JPH0355451B2 - - Google Patents

Info

Publication number
JPH0355451B2
JPH0355451B2 JP59110231A JP11023184A JPH0355451B2 JP H0355451 B2 JPH0355451 B2 JP H0355451B2 JP 59110231 A JP59110231 A JP 59110231A JP 11023184 A JP11023184 A JP 11023184A JP H0355451 B2 JPH0355451 B2 JP H0355451B2
Authority
JP
Japan
Prior art keywords
group
formula
hydrogen
nmr
tert
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59110231A
Other languages
Japanese (ja)
Other versions
JPS60252431A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP59110231A priority Critical patent/JPS60252431A/en
Publication of JPS60252431A publication Critical patent/JPS60252431A/en
Publication of JPH0355451B2 publication Critical patent/JPH0355451B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(発明の技術分野) 本発明は共役した炭素、炭素不飽和結合を有す
る化合物の新規製法に関する。 (従来の技術) 共役した炭素、炭素不飽和結合を有する化合物
は有機半導体への特性から興味ある物質であり、
またイソプレノイド系の共役ポリエン化合物はビ
タミンAの前駆物質或いはその他の生理活性物質
もしくはそれらの前駆体として重要である。 従来このような共役不飽和化合物の製法として
は、段階的な二重結合もしくは三重結合の生成或
いは炭素−炭素結合の形成による共役鎖の延長等
合成的に不便な方法しか知られていない。 (発明の目的) 本発明は、スルホニル基に対してβ−位置に、
保護されたヒドロキシ基を有する化合物を用い
て、脱スルホン化と脱ヒドロキシ化を簡便で且つ
穏和な条件下で一挙に行い、有用な共役不飽和化
合物を容易に合成する方法を提供するものであ
る。 (発明の構成) 本発明は、スルホニル基に対してβ位置に、保
護されたヒドロキシ基を有する下記一般式()
で表わされるスルホン類を第三ブトキシカリウム
で処理することを特徴とする共役不飽和化合物の
製法である。 但し、()式において、Yは−CH=CH−又
は−C≡C−、Rはフエニル基、R1は第三ブト
キシカリウムに対して不活性な置換基を有してい
てもよい脂肪族炭化水素基、R2は水素又はR1
同様に定義される基、R3は水素又はテトラヒド
ロピラニルオキシ基、R4はアセチル基又はテト
ラヒドロピラニル基、nは0又は正整数である。 本発明を反応式で示すと下記()式のように
表わされる。 上記()式のように、本発明は出発物質であ
るスルホン類の炭素骨格中の不飽和結合の共役鎖
を2ケ延長する合成法といえる。例えば、n=0
の場合はジエン化合物が生成し、n=1の場合
は、Yが二重結合のときは生成物はトリエン化合
物となり、Yは三重結合のときはエン−イン−エ
ン化合物が生成する。また本発明の大きな特徴と
して、生成する二重結合はトランス型異性体の生
成率が極めて高いことであり、化合物によつては
実質的に100%のトランス型生成率を示すものが
ある。 本発明において、出発物質として用いられるβ
−位置に、保護されたヒドロキシ基を有するスル
ホン類は、例えば下記()式に示されるように
適当のスルホニル基を有する化合物とアルデヒド
との付加によつて容易に合成することができる。 ()式に従つて説明すると、適当なスルホン
を例えばn−ブチル化リチウム(n−BuLi)に
よつてアニオン化してアルデヒドと反応させ、得
られたヒドロキシ化合物を、例えば無水酢酸
(Ac2O)+ピリジン(Py)を作用させる常法によ
つてヒドロキシ基に保護基(アセチル基)を導入
することができる。保護基としては、有機合成反
応で常用されるアセチル基、テトラヒドロピラニ
ル基が用いられる。 本発明のポリエン形成反応は、前記()式に
示したように、スルホニル基とβ−ヒドロキシ基
の脱離反応によるものであり反応は極めて容易で
ある。即ち、出発物質であるスルホン類をテトラ
ヒドロフランもしくはテトラヒドロフラン−第三
ブタノール混合物等を溶媒として第三ブトキシカ
リウムを作用させることによつて目的が達成され
る。 この際、出発物質()式化合物は、R1が強
アルカリである第三ブトキシカリウムと作用しな
い置換基、例えばエチレンジオキシ基、テトラヒ
ドロピラニルオキシ基等の置換を有していてもよ
い脂肪族炭化水素基であり、R2が水素か、又は
上記R1と同様な脂肪族炭化水素基である化合物
であらねばならない。 第三ブトキシカリウムは、スルホン1モルに対
して当量以上、通常2.5〜15モル程度使用される。
反応温度は室温乃至還流温度で十分であり、反応
時間は使用するスルホン類によつて異なり得に制
限されない。 (実施例) 実施例 1〜7 表1に示す出発物質を用いて対応する共役不飽
和化合物を製造した。 表中、t−BuOK(第三ブトキシカリウム)モ
ル比はt−BuOK/出発物質で表をした。生成物
の収率はカラムクロマトグラフイ精製による値で
ある。また、THFはテトラヒドロフラン、t−
BuOHは第三ブタノール、THPはテトラヒドロ
ピラニル基、Phはフエニル基、Acはアセチル
基、Meはメチル基をそれぞれ表わす。
(Technical Field of the Invention) The present invention relates to a novel method for producing compounds having conjugated carbon and carbon unsaturated bonds. (Prior art) Compounds having conjugated carbon and carbon unsaturated bonds are interesting substances due to their properties as organic semiconductors.
Further, isoprenoid-based conjugated polyene compounds are important as precursors of vitamin A or other physiologically active substances or their precursors. Conventionally, only synthetically inconvenient methods have been known for producing such conjugated unsaturated compounds, such as stepwise formation of double or triple bonds or elongation of conjugated chains by formation of carbon-carbon bonds. (Object of the invention) The present invention provides that, in the β-position relative to the sulfonyl group,
The present invention provides a method for easily synthesizing useful conjugated unsaturated compounds by carrying out desulfonation and dehydroxylation at once under simple and mild conditions using a compound having a protected hydroxy group. . (Structure of the Invention) The present invention relates to the following general formula () having a protected hydroxy group at the β position relative to the sulfonyl group.
This is a method for producing a conjugated unsaturated compound, which is characterized by treating a sulfone represented by the formula with potassium tert-butoxy. However, in formula (), Y is -CH=CH- or -C≡C-, R is a phenyl group, and R1 is an aliphatic group which may have a substituent inert to tert-butoxypotassium. A hydrocarbon group, R 2 is hydrogen or a group defined similarly to R 1 , R 3 is hydrogen or a tetrahydropyranyloxy group, R 4 is an acetyl group or a tetrahydropyranyl group, and n is 0 or a positive integer. The present invention is represented by the following reaction formula. As shown in the above formula (), the present invention can be said to be a synthetic method in which the conjugated chain of the unsaturated bond in the carbon skeleton of the sulfone starting material is extended by two places. For example, n=0
In the case of , a diene compound is produced, and in the case of n=1, when Y is a double bond, the product is a triene compound, and when Y is a triple bond, an ene-yn-ene compound is produced. Furthermore, a major feature of the present invention is that the double bond produced has an extremely high production rate of the trans isomer, and some compounds show a substantially 100% trans isomer production rate. In the present invention, β used as a starting material
Sulfones having a protected hydroxy group at the - position can be easily synthesized, for example, by adding a compound having a suitable sulfonyl group and an aldehyde, as shown in the following formula (). According to the formula (), a suitable sulfone is anionized with, for example, n-butylated lithium (n-BuLi) and reacted with an aldehyde, and the resulting hydroxy compound is anionized with, for example, acetic anhydride (Ac 2 O). A protecting group (acetyl group) can be introduced into the hydroxyl group by a conventional method involving the action of +pyridine (Py). As the protecting group, an acetyl group and a tetrahydropyranyl group, which are commonly used in organic synthesis reactions, are used. The polyene-forming reaction of the present invention is an elimination reaction between a sulfonyl group and a β-hydroxy group, as shown in the above formula (), and the reaction is extremely easy. That is, the object is achieved by treating the starting material sulfone with potassium tert-butoxy using tetrahydrofuran or a mixture of tetrahydrofuran-tert-butanol as a solvent. In this case, the starting material compound of formula () is a fatty acid which may have a substituent that does not interact with tert-butoxypotassium in which R 1 is a strong alkali, such as an ethylenedioxy group or a tetrahydropyranyloxy group. It must be a compound in which R 2 is hydrogen or an aliphatic hydrocarbon group similar to R 1 above. Potassium tert-butoxy is used in an amount equivalent to or more, usually about 2.5 to 15 moles, per mole of sulfone.
A reaction temperature of room temperature to reflux temperature is sufficient, and the reaction time varies depending on the sulfone used and is not particularly limited. (Example) Examples 1 to 7 Using the starting materials shown in Table 1, corresponding conjugated unsaturated compounds were produced. In the table, the molar ratio of t-BuOK (potassium tert-butoxy) is expressed as t-BuOK/starting material. Product yields are values obtained by column chromatography purification. In addition, THF is tetrahydrofuran, t-
BuOH represents tertiary butanol, THP represents a tetrahydropyranyl group, Ph represents a phenyl group, Ac represents an acetyl group, and Me represents a methyl group.

【表】【table】

【表】 実施例1〜7の生成物の核磁気共鳴スペクトル
は次のとおりであつた。 実施例1:1H NMR(CCl4)δ0.76−1.13(m、
3H、CH3)、1.00(d、6H、C(CH32、J=
6.8Hz、1.27−1.70(m、8H、CH2)、1.76−2.61
(m、3H、CH2C=C、CHC=C)、4.86−6.36
(m、4H、CH=CH).13 C NMR(CDCl3
δ122.6、127.4、128.7、130.3、132.6、139.3、
141.5(olefinic carbons). 実施例2:1H NMR(CCl4)δ0.80(t、3H、
CH3、J=4Hz)、1.00−1.50(m、10H、
CH2)、1.50−2.20(m、2H、CH2C=C)、4.60
−6.40(m、5H、C=CH2、C=CH)、13
NMR(CDCl3)δ114.5、130.9、135.6、137.4
(olefinic carbons). 実施例3:1H NMR(CCl4)δ1.00(d、6H、C
(CH32、J=6.8Hz)、1.34(s、1.80H、CH3)、
1.41(s、1.20H、CH3)、2.00−2.60(m、1H、
CHC=C)、3.80(s、4H、OCH2CH2O)、
5.00−7.00(m、4H、CH=CH) 実施例4:1H NMR(CCl4)δ0.79(t、3H、
CH3、J=4Hz)、0.95−1.70(m、14H、
CH2)、1.80(s、6H、CH3)、2.42(t、2H、
CH2CO、J=7Hz)、5.80(d、1H、C=CHC
=CCO、J=12Hz)、5.90(d、1H、C=
CHCO、J=15Hz)、7.27(dd、1H、CH=
CCO、J=15、12Hz). 実施例5:1H NMR(CCl4)δ1.00(d、6H、C
(CH32、J=6Hz)、0.70−1.00(m、3H、
CH3)、1.11−1.59(m、4H、CH2)、1.80−2.60
(m、3H、CHC=C、CH2C=C)5.00−6.40
(m、6H、CH=CH) 実施例6:1H NMR(CCl4)δ1.50(s、3H、
CH3)、1.58(s、3H、CH3)、1.68(s、6H、
CH3、)、1.79(s、3H、CH3)、1.90−2.20(m、
4H、CH2、C=C)、4.70−5.15(m、1H、C
=CH)、5.58−6.60(m、7H、C=CH). 実施例7:1H NMR(CCl4)δ0.70−1.05(m、
3H、CH3)、0.94(d、6H、C(CH32、J=
6.8Hz)、1.07−1.63(m、8H、CH2)、2.00−
2.45(m、3H、CHC=C、CH2C=C)、5.11−
6.57(m、4H、CH=CH).
[Table] The nuclear magnetic resonance spectra of the products of Examples 1 to 7 were as follows. Example 1: 1 H NMR (CCl 4 ) δ0.76−1.13 (m,
3H, CH 3 ), 1.00(d, 6H, C(CH 3 ) 2 , J=
6.8Hz, 1.27-1.70 (m, 8H, CH2 ), 1.76-2.61
(m, 3H, CH2C =C, CHC=C), 4.86−6.36
(m, 4H, CH=CH). 13C NMR ( CDCl3 )
δ122.6, 127.4, 128.7, 130.3, 132.6, 139.3,
141.5 (olefinic carbons). Example 2: 1 H NMR (CCl 4 ) δ0.80 (t, 3H,
CH3 , J=4Hz), 1.00-1.50(m, 10H,
CH 2 ), 1.50−2.20 (m, 2H, CH 2 C=C), 4.60
-6.40 (m, 5H, C=CH 2 , C=CH), 13C
NMR ( CDCl3 ) δ114.5, 130.9, 135.6, 137.4
(olefinic carbons). Example 3: 1 H NMR (CCl 4 ) δ1.00 (d, 6H, C
( CH3 ) 2 , J=6.8Hz), 1.34(s, 1.80H, CH3 ),
1.41 (s, 1.20H, CH 3 ), 2.00−2.60 (m, 1H,
CHC=C), 3.80 (s, 4H, OCH 2 CH 2 O),
5.00−7.00 (m, 4H, CH=CH) Example 4: 1 H NMR (CCl 4 ) δ0.79 (t, 3H,
CH3 , J=4Hz), 0.95-1.70(m, 14H,
CH 2 ), 1.80 (s, 6H, CH 3 ), 2.42 (t, 2H,
CH 2 CO, J = 7Hz), 5.80 (d, 1H, C = CHC
= CCO, J = 12Hz), 5.90 (d, 1H, C =
CHCO, J=15Hz), 7.27(dd, 1H, CH=
CCO, J=15, 12Hz). Example 5: 1 H NMR (CCl 4 ) δ1.00 (d, 6H, C
( CH3 ) 2 , J=6Hz), 0.70−1.00(m, 3H,
CH3 ), 1.11-1.59 (m, 4H, CH2 ), 1.80-2.60
(m, 3H, CHC=C, CH2C =C) 5.00−6.40
(m, 6H, CH=CH) Example 6: 1 H NMR (CCl 4 ) δ1.50 (s, 3H,
CH 3 ), 1.58 (s, 3H, CH 3 ), 1.68 (s, 6H,
CH 3 , ), 1.79 (s, 3H, CH 3 ), 1.90−2.20 (m,
4H, CH 2 , C=C), 4.70-5.15 (m, 1H, C
= CH), 5.58-6.60 (m, 7H, C=CH). Example 7: 1 H NMR (CCl 4 ) δ0.70−1.05 (m,
3H, CH 3 ), 0.94(d, 6H, C(CH 3 ) 2 , J=
6.8Hz), 1.07-1.63 (m, 8H, CH2 ), 2.00-
2.45 (m, 3H, CHC=C, CH2C =C), 5.11−
6.57 (m, 4H, CH=CH).

Claims (1)

【特許請求の範囲】 1 スルホニル基に対してβ位置に、保護された
ヒドロキシ基を有する下記一般式()で表わさ
れるスルホン類を第三ブトキシカリウムで処理す
ることを特徴とする共役不飽和化合物の製法。 但し、()式において、Yは−CH=CH−又
は−C≡C−、Rはフエニル基、R1は第三ブト
キシカリウムに対して不活性な置換基を有してい
てもよい脂肪族炭化水素基、R2は水素又はR1
同様に定義される基、R3は水素又はテトラヒド
ロピラニルオキシ基、R4はアセチル基又はテト
ラヒドロピラニル基、nは0又は正整数である。
[Claims] 1. A conjugated unsaturated compound characterized in that a sulfone represented by the following general formula () having a protected hydroxy group at the β position relative to a sulfonyl group is treated with potassium tert-butoxy. manufacturing method. However, in formula (), Y is -CH=CH- or -C≡C-, R is a phenyl group, and R1 is an aliphatic group which may have a substituent inert to tert-butoxypotassium. A hydrocarbon group, R 2 is hydrogen or a group defined similarly to R 1 , R 3 is hydrogen or a tetrahydropyranyloxy group, R 4 is an acetyl group or a tetrahydropyranyl group, and n is 0 or a positive integer.
JP59110231A 1984-05-29 1984-05-29 Production of conjugated unsaturated compound Granted JPS60252431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59110231A JPS60252431A (en) 1984-05-29 1984-05-29 Production of conjugated unsaturated compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59110231A JPS60252431A (en) 1984-05-29 1984-05-29 Production of conjugated unsaturated compound

Publications (2)

Publication Number Publication Date
JPS60252431A JPS60252431A (en) 1985-12-13
JPH0355451B2 true JPH0355451B2 (en) 1991-08-23

Family

ID=14530417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59110231A Granted JPS60252431A (en) 1984-05-29 1984-05-29 Production of conjugated unsaturated compound

Country Status (1)

Country Link
JP (1) JPS60252431A (en)

Also Published As

Publication number Publication date
JPS60252431A (en) 1985-12-13

Similar Documents

Publication Publication Date Title
JP3053872B2 (en) Process for producing (+)-(1R) -cis-3-oxo-2-pentyl-1-cyclopentaneacetic acid
JPH0355451B2 (en)
US4070540A (en) 4-Homoisotwistane-3-carboxylic acid esters and a process for producing the same
JPH0414091B2 (en)
US4472313A (en) Cyclopropanation of olefins
US6025518A (en) Substituted cyclopentene derivatives and method for preparing the same
Iwasaki et al. Asymmetric synthesis of (2R)-2-hydroxy-2-(2 (Z)-octenyl)-1-cyclopentanone
JP2640359B2 (en) Method for synthesizing vitamin A and its derivatives
JP4153998B2 (en) Method for producing prostaglandins
Bellina et al. Synthesis of 2-tributylstannyl-1-alkenes from 2-tributylstannyl-2-propen-1-yl acetate
JPS60222434A (en) Preparation of (2e,6e)-3,7,11-trimethyl-2,6,10-dodecatrien-1-al
US4159998A (en) Process for the preparation of 2-(7-hydroxyalkyl)-4R, 4S or 4RS -hydroxy-cyclopent-2-enone
US3892814A (en) Cyclopropane derivatives
JPS6042775B2 (en) 1,7-octadien-3-one and its manufacturing method
JPH07103095B2 (en) Method for producing vitamin A aldehyde
JPH0355452B2 (en)
JP2743797B2 (en) Preparation of optically active compounds
EP0566030B1 (en) Process for producing optically active olefin
JP3541421B2 (en) Allene-containing α-substituted cyclopentenone derivatives and method for producing the same
US4052434A (en) Prostaglandin intermediates
JP2654835B2 (en) Optically active 4-en-6-ol compounds, intermediates for their production and methods for their production
JP2743798B2 (en) Preparation of optically active compounds
JP3266701B2 (en) Method for producing 2,3-dihydropolyprenol
JPH07188090A (en) New intermediates for producing vitamin a and carotenoids and their production
JP2654834B2 (en) Optically active vinyl compound, intermediate for producing the same, and method for producing them

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees