JPH035545B2 - - Google Patents

Info

Publication number
JPH035545B2
JPH035545B2 JP58097416A JP9741683A JPH035545B2 JP H035545 B2 JPH035545 B2 JP H035545B2 JP 58097416 A JP58097416 A JP 58097416A JP 9741683 A JP9741683 A JP 9741683A JP H035545 B2 JPH035545 B2 JP H035545B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
oxygen sensor
oxygen
electrode
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58097416A
Other languages
Japanese (ja)
Other versions
JPS59222754A (en
Inventor
Kenji Kunihara
Yoshikazu Hirose
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Corporate Research and Development Ltd
Priority to JP58097416A priority Critical patent/JPS59222754A/en
Publication of JPS59222754A publication Critical patent/JPS59222754A/en
Publication of JPH035545B2 publication Critical patent/JPH035545B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4077Means for protecting the electrolyte or the electrodes

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の属する技術分野〕 本発明は酸素イオン導電性を有する固体電解
質、例えばジルコニア系の固体電解質を用いる酸
素センサ、とくに金属熱処理炉内の炭化水素を含
む還元性ふん囲気中の酸素量の測定に適する酸素
センサに関する。 〔従来技術とその問題点〕 上記のような固体電解質を用いる酸素センサは
構造が簡単で価格も比較的安価にできる特長があ
り、各種の産業におけるプロセス計装の一環とし
て広く計装システム中に組み込まれている。この
種センサには、被測定ガス中の酸素分圧が低い場
合にも、検出出力が正確でかつ再現性がよいこと
が要求されるほか、産業プロセス中のガスふん囲
気に含まれやすいダストや金属蒸気等の不純物に
よつても検出出力ができるだけ影響されず、かつ
劣化を起こさないことが要求される。とくに各種
金属材料の熱処理炉、例えば均熱炉、光輝焼鈍
炉、浸炭炉等では酸素センサが高温の炉気に直接
触れることになり、かかる用途に適した酸素セン
サとして第1図に示すような酸素センサが知られ
ている。 第1図は酸素センサの検知部の要部を示すもの
で、図示のように一端を封止した筒状のZrO2
Y2O3,ZrO2−CaO等の酸素イオン導電性固体電
解質1の管をはさんで1対の対向した内側電極2
と外側電極3を設け、内側電極2側には基準ガス
導入管4から酸素分圧既知のガスである空気(分
圧=0.21気圧)Aを流し、他方酸素分圧未知の例
えば炉内の高温ガスにさらされる外側電極3を測
定電極として、この両電極2,3間に発生する起
電力をそれぞれ両電極に接続したリード線5,6
により取り出し、この出力電圧と内側電極2に近
接して設けてある熱電対7によつて得られる温度
とから下記のNernstの式により未知の酸素分圧
を求める。 E=−0.0496×T×log(PO2(2)/PO2(1)) ただし、E:出力電圧(mV)、T:センサの
温度(K)、 PO2(2):被測定ガスの酸素分圧(気圧)、 PO2(1):基準ガスの酸素分圧(気圧) 第1図に示す従来の方式の酸素センサでは、内
側電極2および外側電極3には化学メツキ、真空
蒸着、スパツタリングあるいはペースト焼付によ
つて薄膜もしくは厚膜状に形成された白金(Pt)
が用いられることが多い。 しかしながら上記の方法で形成された電極には
次のような欠点があつた。 (イ) モニターされる流動高温ガスに接触する外側
電極3が固体電解質1と密着性が悪く、また固
体電解質1との熱膨張率の差によつて剥離しや
すい。 (ロ) 炉気に共存するシリカ(SiO2)、アルミナ
(Al2O3)等のダストまたは亜鉛(Zn)、鉄
(Fe)等の金属蒸気が外側電極3と反応して低
融点化合物を生成し、外側電極3が脆化したり
蒸発や飛散により消耗したりする。 (ハ) 還元性ガスふん囲気から析出する炭素が外側
電極3または前記低融点化合物中に拡散し外側
電極3が脆化、消耗しやすい。 なお、ダストの成分としては炉壁の耐火物の成
分である前述のシリカやアルミナが多く、また熱
処理すべき部品の機械加工時に使用する切削剤の
洗浄が不十分であると、これが部品とともに炉内
に持ち込まれて、前述のような亜鉛等の蒸気が炉
内に発生しやすいのである。 そこで、前記のような欠点を考慮して改良され
た電極構造を有する酸素センサの構造の概略を第
2図に示す。図中、第1図と同一符号は同一部分
を表わす。第2図に示された酸素センサでは、外
側電極8は0.5〓mm〜1〓mmの太い白金線を渦巻状に
巻いて固体電解質管1の半球状の閉鎖端の外表面
上に設置し、これに接続するリード線6とともに
被測定ガス導入口11を備えたアルミナ製の保護
管10の内孔の中に図の右方から挿入される。固
体電解質管1は、図の右方の図示しないスプリン
グにより保護管10の先端の内表面に押しつけら
れるので、これにより外側電極8は固体電解質管
1の閉鎖端の外表面に押しつけられる。なお、内
側電極9は白金の金網であり、固体電解質管1の
閉鎖端内表面と基準ガス導入管4の先端との間に
挿まれ、該内表面に押しつけられている。 第2図に示す構造の酸素センサは第1図の構造
のセンサに比べて、苛酷な高温ふん囲気下で使用
しても外側電極8と固体電解質1との間の接触が
劣化することが少なく、実用化に成功している。
しかしながら、浸炭炉などのように炉気が炭化水
素を含み気相のカーボンポテンシヤルが高くて固
相の炭素析出が起きやすいふん囲気下で使用する
と、触媒活性に豊む外側電極8の近傍に集中的に
炭素析出が起き、析出炭素の自触媒作用も重なつ
て固体電解質管1の閉鎖端とアルミナ製の保護管
8との間にち密に炭素が析出して密にパツキング
し、被測定ガスが外側電極8に達しなくなつた
り、外側電極8と固体電解質1との接触不良が発
生してセンサ性能の低下が起こるという欠点を有
していた。この析出炭素は酸素センサを空気中で
800℃〜1000℃で焼成することにより除去でき、
再び酸素センサの性能を回復することは可能では
あるが、炉操業時にこのような劣化が発生した場
合は、操業を一時停止した上で炉内ふん囲気を酸
化性ふん囲気に切り変え、析出炭素の焼き出し
(バーンアウト)を行なつてセンサ性能の回復を
はからねばならない。かかる炉の操業停止は操業
効率を低下させ製品コストを上昇させるため極力
避けねばならない。第2図のような電極構造の酸
素センサにおいては操業条件によつても異なる
が、20日に1回程度の割合でバーンアウトを行な
わなければならない場合があつた。 かかる析出炭素による酸素センサの性能低下を
防止する方法として、特開昭54−130191号公報に
外側電極に掃気ガスを間欠的に当てる方法が有効
であると提案されているが、掃気ガスとして酸素
分圧の高い空気を使用すること、電極部の炭素が
局部的に燃焼して高温になるため固体電解質が熱
衝撃を受け破損したり、あるいは掃気ガスが被測
定ガスの流入口から炉内へ拡散して炉気を乱し、
酸素分圧を変化させて浸炭レベルを狂わせたり、
極端な場合には炉気内の水素あるいは一酸化炭素
と反応して燃焼や爆発を起こす恐れがあり、あま
り実用的とはいえない。逆に酸素分圧の低いガス
を掃気ガスとして使用した場合は、析出炭素の除
去に当然長時間を必要とすることとなるため、こ
れも実用的とはいえない。同公報においてはさら
に、電極材質として金あるいは電子殻のdレベル
が10個の電子で完全にふさがれ、かつメタンの分
解に触媒作用を及ぼさない元素を含む導電性材料
を電極に使用することが提案されているが、熱
的、化学的安定性の点や触媒活性の点から見て白
金に比べて電極材料としては不適当であり、とく
に浸炭時のふん囲気で短時間内に劣化してしまう
おそれがある。 以上のほか、多孔質アルミナを固体電解質管と
外側電極との間にフイルタとして設置し、測定ガ
スが外側電極に到達する以前に非平衡である測定
ガスの組成を平衡に戻すことにより、外側電極部
における炭素の析出量を抑制する方法もあるが、
多孔質アルミナの細孔内で炭素が析出してその析
出炭素の応力により多孔質アルミナが破壊される
おそれがあり、またこの方法は本質的に炭素析出
を防止しうるものでもない。 〔発明の目的〕 以上のような従来技術のもつ欠点に鑑み、本発
明の目的は被測定ガスから炭素が析出しやすい高
還元性ふん囲気内で使用しても、性能の低下や劣
化が少ない酸素センサを得ることにある。 〔発明の要旨〕 上記の目的は本発明によれば、アルカリ金属お
よびアルカリ土類金属の内の少なくとも一方を構
成元素として含み、塩基性酸化物もしくは塩基性
酸化物と中性酸化物との焼結緻密質体であつて、
被測定ガスを流通させる少なくとも1個の開口を
備えた塩基体性耐火物を被測定ガスにさらされる
電極(以下測定電極という)に接して設けること
により達成される。 前述のような高還元性ふん囲気を有する炉気か
ら炭素が析出する最大原因は、炭化水素ガスとく
にイソブタンガスの急速な熱分解反応にある。こ
の反応速度は高温になる程大きくなり、炭化水素
の分解過程でそれぞれ次のような反応によつて炭
素を析出するものと考えられる。 C4H10(ブタン)→C+C3H8+H2 C3H8(プロパン)→C+C2H6+H2 C2H6(エタン) →C+CH4+H2 CH4(メタン) →C+2H2 またかかる反応の速度は測定電極として用いら
れる材料のもつ触媒活性によりさらに高められ
る。本発明は、後述のような実験により測定電極
に例え触媒活性の非常に高い白金を用いた場合で
も、上記の手段により炭素析出を有効に防止しう
ることを見出したものである。 測定電極に接して設ける塩基性耐火物としては
前述のようなアルカリ金属やアルカリ土類金属の
酸化物、例えばマグネシヤ(MgO)、カルシヤ
(CaO)がよく、これら単体では磁器のような耐
火物を形成できないことが多いので、通常の耐火
物例えばアルミナ(Al2O3)の磁器内にかかる金
属酸化物を必要な塩基度になるよう含有させれば
よい。アルカリ金属酸化物は当然アルカリ土類酸
化物よりも塩基度が高いので、例えばNa2Oを比
較的小量耐火物に含有させるだけで十分な効果が
得られる。また耐火物が多孔性であると細孔内に
炭素析出が生じて耐火物の劣化を生じるおそれが
あるので、耐火物をち密な材質に構成するのが合
目的である。 本発明の酸素センサにおいては固体電解質材料
たとえばジルコニア系固体電解質は従来どおり先
端が閉じた筒状に形成され、該閉鎖端部に測定電
極が配されることが多いので、この固体電解質管
の閉鎖端とこれを覆う保護管との間に本発明によ
る塩基性耐火物をキヤツプ状に形成して介装する
のが有利である。従来技術の説明の項で述べたよ
うに固体電解質管は保護管の閉鎖端内面に押し付
けられるので、塩基性耐火物のキヤツプはこの押
し付け力によつて測定電極と密に接触して、この
部分に炭素析出が生じるのを防止する。また場合
により保護管自体を塩基性耐火物で形成して測定
電極が保護管の閉鎖端の内面に押し付けられるよ
うに構成してもよい。自動車用の排気ガス制御や
燃焼制御用に本発明の酸素センサを適用する場合
には、センサを小形で堅ろうな構成とするため固
体電解質は板状に形成されることが多い。本発明
はこのように固体電解質の形状が変わつても、容
易に適用することが可能である。 〔発明の実施例〕 以下図面に基づいて本発明の実施例を詳細に説
明する。第3図に本発明による酸素センサの構造
を断面図で示し、図中第1〜2図に示した従来技
術と同一の部分には同一の符号が付されている。
固体電解質管1は例えば8モル%のイツトリア
(Y2O3)を固溶させたジルコニア(ZrO2)から
なり、図の左方端が閉鎖された例えば50cm程度の
長さの筒状体に形成されている。この固体電解質
管1は、被測定ガスを導入するための開口11を
備えた図では左端が閉鎖されたアルミナ製などの
保護管10の内孔に挿入され、端部ハウジング1
3に内蔵された圧縮ばね14によつて図の左方に
ばね付勢されている。 固体電解質管1の半球状に形成された閉鎖端
と、保護管10の同様に半球状に形成された閉鎖
端との間には、本発明による塩基性耐火物12が
介装されている。この耐火物12は第4図に斜視
図で示すようにキヤツプ状に形成された例えばマ
グネシアの耐火物であり、先端部に被測定ガスを
流通させるための開孔12aを備える。外側電極
としての測定電極8は例えば0.75mm径の白金線を
渦巻状に巻いて形成され、前述の圧縮ばね14か
らの付勢力によつて図示のように固体電解質管1
の半球状の閉鎖端の曲面に沿つて撓み、該閉鎖端
の外表面に良好に接触するとともに、キヤツプ状
の塩基性耐火物12の内側表面に密に接する。一
方、内側電極としての基準電極9は細い白金線か
らなる例えば55メツシユ程度の網からなり、端部
ハウジング13内のばね16により図の左方に向
けて付勢された基準ガス導入管4の左端開口部に
より、固体電解質管1の閉鎖端内表面に押し付け
られて良好な接触を保つ。これら測定電極8およ
び基準電極9からのリード線6,5はそれぞれ図
示のように端部ハウジング13の外側に測定端子
6a,5aとして導出される。固体電解質1の感
知部温度を測定するための温度センサ例えば熱電
対7からも同様に右方に端子7aとして導出され
る。 端部ハウジング13は左端で保護管10と固着
された筒状体であつて、その内孔の図の右方には
めねじ13aが切られており、環状の調整金具1
5の外側の雄ねじがこれに螺合される。前述の圧
縮ばね14は固体電解質に固定されたつば1aと
この調整金具15との間に装着されていて、調整
金具15をねじ13aの奥の方へねじ込むことに
より、圧縮ばね14の付勢力を強めることができ
る。圧縮ばね14の図の右方には別の張力ばね1
6が配されており、その両端が前述の調整金具1
5と基準ガス導入管4に固定されたつば4aに結
合されているので、調整金具15を上述のように
ねじ13aの奥の方にねじ込むことにより基準ガ
ス導入管4の図の左方端が基準電極9に押し付け
られるようになつている。なお17はセンサ内の
基準ガス区画と被測定ガス区画とを相互に隔離す
るシールである。 このように構成された酸素センサは熱処理炉な
どの炉壁18を貫通してその検知部を炉気にさら
すよう挿入される。19は例えばアルミナ系のシ
ール用接着材である。酸素センサの先端検知部は
ほぼ炉内温度に保たれ、固体電解質管1の先端の
測定電極8との接触部には、保護管10の開口1
1および塩基性耐火物12が被測定ガス導入孔1
2aを通して炉気が入り込み、測定すべき酸素ガ
ス分圧がこの部分に達する。一方基準ガス導入管
4の図の右端からは、酸素分圧が既知の基準ガス
例えば酸素分圧0.21気圧の空気が、図示しない手
段により例えば毎分50c.c.の割合で供給され、該導
入管4の図の左端開口から基準電極9の金網のメ
ツシユを通して該基準電極9と固体電解質管1の
先端部の内表面との接触部に導入され、測定端子
5a,6aの間に測定電圧が発生する。なお、上
述の酸素センサの構造は高温ふん囲気の酸素分圧
測定例について示したが、低温ふん囲気で使用す
る場合には、固体電解質管1の先端検知部を測定
に有利な温度にまで加熱するためのヒータを酸素
センサ内に組み込む。 塩基性耐火物12は例えばマグネシア(MgO)
の微粉末を泥しよう鋳込み法、あるいはプレス成
形法により所定形状に成形後、被測定ガス導入孔
12aをあらかじめ明けておいた後、1800℃以上
の高温で加熱、焼結し緻密化する。 本発明の効果を検証するため、第3図に示した
本発明による酸素センサAと、従来使用されてい
た第2図に示すように塩基性耐火物を組み込んで
いない酸素センサBとについて、第1表に示す操
業条件の連続浸炭炉において性能比較試験を行な
つた。塩基性耐火物としてはマグネシア製を使用
した。
[Technical field to which the invention pertains] The present invention relates to an oxygen sensor using a solid electrolyte having oxygen ion conductivity, such as a zirconia-based solid electrolyte, and in particular to measuring the amount of oxygen in a reducing atmosphere containing hydrocarbons in a metal heat treatment furnace. This invention relates to an oxygen sensor suitable for. [Prior art and its problems] Oxygen sensors using solid electrolytes as described above have a simple structure and are relatively inexpensive, and are widely used in instrumentation systems as part of process instrumentation in various industries. It has been incorporated. This type of sensor is required to have accurate detection output and good reproducibility even when the partial pressure of oxygen in the gas to be measured is low. It is required that the detection output is not affected as much as possible by impurities such as metal vapor, and that no deterioration occurs. In particular, in heat treatment furnaces for various metal materials, such as soaking furnaces, bright annealing furnaces, and carburizing furnaces, oxygen sensors come into direct contact with the high-temperature furnace air. Oxygen sensors are known. Figure 1 shows the main part of the detection part of the oxygen sensor. As shown in the figure, a cylindrical ZrO 2
A pair of opposing inner electrodes 2 sandwiching a tube of an oxygen ion conductive solid electrolyte 1 such as Y 2 O 3 , ZrO 2 -CaO, etc.
An outer electrode 3 is provided, and air (partial pressure = 0.21 atm) A, which is a gas with a known oxygen partial pressure, is flowed from a reference gas inlet pipe 4 to the inner electrode 2 side, and on the other hand, air (partial pressure = 0.21 atm) A, which is a gas with a known oxygen partial pressure, is supplied to the inner electrode 2 side. The outer electrode 3 exposed to the gas is used as a measurement electrode, and the electromotive force generated between these two electrodes 2 and 3 is measured by lead wires 5 and 6 connected to both electrodes, respectively.
From this output voltage and the temperature obtained by the thermocouple 7 provided close to the inner electrode 2, the unknown oxygen partial pressure is determined using the Nernst equation below. E=-0.0496×T×log(PO 2 (2)/PO 2 (1)) Where, E: Output voltage (mV), T: Sensor temperature (K), PO 2 (2): Measured gas Oxygen partial pressure (atmospheric pressure), PO 2 (1): Oxygen partial pressure of reference gas (atmospheric pressure) In the conventional oxygen sensor shown in Fig. 1, the inner electrode 2 and outer electrode 3 are coated with chemical plating, vacuum evaporation, Platinum (Pt) formed into a thin or thick film by sputtering or paste baking
is often used. However, the electrode formed by the above method had the following drawbacks. (a) The outer electrode 3, which comes into contact with the flowing high-temperature gas to be monitored, has poor adhesion to the solid electrolyte 1, and is likely to peel off due to the difference in thermal expansion coefficient between the outer electrode 3 and the solid electrolyte 1. (b) Dust such as silica (SiO 2 ) and alumina (Al 2 O 3 ) or metal vapors such as zinc (Zn) and iron (Fe) coexisting in the furnace air react with the outer electrode 3 to form low-melting compounds. This causes the outer electrode 3 to become brittle or to be consumed due to evaporation or scattering. (c) Carbon precipitated from the reducing gas atmosphere diffuses into the outer electrode 3 or the low melting point compound, and the outer electrode 3 is likely to become brittle and wear out. Note that the dust contains a lot of the aforementioned silica and alumina, which are components of the refractories in the furnace walls, and if the cutting agent used when machining parts to be heat treated is insufficiently cleaned, this dust will be mixed with the parts in the furnace. The above-mentioned zinc and other vapors are likely to be generated in the furnace. FIG. 2 shows a schematic structure of an oxygen sensor having an improved electrode structure in consideration of the above drawbacks. In the figure, the same reference numerals as in FIG. 1 represent the same parts. In the oxygen sensor shown in FIG. 2, the outer electrode 8 is a thick platinum wire of 0.5 mm to 1 mm wound spirally and installed on the outer surface of the hemispherical closed end of the solid electrolyte tube 1. The lead wire 6 connected thereto is inserted from the right side of the figure into the inner hole of an alumina protection tube 10 equipped with a gas inlet 11 to be measured. The solid electrolyte tube 1 is pressed against the inner surface of the tip of the protection tube 10 by a spring (not shown) on the right side of the figure, so that the outer electrode 8 is pressed against the outer surface of the closed end of the solid electrolyte tube 1. The inner electrode 9 is a platinum wire mesh, and is inserted between the inner surface of the closed end of the solid electrolyte tube 1 and the tip of the reference gas introduction tube 4, and is pressed against the inner surface. Compared to the sensor with the structure shown in FIG. 1, the oxygen sensor with the structure shown in FIG. 2 is less susceptible to deterioration of the contact between the outer electrode 8 and the solid electrolyte 1 even when used in a harsh high-temperature atmosphere. , has been successfully put into practical use.
However, when used in an atmosphere such as a carburizing furnace where the furnace air contains hydrocarbons and has a high carbon potential in the gas phase, which tends to cause solid phase carbon precipitation, carbon is concentrated near the outer electrode 8, which is rich in catalytic activity. Due to the autocatalytic action of the precipitated carbon, carbon is deposited and packed tightly between the closed end of the solid electrolyte tube 1 and the alumina protection tube 8, and the gas to be measured is However, the solid electrolyte 1 may not reach the outer electrode 8, or poor contact between the outer electrode 8 and the solid electrolyte 1 may occur, resulting in a decrease in sensor performance. This precipitated carbon may cause the oxygen sensor to
It can be removed by firing at 800℃~1000℃,
Although it is possible to restore the performance of the oxygen sensor, if such deterioration occurs during furnace operation, the operation must be temporarily stopped and the atmosphere inside the furnace changed to an oxidizing atmosphere to remove the precipitated carbon. The sensor performance must be restored by performing a burnout. Such a shutdown of the furnace must be avoided as much as possible since it reduces operational efficiency and increases product costs. Oxygen sensors with the electrode structure shown in Figure 2 sometimes had to be burnt out about once every 20 days, although this varied depending on the operating conditions. As a method to prevent the deterioration of oxygen sensor performance due to such precipitated carbon, it has been proposed in Japanese Patent Application Laid-Open No. 130191/1985 that a method of intermittently applying scavenging gas to the outer electrode is effective. The use of air with a high partial pressure may cause the solid electrolyte to be damaged due to thermal shock due to local combustion of carbon in the electrodes and high temperatures, or the scavenging gas may enter the furnace from the inlet of the gas to be measured. It spreads and disturbs the furnace air,
By changing the oxygen partial pressure, you can change the carburization level,
In extreme cases, it may react with hydrogen or carbon monoxide in the reactor air, causing combustion or explosion, so it is not very practical. On the other hand, if a gas with a low oxygen partial pressure is used as the scavenging gas, it will naturally take a long time to remove the precipitated carbon, so this is also not practical. The publication further states that gold or a conductive material containing an element whose electron shell's d-level is completely filled with 10 electrons and which does not have a catalytic effect on the decomposition of methane can be used for the electrode. However, it is unsuitable as an electrode material compared to platinum in terms of thermal and chemical stability and catalytic activity, and it deteriorates within a short period of time in the atmosphere during carburizing. There is a risk of it getting lost. In addition to the above, porous alumina is installed as a filter between the solid electrolyte tube and the outer electrode, and by returning the unbalanced composition of the measurement gas to equilibrium before the measurement gas reaches the outer electrode, the outer electrode There is a method to suppress the amount of carbon precipitation in the
There is a risk that carbon will precipitate within the pores of the porous alumina and the porous alumina will be destroyed by the stress of the precipitated carbon, and this method cannot essentially prevent carbon precipitation. [Objective of the Invention] In view of the above-mentioned drawbacks of the prior art, the object of the present invention is to provide a method that minimizes performance decline and deterioration even when used in a highly reducing atmosphere where carbon tends to precipitate from the gas to be measured. The goal is to obtain an oxygen sensor. [Summary of the Invention] According to the present invention, the above object is achieved by sintering a basic oxide or a basic oxide and a neutral oxide containing at least one of an alkali metal and an alkaline earth metal as a constituent element. It is a compact body,
This is achieved by providing a basic refractory material having at least one opening through which the gas to be measured flows, in contact with an electrode exposed to the gas to be measured (hereinafter referred to as a measurement electrode). The main cause of carbon precipitation from the above-mentioned highly reducing furnace air is the rapid thermal decomposition reaction of hydrocarbon gases, especially isobutane gas. This reaction rate increases as the temperature increases, and it is thought that carbon is precipitated by the following reactions during the hydrocarbon decomposition process. C 4 H 10 (butane) → C + C 3 H 8 + H 2 C 3 H 8 (propane) → C + C 2 H 6 + H 2 C 2 H 6 (ethane) → C + CH 4 + H 2 CH 4 (methane) → C + 2 H 2 The rate of reaction is further increased by the catalytic activity of the material used as the measuring electrode. The present invention is based on the discovery, through experiments described below, that even when platinum, which has a very high catalytic activity, is used as the measuring electrode, carbon deposition can be effectively prevented by the above-described means. As the basic refractory to be placed in contact with the measurement electrode, oxides of alkali metals and alkaline earth metals such as magnesia (MgO) and calcia (CaO) as mentioned above are suitable. Since it is often impossible to form such a metal oxide, it is sufficient to incorporate such a metal oxide into an ordinary refractory material such as alumina (Al 2 O 3 ) porcelain to obtain the required basicity. Since alkali metal oxides naturally have higher basicity than alkaline earth oxides, a sufficient effect can be obtained by incorporating, for example, a relatively small amount of Na 2 O into the refractory. Furthermore, if the refractory is porous, carbon deposits may occur in the pores, leading to deterioration of the refractory, so it is advisable to construct the refractory from a dense material. In the oxygen sensor of the present invention, the solid electrolyte material, for example, the zirconia solid electrolyte, is conventionally formed into a cylindrical shape with a closed end, and the measurement electrode is often disposed at the closed end, so that the solid electrolyte tube is closed. It is advantageous to insert the basic refractory according to the invention in the form of a cap between the end and the protective tube that covers it. As mentioned in the description of the prior art, since the solid electrolyte tube is pressed against the inner surface of the closed end of the protection tube, the basic refractory cap is brought into close contact with the measuring electrode due to this pressing force, and this portion Prevent carbon deposition from occurring. In some cases, the protective tube itself may be made of a basic refractory material so that the measuring electrode is pressed against the inner surface of the closed end of the protective tube. When the oxygen sensor of the present invention is applied to exhaust gas control or combustion control for automobiles, the solid electrolyte is often formed into a plate shape in order to make the sensor compact and robust. The present invention can be easily applied even if the shape of the solid electrolyte changes as described above. [Embodiments of the Invention] Examples of the present invention will be described in detail below based on the drawings. FIG. 3 shows a cross-sectional view of the structure of an oxygen sensor according to the present invention, in which the same parts as those of the prior art shown in FIGS. 1 and 2 are designated by the same reference numerals.
The solid electrolyte tube 1 is made of, for example, zirconia (ZrO 2 ) in which 8 mol% of ittria (Y 2 O 3 ) is dissolved, and is a cylindrical body with a length of, for example, about 50 cm, with the left end of the figure closed. It is formed. This solid electrolyte tube 1 is inserted into an inner hole of a protective tube 10 made of alumina or the like, which has an opening 11 for introducing a gas to be measured and whose left end is closed in the figure, and is inserted into an inner hole of a protective tube 10 made of alumina or the like, which has an opening 11 for introducing a gas to be measured.
3 is biased to the left in the figure by a compression spring 14 built in. A basic refractory 12 according to the present invention is interposed between the hemispherical closed end of the solid electrolyte tube 1 and the similarly hemispherical closed end of the protective tube 10. As shown in a perspective view in FIG. 4, this refractory 12 is a cap-shaped refractory made of magnesia, for example, and has an opening 12a at its tip for allowing gas to be measured to flow therethrough. The measurement electrode 8 as an outer electrode is formed by spirally winding a platinum wire with a diameter of 0.75 mm, for example, and is attached to the solid electrolyte tube 1 as shown in the figure by the biasing force from the compression spring 14 mentioned above.
It bends along the curved surface of the hemispherical closed end of the refractory, makes good contact with the outer surface of the closed end, and also closely contacts the inner surface of the cap-shaped basic refractory 12. On the other hand, the reference electrode 9 as an inner electrode is made of a thin platinum wire mesh of, for example, about 55 meshes, and is attached to the reference gas introduction tube 4 which is biased toward the left in the figure by a spring 16 in the end housing 13. The left end opening presses against the inner surface of the closed end of the solid electrolyte tube 1 to maintain good contact. Lead wires 6 and 5 from the measurement electrode 8 and the reference electrode 9 are led out as measurement terminals 6a and 5a to the outside of the end housing 13, respectively, as shown. A temperature sensor such as a thermocouple 7 for measuring the temperature of the sensing portion of the solid electrolyte 1 is similarly led out to the right as a terminal 7a. The end housing 13 is a cylindrical body whose left end is fixed to the protective tube 10, and a female thread 13a is cut on the right side of the inner hole in the figure, and an annular adjustment fitting 1 is formed.
The outer male thread of No. 5 is screwed into this. The aforementioned compression spring 14 is installed between the collar 1a fixed to the solid electrolyte and this adjustment fitting 15, and by screwing the adjustment fitting 15 toward the back of the screw 13a, the biasing force of the compression spring 14 can be reduced. It can be strengthened. To the right of the compression spring 14 is another tension spring 1.
6 is arranged, and both ends thereof are connected to the aforementioned adjustment fittings 1.
5 is connected to the collar 4a fixed to the reference gas introduction pipe 4, so by screwing the adjustment fitting 15 toward the back of the screw 13a as described above, the left end of the reference gas introduction pipe 4 in the figure can be adjusted. It is adapted to be pressed against the reference electrode 9. Note that 17 is a seal that isolates the reference gas compartment and the measured gas compartment within the sensor from each other. The oxygen sensor configured in this manner is inserted through the furnace wall 18 of a heat treatment furnace or the like so that its detection portion is exposed to the furnace air. Reference numeral 19 is, for example, an alumina-based sealing adhesive. The tip detection part of the oxygen sensor is maintained at approximately the furnace temperature, and the opening 1 of the protection tube 10 is located at the contact part with the measurement electrode 8 at the tip of the solid electrolyte tube 1.
1 and basic refractory 12 are gas inlet holes 1 to be measured.
The furnace air enters through 2a, and the oxygen gas partial pressure to be measured reaches this part. On the other hand, from the right end of the reference gas introduction pipe 4 in the figure, a reference gas with a known oxygen partial pressure, for example, air with an oxygen partial pressure of 0.21 atmospheres, is supplied at a rate of, for example, 50 c.c. per minute by a means not shown, and the introduced A voltage is introduced from the left end opening of the tube 4 through the wire mesh of the reference electrode 9 into the contact area between the reference electrode 9 and the inner surface of the tip of the solid electrolyte tube 1, and a measurement voltage is applied between the measurement terminals 5a and 6a. Occur. The structure of the oxygen sensor described above is shown for the measurement of oxygen partial pressure in a high-temperature ambient atmosphere, but when used in a low-temperature ambient atmosphere, the tip detection part of the solid electrolyte tube 1 must be heated to a temperature that is advantageous for measurement. A heater for this purpose is built into the oxygen sensor. The basic refractory 12 is, for example, magnesia (MgO).
After molding the fine powder into a predetermined shape using a slurry casting method or a press molding method, the sample gas is heated and sintered at a high temperature of 1800° C. or higher to make it denser, after the gas introduction hole 12a to be measured is previously opened. In order to verify the effects of the present invention, the oxygen sensor A according to the present invention shown in FIG. 3 and the conventional oxygen sensor B shown in FIG. A performance comparison test was conducted in a continuous carburizing furnace under the operating conditions shown in Table 1. As the basic refractory, one made of magnesia was used.

【表】 第5図は上記操業条件で炉を連続運転したとき
の両酸素センサの出力値の経時変化を示すもの
で、曲線Aは酸素センサAの、曲線Bは酸素セン
サBの出力値を計算出力に対する比で表わす。第
5図からわかるように、約20日間で酸素センサB
の出力は計算出力の99%以下に低下したが、酸素
センサAの出力は約100日間初期と全く変化がな
いことが理解される。酸素センサの出力の1%の
誤差は浸炭量にして約0.1wt%炭素量に相当し、
被浸炭物の品質に大きな影響を与えるため1%以
上の誤差が生じると、センサをバーンアウトによ
り性能回復させることが必要である。センサAに
ついてその後同様の条件で性能試験を繰返して行
なつた結果、1%の誤差が生じたのは少なくとも
100日後であつた。またセンサA、センサBとも
に、性能低下後バーンアウトにより正常な出力を
回復することも確認した。 以上により、本発明による塩基性耐火物を組み
込んだ酸素センサは、従来の酸素センサよりもバ
ーンアウトにより性能回復させる間の期間が長く
できることがわかつたが、このほか本発明による
酸素センサの測定電極の寿命が従来の酸素センサ
に比べて長いことが長期のフイールドテストの結
果明らかになつた。この種の酸素センサの寿命に
は、測定電極8に使用している白金線の使用ふん
囲気における消耗度が関係しており、なぜ前述の
酸素センサAの白金線の消耗が少ないのかは必ず
しも良くはわからないが、高温かつ高還元性ふん
囲気においては白金線中へ徐々に炭素原子が拡散
し、白金線の脆化消耗を促進することがセンサ劣
化原因の一つであることが明らかなので、酸素セ
ンサAでは外側電極3への析出炭素量がもともと
少ないため、白金線内部への炭素の拡散量も少な
く、従来の酸素センサと比べて寿命が向上するも
のと推定される。 さらに、本発明者等は塩基性耐火物部材12が
炭素析出の抑制に効果があるという結果から、そ
の原因を探究すべくつぎのような実験を行なつ
た。 SiO2−10wt%Al2O3,Al2O3,MgO,CaOおよ
びAl2O3−3wt%Na2O製のそれぞれち密質よりな
る耐火物部材12を公知のセラミツクス製造プロ
セスで試作し、第2図に示すような構造の酸素セ
ンサに組み込んで浸炭炉にセツトし、耐火性部材
の材質と測定電極への析出炭素量の関係を調べ
た。第6図は6日間のフイールド・テストを行つ
た後のセンサの外側電極3の白金線に析出した炭
素量と耐火性部材の材質との関係を示す。図にお
いて、グラフの縦軸の析出炭素量はアルミナを耐
火物として用いたセンサの炭素析出重量を標準に
とつて示してあり、このアルミナを耐火性部材に
用いたセンサの性能は第2図に示した従来のセン
サとほぼ同等である。 一方、耐火性部材として用いた上記の各材質を
固体の酸塩基度より整理してみると第2表のよう
になる。
[Table] Figure 5 shows the changes over time in the output values of both oxygen sensors when the furnace was continuously operated under the above operating conditions.Curve A represents the output value of oxygen sensor A, and curve B represents the output value of oxygen sensor B. It is expressed as a ratio to the calculation output. As can be seen from Figure 5, oxygen sensor B
It is understood that the output of oxygen sensor A decreased to less than 99% of the calculated output, but the output of oxygen sensor A did not change at all from the initial state for about 100 days. A 1% error in the output of the oxygen sensor corresponds to approximately 0.1wt% carbon content in terms of carburization.
If an error of 1% or more occurs, it is necessary to restore the performance of the sensor by burnout, since it greatly affects the quality of the carburized material. As a result of repeated performance tests on sensor A under the same conditions, it was found that at least an error of 1% occurred.
It was 100 days later. It was also confirmed that both Sensor A and Sensor B recover their normal output due to burnout after their performance deteriorates. As a result of the above, it was found that the oxygen sensor incorporating the basic refractory according to the present invention can take a longer time to recover its performance due to burnout than the conventional oxygen sensor. Long-term field tests have revealed that the lifespan of the sensor is longer than that of conventional oxygen sensors. The lifespan of this type of oxygen sensor is related to the degree of wear of the platinum wire used for the measurement electrode 8 in the operating atmosphere, and it is not always clear why the wear of the platinum wire of oxygen sensor A is less. However, it is clear that one of the causes of sensor deterioration is that carbon atoms gradually diffuse into the platinum wire in a high temperature and highly reducing atmosphere, accelerating the brittleness and wear and tear of the platinum wire. In sensor A, since the amount of carbon deposited on the outer electrode 3 is originally small, the amount of carbon diffused into the platinum wire is also small, and it is presumed that the life span will be improved compared to conventional oxygen sensors. Further, based on the result that the basic refractory member 12 is effective in suppressing carbon deposition, the inventors conducted the following experiment to investigate the cause. Dense refractory members 12 made of SiO 2 −10wt% Al 2 O 3 , Al 2 O 3 , MgO, CaO, and Al 2 O 3 −3wt% Na 2 O were each made by a known ceramic manufacturing process, and It was assembled into an oxygen sensor having the structure shown in Fig. 2 and set in a carburizing furnace, and the relationship between the material of the refractory member and the amount of carbon deposited on the measuring electrode was investigated. FIG. 6 shows the relationship between the amount of carbon deposited on the platinum wire of the outer electrode 3 of the sensor and the material of the refractory member after a 6-day field test. In the figure, the amount of precipitated carbon on the vertical axis of the graph is shown with the weight of carbon precipitated in a sensor that uses alumina as a refractory material as the standard, and the performance of a sensor that uses alumina as a refractory member is shown in Figure 2. It is almost equivalent to the conventional sensor shown. On the other hand, when the above-mentioned materials used as fire-resistant members are sorted based on the acid-basicity of the solid, the results are as shown in Table 2.

〔発明の効果〕〔Effect of the invention〕

以上説明のとおり、本発明によれば固体電解質
からなるセンサ本体の表面に測定電極と基準電極
とを対向して設ける酸素センサにおいて、測定電
極に接してアルカリ金属およびアルカリ土類金属
の内の少なくとも一方を構成元素として含み、塩
基性酸化物もしくは塩基性酸化物と中性酸化物と
の焼結緻密質体であつて、前記被測定ガスを流通
させる少なくとも1個の開口を備えた塩基性耐火
物を設けることにより、炭素化合物を含む高温か
つ還元性ふん囲気ガス中で長期間使用しても、ま
た測定電極として炭素析出触媒作用の極めて高い
白金を用いても、測定電極付近に生じやすい炭素
析出とそれに基づくトラブルのおそれを従来の酸
素センサに比べて格段に減少させることができ
る。これによつて、本発明による酸素センサは、
従来バーンアウト処理により性能を回復させる作
業を頻繁にしなければならなかつた従来センサの
欠点をほぼ完全になくすことができるほか、比較
的短期間内に測定電極の脆化や消耗により酸素セ
ンサの寿命がつきる欠点をなくすことができる。
As explained above, according to the present invention, in an oxygen sensor in which a measurement electrode and a reference electrode are provided facing each other on the surface of a sensor body made of a solid electrolyte, at least one of an alkali metal and an alkaline earth metal is provided in contact with the measurement electrode. A basic refractory comprising a basic oxide or a sintered dense body of a basic oxide and a neutral oxide, the basic refractory having at least one opening through which the gas to be measured flows. This prevents carbon from forming near the measuring electrode, even when used for long periods in a high-temperature, reducing atmosphere containing carbon compounds, or even when platinum, which has an extremely high carbon deposition catalytic effect, is used as the measuring electrode. The risk of precipitation and troubles caused by it can be significantly reduced compared to conventional oxygen sensors. Thereby, the oxygen sensor according to the present invention
In addition to almost completely eliminating the shortcomings of conventional sensors, which required frequent work to restore performance through burnout treatment, the oxygen sensor's lifespan was also reduced due to brittleness and wear of the measurement electrode within a relatively short period of time. It is possible to eliminate the disadvantages that occur.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は従来技術による酸素セン
サのそれぞれ異なる例を示すセンサの要部断面
図、第3図および第4図は本発明による酸素セン
サの実施例を示し、内第3図は本発明による酸素
センサの断面図、第4図は当該センサに用いられ
る塩基性耐火物のキヤツプ状に形成された例を示
す斜視図、第5図は本発明による酸素センサと従
来技術による酸素センサの長期使用時の測定出力
の変化の模様を比較して示すグラフ図、第6図は
本発明に用いられる塩基性耐火物と中性ないしは
酸性耐火物とについての炭素析出量の比較を示す
線図である。図において、1:センサ本体として
の固体電解質管、8:測定電極、9:基準電極、
12:塩基性耐火物である。
1 and 2 are cross-sectional views of main parts of sensors showing different examples of oxygen sensors according to the prior art, and FIGS. 3 and 4 show embodiments of oxygen sensors according to the present invention, of which FIG. FIG. 4 is a cross-sectional view of an oxygen sensor according to the present invention, FIG. 4 is a perspective view showing an example of a cap-shaped basic refractory used in the sensor, and FIG. 5 is an oxygen sensor according to the present invention and an oxygen sensor according to the prior art. Figure 6 is a graph showing a comparison of changes in measured output during long-term use, and Figure 6 is a line showing a comparison of the amount of carbon deposited between basic refractories and neutral or acidic refractories used in the present invention. It is a diagram. In the figure, 1: solid electrolyte tube as the sensor body, 8: measurement electrode, 9: reference electrode,
12: Basic refractory.

Claims (1)

【特許請求の範囲】 1 酸素イオン導電性を有する固体電解質からな
るセンサ本体と、該センサ本体の一方の面に接触
し所定の酸素量を含む基準ガスの雰囲気内に配さ
れる基準電極と、前記センサ本体の他方の面に接
触し酸素量を測定すべき被測定ガスの雰囲気内に
配される測定電極とを備え、両電極間に生じる起
電力を測定することにより前記被測定ガスに含ま
れる酸素量を測定する酸素センサにおいて、前記
測定電極に接してアルカリ金属およびアルカリ土
類金属の内の少なくとも一方を構成元素として含
み、塩基性酸化物もしくは塩基性酸化物と中性酸
化物との焼結緻密質体であつて、前記被測定ガス
を流通させる少なくとも1個の開口を備えた塩基
性耐火物が設けられることを特徴とする固体電解
質を用いた酸素センサ。 2 特許請求の範囲第1項記載の酸素センサにお
いて、塩基性耐火物が金属酸化物からなることを
特徴とする固体電解質を用いた酸素センサ。 3 特許請求の範囲第2項記載の酸素センサにお
いて、塩基性耐火物がマグネシア(MgO)を主
成分とする金属酸化物であることを特徴とする固
体電解質を用いた酸素センサ。 4 特許請求の範囲第2項記載の酸素センサにお
いて、塩基性耐火物がカルシア(CaO)を主成分
とする金属酸化物であることを特徴とする固体電
解質を用いた酸素センサ。 5 特許請求の範囲第2項記載の酸素センサにお
いて、塩基性耐火物がNa2Oを含む金属酸化物で
あることを特徴とする固体電解質を用いた酸素セ
ンサ。 6 特許請求の範囲第1項記載の酸素センサにお
いて、センサ本体が板状に形成された固体電解質
からなることを特徴とする固体電解質を用いた酸
素センサ。 7 特許請求の範囲第1項記載の酸素センサにお
いて、測定電極が白金からなることを特徴とする
固体電解質を用いた酸素センサ。 8 特許請求の範囲第1項記載の酸素センサにお
いて、測定電極が白金線からなることを特徴とす
る固体電解質を用いた酸素センサ。 9 特許請求の範囲第1項記載の酸素センサにお
いて、センサ本体が一端を閉じられた筒状に形成
された固体電解質からなることを特徴とする固体
電解質を用いた酸素センサ。 10 特許請求の範囲第9項記載の酸素センサに
おいて、塩基性耐火物が筒状の固体電解質に被せ
られる一端を閉じられた保護筒であることを特徴
とする固体電解質を用いた酸素センサ。 11 特許請求の範囲第9項記載の酸素センサに
おいて、塩基性耐火物が固体電解質管の閉鎖端と
保護筒との間に介装される測定電極押さえ部材で
あることを特徴とする固体電解質を用いた酸素セ
ンサ。
[Scope of Claims] 1. A sensor body made of a solid electrolyte having oxygen ion conductivity; a reference electrode that contacts one surface of the sensor body and is placed in an atmosphere of a reference gas containing a predetermined amount of oxygen; a measurement electrode that is placed in contact with the other surface of the sensor body and placed in the atmosphere of the gas to be measured whose oxygen content is to be measured; In an oxygen sensor that measures the amount of oxygen that is present in contact with the measurement electrode, the oxygen sensor contains at least one of an alkali metal and an alkaline earth metal as a constituent element, and a basic oxide or a mixture of a basic oxide and a neutral oxide. An oxygen sensor using a solid electrolyte, characterized in that a basic refractory is provided which is a sintered dense body and has at least one opening through which the gas to be measured flows. 2. The oxygen sensor according to claim 1, which uses a solid electrolyte, wherein the basic refractory is made of a metal oxide. 3. The oxygen sensor according to claim 2, which uses a solid electrolyte, wherein the basic refractory is a metal oxide whose main component is magnesia (MgO). 4. The oxygen sensor according to claim 2, which uses a solid electrolyte, wherein the basic refractory is a metal oxide whose main component is calcia (CaO). 5. The oxygen sensor according to claim 2, which uses a solid electrolyte, wherein the basic refractory is a metal oxide containing Na 2 O. 6. An oxygen sensor using a solid electrolyte according to claim 1, wherein the sensor body is made of a solid electrolyte formed in a plate shape. 7. The oxygen sensor according to claim 1, which uses a solid electrolyte, characterized in that the measurement electrode is made of platinum. 8. The oxygen sensor according to claim 1, which uses a solid electrolyte, characterized in that the measurement electrode is made of a platinum wire. 9. An oxygen sensor using a solid electrolyte according to claim 1, wherein the sensor body is formed of a solid electrolyte formed in a cylindrical shape with one end closed. 10. The oxygen sensor according to claim 9, which uses a solid electrolyte, characterized in that the basic refractory is a protective tube with one end closed, which is placed over a cylindrical solid electrolyte. 11. The oxygen sensor according to claim 9, wherein the basic refractory is a measuring electrode holding member interposed between the closed end of the solid electrolyte tube and the protective cylinder. Oxygen sensor used.
JP58097416A 1983-06-01 1983-06-01 Oxygen sensor using solid electrolyte Granted JPS59222754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58097416A JPS59222754A (en) 1983-06-01 1983-06-01 Oxygen sensor using solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58097416A JPS59222754A (en) 1983-06-01 1983-06-01 Oxygen sensor using solid electrolyte

Publications (2)

Publication Number Publication Date
JPS59222754A JPS59222754A (en) 1984-12-14
JPH035545B2 true JPH035545B2 (en) 1991-01-25

Family

ID=14191859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58097416A Granted JPS59222754A (en) 1983-06-01 1983-06-01 Oxygen sensor using solid electrolyte

Country Status (1)

Country Link
JP (1) JPS59222754A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4479868A (en) * 1983-10-21 1984-10-30 Westinghouse Electric Corp. Gas measuring probe
DE68927087T2 (en) * 1988-11-01 1997-02-06 Ngk Spark Plug Co Oxygen-sensitive sensor and method for its production
JP2500712B2 (en) * 1991-08-29 1996-05-29 いすゞ自動車株式会社 Oxygen sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5738368A (en) * 1980-08-19 1982-03-03 Narumi China Corp Composition for protection layer of oxygen sensor element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5738368A (en) * 1980-08-19 1982-03-03 Narumi China Corp Composition for protection layer of oxygen sensor element

Also Published As

Publication number Publication date
JPS59222754A (en) 1984-12-14

Similar Documents

Publication Publication Date Title
US4362580A (en) Furnace and method with sensor
US4132615A (en) Internal combustion engine exhaust gas oxygen sensor and catalyzer combination
US4224113A (en) Method of detecting air/fuel ratio in combustor by detecting oxygen in combustion gas
US5443711A (en) Oxygen-sensor element
EP1760461B1 (en) Gas sensor and method for forming same
US4121988A (en) Oxygen sensor
JP3874947B2 (en) Sulfur dioxide gas sensor
US4940528A (en) Oxygen sensor elements
US9028671B2 (en) Hydrogen sensing apparatus and method
US4297192A (en) Catalyst supported oxygen sensor element and a method of manufacturing same
US4265930A (en) Process for producing oxygen sensing element
US4049524A (en) Oxygen sensor with noncatalytic electrode
US5698267A (en) Method for fabricating high-activity electrodes for exhaust gas sensors
US4290586A (en) Furnace and method with sensor
GB1462639A (en) Oxygen measuring sensors
US5772965A (en) Method and system for detecting deterioration of exhaust gas control catalyst
US4186072A (en) Hot gas measuring device
JPS6126621B2 (en)
JPH035545B2 (en)
JPS6138413B2 (en)
US6096181A (en) Sealing element for a sensor
GB2068564A (en) Solid electrolyte oxygen sensor
Badwal et al. Oxygen measurement with SIRO2 sensors
EP1376117A1 (en) Concentration cell type hydrogen sensor and method for preparing solid electrolyte capable of conducting proton
JPH0315693B2 (en)