変化するように流し込み電流Isを変
化させる信号SIを電流供給手段4に出力してい
る。電流供給手段4はこのフイードバツク制御回
路8からの信号SIに基づいて流し込み電流Isの大
きさを制御している。上記比較器5およびフイー
ドバツク制御回路8はフイードバツク制御手段1
4を構成している。
SL=Vo+KVi (K: constant) Therefore, this comparison reference value SL changes depending on the magnitude of the injected current Is, and the current detection circuit 11 and comparison reference value determination circuit 12 determine the comparison reference value. It constitutes means 13. and,
The output voltage Vs of the oxygen sensor 1 is inputted to the positive terminal of the comparator 5 via the buffer amplifier BA 2 , and the comparator 5 outputs an overconcentration signal S R when Vs>SL.
When Vs<SL, a lean signal S L is output to the feedback control circuit 8. The feedback control circuit 8 outputs a control signal S Q to a fuel supply means (for example, an injector) (not shown) based on the signals S R and S L from the comparator 5, thereby controlling the amount of fuel injection to be supplied to the engine. control so that the air-fuel ratio becomes the target air-fuel ratio. This feedback control circuit 8 sets a target air-fuel ratio that is optimal for the operating condition, and sends a signal S I to the current supply means 4 to change the injected current Is so that the output Vs of the oxygen sensor 1 suddenly changes at this target air-fuel ratio. It is outputting. The current supply means 4 controls the magnitude of the injected current Is based on the signal S I from the feedback control circuit 8. The comparator 5 and the feedback control circuit 8 are connected to the feedback control means 1.
4.

次に作用を説明する。 Next, the action will be explained.

フイードバツク制御回路8は運転状態に最適な
目標空燃比を設定して電流供給手段4に信号SI
出力し、電流供給手段4は信号SIに対応した値の
流し込み電流Isを酸素センサ1に供給している。
そして、流し込み電流Isを変化させた場合、酸素
センサ1の出力特性は、第3図に示すようにな
り、酸素センサ1の出力Vsの急変する空燃比の
値は、第4図に示すように、流し込み電流Isの増
加に伴つて稀薄側へ移行する。また、酸素センサ
1は内部抵抗3を有しているため、酸素センサ1
の出力Vsは流し込み電流Isの影響を受け、流し
込み電流Isが増加すると、第3図に示すように、
出力Vsも高くなる。したがつて、酸素センサ1
の出力Vsの上限と下限の中間の値(以下中間電
圧という)Vnは流し込み電流Isの増加に伴つて、
第5図に示すように、高くなる。そこで、この流
し込み電流Isの大きさに基づいて、比較基準値決
定手段13により比較基準値SLの値を調整して
酸素センサ1の出力Vsの急変化を確実に検出し
ている。すなわち、電流検出回路11により抵抗
R1の両端の電圧を比較して流し込み電流Isの値を
検出し、流し込み電流Isの値に比例した電圧Viを
比較基準値決定回路12に出力している。比較基
準値決定回路12は、抵抗R7,R8により分圧決
定される電圧VoにKViを加算した電圧を比較基
準値SLとして比較器5に出力しており、定数K
はKVi=IsRsとなるように設定する。したがつ
て、電圧Voを流し込み電流Isが零の場合の酸素
センサ出力Vsの中間電圧Vnに設定すると、比較
基準値SLは流し込み電流Isが変化しても、常に、
酸素センサ出力Vsの中間電圧Vnとなり、目標空
燃比における酸素センサ出力Vsの急変化を比較
器5により確実に判別することができる。その結
果、空燃比が目標空燃比より稀薄であるか過濃で
あるかを広範囲にわたつて正確に判断することが
でき、空燃比を目標空燃比に精度よく制御するこ
とができるとともに運転状態に応じて目標空燃比
を広範囲に設定することができる。
The feedback control circuit 8 sets the optimal target air-fuel ratio for the operating condition and outputs a signal S I to the current supply means 4, and the current supply means 4 injects a current Is corresponding to the signal S I into the oxygen sensor 1. supplying.
When the injected current Is is changed, the output characteristics of the oxygen sensor 1 become as shown in Fig. 3, and the value of the air-fuel ratio at which the output Vs of the oxygen sensor 1 suddenly changes is as shown in Fig. 4. , shifts to the lean side as the inflow current Is increases. Furthermore, since the oxygen sensor 1 has an internal resistance 3, the oxygen sensor 1
The output Vs of is affected by the sink current Is, and as the sink current Is increases, as shown in Figure 3,
The output Vs also becomes higher. Therefore, oxygen sensor 1
The intermediate value between the upper and lower limits of the output Vs (hereinafter referred to as intermediate voltage) Vn is as the inflow current Is increases,
As shown in FIG. 5, the height increases. Therefore, based on the magnitude of this injected current Is, the comparison reference value determining means 13 adjusts the value of the comparison reference value SL to reliably detect a sudden change in the output Vs of the oxygen sensor 1. In other words, the current detection circuit 11
The voltage across R1 is compared to detect the value of the sink current Is, and a voltage Vi proportional to the value of the sink current Is is output to the comparison reference value determining circuit 12. The comparison reference value determination circuit 12 outputs a voltage obtained by adding KVi to the voltage Vo divided by the resistors R 7 and R 8 to the comparator 5 as a comparison reference value SL,
is set so that KVi=IsRs. Therefore, if the voltage Vo is set to the intermediate voltage Vn of the oxygen sensor output Vs when the inflow current Is is zero, the comparison reference value SL will always be, even if the inflow current Is changes.
This becomes the intermediate voltage Vn of the oxygen sensor output Vs, and the comparator 5 can reliably determine a sudden change in the oxygen sensor output Vs at the target air-fuel ratio. As a result, it is possible to accurately judge whether the air-fuel ratio is leaner or richer than the target air-fuel ratio over a wide range, and it is possible to control the air-fuel ratio to the target air-fuel ratio with high precision and to adjust the operating conditions. Accordingly, the target air-fuel ratio can be set over a wide range.

(効 果) 本発明によれば、酸素センサの出力の急変化す
る目標空燃比を決定する酸素センサへの流し込み
電流の大きさに応じて、酸素センサ出力と比較す
る比較基準値を調整することができるので、目標
空燃比における酸素センサ出力の急変化を確実に
判別することができる。したがつて、空燃比が流
し込み電流を変化させることにより変化する目標
空燃比より稀薄であるか過濃であるかを正確に判
別することができ、空燃比を目標空燃比に精度よ
く制御することができるとともに運転状態に応じ
て目標空燃比を広範囲に設定することができる。
(Effects) According to the present invention, the reference value for comparison with the output of the oxygen sensor is adjusted in accordance with the magnitude of the current flowing into the oxygen sensor that determines the target air-fuel ratio at which the output of the oxygen sensor suddenly changes. Therefore, a sudden change in the oxygen sensor output at the target air-fuel ratio can be reliably determined. Therefore, it is possible to accurately determine whether the air-fuel ratio is leaner or richer than the target air-fuel ratio, which changes by changing the injected current, and to precisely control the air-fuel ratio to the target air-fuel ratio. In addition, the target air-fuel ratio can be set over a wide range depending on the operating condition.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の空燃比制御装置を示す回路図、
第2〜5図は本発明の空燃比制御装置の一実施例
を示す図であり、第2図はその回路図、第3図は
その流し込み電流を変化させた場合の酸素センサ
の出力特性を示す図、第4図はその酸素センサの
出力急変する空燃比と流し込み電流の関係を示す
図、第5図はその酸素センサの出力の中間電圧と
流し込み電流の関係を示す図である。 1……酸素センサ、4……電流供給手段、13
……比較基準値決定手段、14……フイードバツ
ク制御手段。
Figure 1 is a circuit diagram showing a conventional air-fuel ratio control device.
Figures 2 to 5 are diagrams showing an embodiment of the air-fuel ratio control device of the present invention, Figure 2 is its circuit diagram, and Figure 3 shows the output characteristics of the oxygen sensor when the injected current is changed. FIG. 4 is a diagram showing the relationship between the air-fuel ratio, which suddenly changes the output of the oxygen sensor, and the flowing current, and FIG. 5 is a diagram showing the relationship between the intermediate voltage of the output of the oxygen sensor and the flowing current. 1... Oxygen sensor, 4... Current supply means, 13
. . . Comparison reference value determining means, 14 . . . Feedback control means.

Claims (1)

【特許請求の範囲】[Claims] 1 酸素イオン伝導性の固体電解質を挟んで、一
方に基準電極、他方に被測定ガス中の酸素濃度に
対応した酸素分圧の発生する酸素電極を有し、両
電極間の酸素分圧の差に応じ目標空燃比において
電圧値が急変化する信号を出力する酸素センサ
と、酸素センサの基準電極に基準酸素分圧を発生
させ酸素センサ出力の急変化する目標空燃比の値
を決定する流し込み電流を供給する電流供給手段
と、酸素センサの出力信号値を比較基準値と比較
して空燃比が目標空燃比より希薄であるが過濃で
あるかを判断して燃料の供給量を制御するととも
に、運転状態に応じて電流供給手段の供給する流
し込み電流の大きさを決定するフイードバツク制
御手段と、流し込み電流の大きさを検出し、該流
し込み電流の大きさに対応して前記比較基準値を
変化させる比較基準値決定手段と、を備えたこと
を特徴とする空燃比制御装置。
1 With an oxygen ion conductive solid electrolyte in between, it has a reference electrode on one side and an oxygen electrode that generates an oxygen partial pressure corresponding to the oxygen concentration in the gas to be measured on the other side, and the difference in oxygen partial pressure between the two electrodes is An oxygen sensor that outputs a signal whose voltage value changes suddenly at the target air-fuel ratio according to the target air-fuel ratio, and an injected current that generates a reference oxygen partial pressure at the reference electrode of the oxygen sensor and determines the value of the target air-fuel ratio at which the oxygen sensor output changes suddenly. the output signal value of the oxygen sensor is compared with a comparison reference value to determine whether the air-fuel ratio is leaner or richer than the target air-fuel ratio, and the amount of fuel supplied is controlled; , a feedback control means that determines the magnitude of the injected current supplied by the current supply means according to the operating state, and a feedback control means that detects the magnitude of the injected current and changes the comparison reference value in accordance with the magnitude of the injected current. An air-fuel ratio control device comprising: comparison reference value determining means for determining a comparison reference value.
JP58101454A 1983-06-07 1983-06-07 Air-fuel ratio controlling apparatus Granted JPS59226251A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58101454A JPS59226251A (en) 1983-06-07 1983-06-07 Air-fuel ratio controlling apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58101454A JPS59226251A (en) 1983-06-07 1983-06-07 Air-fuel ratio controlling apparatus

Publications (2)

Publication Number Publication Date
JPS59226251A JPS59226251A (en) 1984-12-19
JPH0355661B2 true JPH0355661B2 (en) 1991-08-26

Family

ID=14301136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58101454A Granted JPS59226251A (en) 1983-06-07 1983-06-07 Air-fuel ratio controlling apparatus

Country Status (1)

Country Link
JP (1) JPS59226251A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6237057B2 (en) 2013-09-27 2017-11-29 株式会社デンソー Gas sensor control device

Also Published As

Publication number Publication date
JPS59226251A (en) 1984-12-19

Similar Documents

Publication Publication Date Title
US4804454A (en) Oxygen concentration sensing apparatus
JPS60219547A (en) Oxygen concentration detection apparatus
US6226861B1 (en) Method and apparatus for gas concentration detection and manufacturing method of the apparatus
US4769124A (en) Oxygen concentration detection device having a pair of oxygen pump units with a simplified construction
US4796587A (en) Air/fuel ratio control system for internal combustion engine
JPH0355660B2 (en)
US4698209A (en) Device for sensing an oxygen concentration in gaseous body with a source of pump current for an oxygen pump element
JPS61118653A (en) Method for controlling current of electrochemical element
US4762604A (en) Oxygen concentration sensing apparatus
JPS5979847A (en) Control apparatus of oxygen concentration sensor
US20150362457A1 (en) Control unit for a gas concentration sensor
JPS58144649A (en) Air-fuel ratio controlling apparatus
US4818362A (en) Oxygen concentration sensing apparatus
JPH0355661B2 (en)
JPS60224051A (en) Air-fuel ratio detecting device
KR840001992B1 (en) The supply circuit of the basic polar oxygen partial pressure control current for oxygen sensing element
JPS61100651A (en) Apparatus for measuring concentration of oxygen
JPH0750070B2 (en) Oxygen concentration detector
JPS6081440A (en) Air-fuel ratio controller
JPS6017349A (en) Device for controlling air-fuel ratio
JP2505399B2 (en) Air-fuel ratio control device
JPS58172443A (en) Air fuel ratio control method
JPS59211737A (en) Air-fuel ratio control device
JPS59215935A (en) Air-fuel ratio control device
JPH0436341B2 (en)