JP2743797B2 - Preparation of optically active compounds - Google Patents

Preparation of optically active compounds

Info

Publication number
JP2743797B2
JP2743797B2 JP5293227A JP29322793A JP2743797B2 JP 2743797 B2 JP2743797 B2 JP 2743797B2 JP 5293227 A JP5293227 A JP 5293227A JP 29322793 A JP29322793 A JP 29322793A JP 2743797 B2 JP2743797 B2 JP 2743797B2
Authority
JP
Japan
Prior art keywords
group
general formula
compound
optically active
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5293227A
Other languages
Japanese (ja)
Other versions
JPH06220039A (en
Inventor
孝志 高橋
喜和 竹平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Daiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP1140797A priority Critical patent/JPH0651692B2/en
Application filed by Daiso Co Ltd filed Critical Daiso Co Ltd
Priority to JP5293227A priority patent/JP2743797B2/en
Publication of JPH06220039A publication Critical patent/JPH06220039A/en
Application granted granted Critical
Publication of JP2743797B2 publication Critical patent/JP2743797B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、G.Storkらによ
って開発されたプロスタグランジン合成法(G.Stork,T.
Takahashi,I.Kawamoto,T.Suzuki:J.Am.Chem.Soc.,100,8
272(1978))における重要な中間体である、下記一般式
(P)
BACKGROUND OF THE INVENTION The prostaglandin synthesis method developed by Stork et al. (G. Stork, T. et al.
Takahashi, I. Kawamoto, T. Suzuki: J. Am. Chem. Soc., 100, 8
272 (1978)), which is an important intermediate represented by the following general formula (P)

【0002】[0002]

【化3】 Embedded image

【0003】(上記一般式(P)において、R1 はアル
コキシ基を有していてもよいアルキル基、シクロアルキ
ル基及び芳香環もしくはアルキル基にヘテロ原子を有す
るアラルキル基から選ばれた炭素数1〜12の基、R2
は水素原子又はアシル基、シリル基、アラルキル基及び
アルキルオキシアルキル基から選ばれた容易に脱離可能
な保護基を表わし、*の符号は不斉炭素原子を表わす)
で表わされる光学活性γ−ラクトン誘導体を製造するた
めの中間体である光学活性化合物の製法に関する。
(In the above general formula (P), R 1 is a carbon atom selected from an alkyl group optionally having an alkoxy group, a cycloalkyl group and an aralkyl group having a hetero atom in an aromatic ring or an alkyl group. Groups of ~ 12, R 2
Represents a hydrogen atom or a readily removable protecting group selected from an acyl group, a silyl group, an aralkyl group and an alkyloxyalkyl group, and the symbol * represents an asymmetric carbon atom.
The present invention relates to a method for producing an optically active compound which is an intermediate for producing an optically active γ-lactone derivative represented by the formula:

【0004】[0004]

【従来の技術と発明が解決しようとする課題】プロスタ
グランジンの製造に関しては、上記G.Storkらの
合成法の他に、コーリーラクトンや4−ヒドロキシシク
ロペンテノンより出発する方法が実用化されているが、
この方法は原料の光学活性体を得るために光学分割や微
生物による不斉水解などの工程を経る必要があり、さら
にこれらを基にしてα,ω側鎖を導入していく段階での
立体制御においても問題点が多い。
2. Description of the Related Art The production of prostaglandins is described in G. In addition to the synthesis method of Stork et al., A method starting from Corylactone or 4-hydroxycyclopentenone has been put to practical use,
In this method, it is necessary to go through steps such as optical resolution and asymmetric hydrolysis by microorganisms in order to obtain the optically active substance as a raw material. Based on these, steric control at the stage of introducing α, ω side chains Also have many problems.

【0005】このような点からみると上記G.Stor
kらにより開発された前記一般式(P)の光学活性γ−
ラクトン誘導体を鍵中間体とするプロスタグランジン合
成法は優れた方法であるといえる。しかしながら、この
方法における問題点は鍵中間体となる一般式(P)の化
合物をいかに経済的に製造できるかにかかっていた。
[0005] In view of the above, G. Stor
The optical activity γ- of the general formula (P) developed by K.
The prostaglandin synthesis method using a lactone derivative as a key intermediate can be said to be an excellent method. However, a problem in this method depends on how economically the compound of the general formula (P), which is a key intermediate, can be produced.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記問題
点を解決すべく鋭意検討の結果、鍵中間体である上記一
般式(P)で表わされる化合物を従来より簡便に、且つ
効率よく製造する方法を見出したものであり、本発明は
この製造の過程で得られる中間体の製法を提供するもの
である。本発明は、下記一般式(A)
Means for Solving the Problems The present inventors have made intensive studies to solve the above-mentioned problems, and as a result, have been able to convert the compound represented by the above general formula (P), which is a key intermediate, more easily and more efficiently than in the past. The present invention has found a method for producing the intermediate well, and the present invention provides a method for producing an intermediate obtained in the course of this production. The present invention provides the following general formula (A)

【0007】[0007]

【化4】 Embedded image

【0008】(上記一般式(A)において、R1 はアル
コキシ基を有していてもよいアルキル基、シクロアルキ
ル基及び芳香環もしくはアルキル基にヘテロ原子を有す
るアラルキル基から選ばれた炭素数1〜12の基、R2
は水素原子又はアシル基、シリル基、アラルキル基及び
アルキルオキシアルキル基から選ばれた容易に脱離可能
な保護基を表わし、*の符号は不斉炭素原子を表わす)
で表わされる光学活性化合物の製法である。
(In the general formula (A), R 1 is a carbon atom selected from an alkyl group optionally having an alkoxy group, a cycloalkyl group and an aralkyl group having a hetero atom in an aromatic ring or an alkyl group. Groups of ~ 12, R 2
Represents a hydrogen atom or a readily removable protecting group selected from an acyl group, a silyl group, an aralkyl group and an alkyloxyalkyl group, and the symbol * represents an asymmetric carbon atom.
This is a method for producing an optically active compound represented by the formula:

【0009】上記一般式(A)におけるR1 の具体例と
しては、メチル,エチル,プロピル,イソプロピル,ブ
チル,イソブチル,ペンチル,イソペンチル,2,2−
ジメチルペンチル,ヘキシル,2−ヘキシル,ヘプチ
ル,2−ヘプチル,オクチル,2−オクチル,ノニル,
2−ノニル,デシル,2−デシル,ウンデシル,2−ウ
ンデシル,ドデシル,2−エトキシ−1,1−ジメチル
エチル,5−メトキシ−1−メチルペンチル,シロクペ
ンチル,3−エチルシクロペンチル,シクロヘキシル,
2−メチルシクロヘキシル,4−n−プロピルシクロヘ
キシルなどのアルコキシ置換基を有していてもよい直鎖
状もしくは分岐状アルキル基又はシクロアルキル基、フ
ェニルオキシメチル,3−トリフルオロメチルフェニル
オキシメチル,2−クロロチオフェン−5−イルオキシ
メチル,フラン−2−イル−2−エチルなどの芳香環も
しくはアルキル基にヘテロ原子を有するアラルキル基が
挙げられる。
Specific examples of R 1 in the general formula (A) include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, pentyl, isopentyl, 2,2-
Dimethylpentyl, hexyl, 2-hexyl, heptyl, 2-heptyl, octyl, 2-octyl, nonyl,
2-nonyl, decyl, 2-decyl, undecyl, 2-undecyl, dodecyl, 2-ethoxy-1,1-dimethylethyl, 5-methoxy-1-methylpentyl, sirocupentyl, 3-ethylcyclopentyl, cyclohexyl,
Linear or branched alkyl or cycloalkyl optionally having an alkoxy substituent such as 2-methylcyclohexyl, 4-n-propylcyclohexyl, phenyloxymethyl, 3-trifluoromethylphenyloxymethyl, 2 And aralkyl groups having a heteroatom in an aromatic ring or an alkyl group such as -chlorothiophen-5-yloxymethyl and furan-2-yl-2-ethyl.

【0010】また一般式(A)における水素原子以外の
2 の具体例としては、ベンゾイル,アセチル,p−フ
ェニルベンゾイルなどのアシル基、t−ブチルメチルシ
リル,トリメチルシリル,t−ブチルジフェニルシリル
などのシリル基、ベンジル,4−ニトロフェニルメチル
などのアラルキル基、テトラヒドロピラニル,1−エト
キシエチルなどのアルキルオキシアルキル基等の容易に
脱離可能な基が挙げられる。
Specific examples of R 2 other than a hydrogen atom in the general formula (A) include acyl groups such as benzoyl, acetyl and p-phenylbenzoyl; and t-butylmethylsilyl, trimethylsilyl and t-butyldiphenylsilyl. Examples thereof include easily eliminable groups such as a silyl group, an aralkyl group such as benzyl and 4-nitrophenylmethyl, and an alkyloxyalkyl group such as tetrahydropyranyl and 1-ethoxyethyl.

【0011】プロスタグランジンは生体内でプロスタグ
ランジン合成酵素によりアラキドン酸などの高級不飽和
脂肪酸が化学変換されて生じる極めて強い生理活性をも
つ化合物で下記のような構造を有している。
[0011] Prostaglandin is a compound having an extremely strong physiological activity, which is produced by chemically converting higher unsaturated fatty acids such as arachidonic acid in vivo by a prostaglandin synthase and has the following structure.

【0012】[0012]

【化5】 Embedded image

【0013】天然のプロスタグランジンでは、R1 はn
−C5 11−、Rは(CH2 6 COOH又はCH2
H=CH(CH2 3 COOHであり、R1 の置換基は
脂溶性を有することが生理活性の発現上重要であること
が知られている。
In natural prostaglandins, R 1 is n
—C 5 H 11 —, where R is (CH 2 ) 6 COOH or CH 2 C
It is known that H 2CH (CH 2 ) 3 COOH and that the substituent of R 1 has lipophilicity in the expression of biological activity.

【0014】医薬品としての開発研究が進められる中で
さらにR1 としてアルキル基、シクロアルキル基又はア
ラルキル基であって炭素数4〜10のものが有効であ
り、例えばペンチル,イソペンチル,2,2−ジメチル
ペンチル,ヘキシル,2−ヘキシル,ヘプチル,2−エ
トキシ−1,1−ジメチルエチル,5−メトキシ−1−
メチルペンチルなどのアルキル基、シクロペンチル,3
−エチルシクロペンチル,4−プロピルシクロヘキシル
などのシクロアルキル基、フェニルオキシメチル,3−
トリフルオロメチルフェニルオキシメチル,2−クロロ
チオフェン−5−イルオキシメチル,フラン−2−イル
−2−エチルなどのアラルキル基などが特に強い生理活
性を示すことが明らかにされてきた。本発明の化合物は
これら有機基を含めた置換基を導入することのできる原
料として有用なものである。
In the course of research and development as a pharmaceutical, R 1 is an alkyl group, a cycloalkyl group or an aralkyl group having 4 to 10 carbon atoms. For example, pentyl, isopentyl, 2,2- Dimethylpentyl, hexyl, 2-hexyl, heptyl, 2-ethoxy-1,1-dimethylethyl, 5-methoxy-1-
Alkyl groups such as methylpentyl, cyclopentyl, 3
Cycloalkyl groups such as -ethylcyclopentyl and 4-propylcyclohexyl; phenyloxymethyl;
It has been revealed that aralkyl groups such as trifluoromethylphenyloxymethyl, 2-chlorothiophen-5-yloxymethyl, and furan-2-yl-2-ethyl have particularly strong physiological activities. The compounds of the present invention are useful as raw materials into which substituents including these organic groups can be introduced.

【0015】本発明の上記一般式(A)で表わされるア
リルアルコール誘導体の合成法を以下合成経路Iに従っ
て説明する。下記において、Xはハロゲン原子、Mはア
ルカリ金属を表わす。
The method for synthesizing the allyl alcohol derivative represented by the above general formula (A) of the present invention will be described below according to synthetic route I. In the following, X represents a halogen atom, and M represents an alkali metal.

【0016】[0016]

【化6】 Embedded image

【0017】上記反応において、ハロゲン化合物(1)
にn−ブチルリチウム,t−ブチルリチウム,メチルリ
チウム,リチウムジイソプロピルアミドなどの強塩基を
作用させてアセチレン化合物(2)とし、さらにこれら
の強塩基によりアルカリ金属アセチリド(2′)とす
る。これに光学活性アルデヒド(3)を作用させると化
合物(4)が得られる。
In the above reaction, the halogen compound (1)
Is reacted with a strong base such as n-butyllithium, t-butyllithium, methyllithium, lithium diisopropylamide, etc. to form an acetylene compound (2), and further these bases are converted to an alkali metal acetylide (2 '). The compound (4) is obtained by allowing the optically active aldehyde (3) to act on this.

【0018】上記アルカリ金属アセチリド(2′)は、
上記のようにアセチレン化合物(2)を一度単離して再
度強塩基と反応させて調製してもよいが、より簡便には
ハロゲン化合物(1)を2倍量以上の強塩基と反応させ
て得られるアルカリ金属アセチリドをそのまま用いるこ
とができる。このアルカリ金属アセチリドと光学活性ア
ルデヒド(3)との反応は−78〜0℃の低温で行うこ
とが望ましい。化合物(4)を得る反応はテトラヒドロ
フラン,ジイソプロピルエーテル,トルエンなどの不活
性溶媒中−78℃〜室温の温度範囲で行うことができ
る。この反応によって得られる化合物(4)は下記化学
式で示されるようにエリトロ体(B−1)とトレオ体
(B−2)の混合物である。
The alkali metal acetylide (2 ') is
As described above, the acetylene compound (2) may be once isolated and prepared again by reacting with a strong base. However, more simply, the acetylene compound (2) may be prepared by reacting the halogen compound (1) with at least twice the amount of a strong base. The obtained alkali metal acetylide can be used as it is. The reaction between the alkali metal acetylide and the optically active aldehyde (3) is desirably performed at a low temperature of -78 to 0C. The reaction for obtaining the compound (4) can be carried out in an inert solvent such as tetrahydrofuran, diisopropyl ether, toluene or the like at a temperature ranging from -78 ° C to room temperature. The compound (4) obtained by this reaction is a mixture of an erythro form (B-1) and a threo form (B-2) as shown by the following chemical formula.

【0019】[0019]

【化7】 Embedded image

【0020】この混合物からエリトロ体(B−1)又は
トレオ体(B−2)を選択的に得るにはカラム分離など
によって分割することができるが、後述するような化学
的方法によって簡便に、しかもより選択的にそれぞれの
光学異性体を製造することができる。この化合物(4)
に酸化剤、例えばCrO3 −ピリジン,ジメチルスルホ
キシド(DMSO)−酸ハライドなどを用いて酸化する
ことにより化合物(5)のエチニルケトン誘導体を得る
ことができる。
In order to selectively obtain the erythro form (B-1) or threo form (B-2) from this mixture, the mixture can be separated by column separation or the like. In addition, each optical isomer can be produced more selectively. This compound (4)
An ethynyl ketone derivative of compound (5) can be obtained by oxidizing the compound with an oxidizing agent such as CrO 3 -pyridine, dimethylsulfoxide (DMSO) -acid halide or the like.

【0021】この化合物(5)より光学活性エチニルア
ルコール誘導体(B)を合成する反応は、得ようとする
エチニルアルコール誘導体(B)が前記化学式で示した
エリトロ体(B−1)であるか、またはトレオ体(B−
2)であるかによって反応条件が異なる。即ち、エリト
ロ体(B−1)を目的とする場合は化合物(5)を水素
化ホウ素亜鉛錯体(Zn(BH4 2 )で、またトレオ
体(B−2)を目的とする場合はアルカリ金属セレクト
リド、例えばカリウムセレクトリドで還元することによ
り良好な選択性をもって目的とする立体配置のエチニル
アルコール誘導体(B)を得ることができる。
In the reaction for synthesizing the optically active ethynyl alcohol derivative (B) from the compound (5), whether the ethynyl alcohol derivative (B) to be obtained is the erythro body (B-1) represented by the above chemical formula, Or a threo form (B-
The reaction conditions differ depending on whether 2) or not. That is, the compound (5) is a zinc borohydride complex (Zn (BH 4 ) 2 ) for the erythro form (B-1), and an alkali for the threo form (B-2). Reduction with a metal selectride, such as potassium selectride, can provide the ethynyl alcohol derivative (B) having the desired configuration with good selectivity.

【0022】上記エチニルアルコール誘導体(B)より
本発明の目的化合物である光学活性アリルアルコール誘
導体(A)を合成するには、エチニルアルコール誘導体
(B)に水素化リチウムアルミニウム等を作用させて三
重結合をトランス二重結合へ還元することによって行わ
れる。この反応はテトラヒドロフラン,ジオキサン等の
不活性溶媒中40〜80℃の温度で行うことができる。
In order to synthesize the optically active allyl alcohol derivative (A), which is the target compound of the present invention, from the ethynyl alcohol derivative (B), the ethynyl alcohol derivative (B) is reacted with lithium aluminum hydride or the like to form a triple bond. To a trans double bond. This reaction can be performed in an inert solvent such as tetrahydrofuran or dioxane at a temperature of 40 to 80 ° C.

【0023】上記反応における出発物質であるハロゲン
化合物(1)は、D−マンニトールや光学活性グリシド
ールから公知の方法で得られる光学活性2,3−O−イ
ソプロピリデングリセルアルデヒドをトリフェニルホス
フィン及びテトラハロメタンと反応させることにより容
易に合成できる。
The halogen compound (1), which is a starting material in the above reaction, is obtained by converting optically active 2,3-O-isopropylidene glyceraldehyde obtained from D-mannitol or optically active glycidol by a known method into triphenylphosphine and tetraphenylphosphine. It can be easily synthesized by reacting with halomethane.

【0024】また、上記光学活性アルデヒド(3)は、
下記合成経路IIに従って合成することができる。下記に
おいて、R1 ,R2 及び*の符号は一般式(A)の
1 ,R 2 及び*の符号と同様の意味を表わし、X,Y
は、それぞれ独立して水酸基,アシル基,スルホキシ基
及びハロゲン原子から選ばれた基又は原子を表わす。
The optically active aldehyde (3) is
It can be synthesized according to the following synthesis route II. Below
Where R1, RTwoAnd * sign of general formula (A)
R1, R TwoAnd * have the same meanings as X and Y
Is independently a hydroxyl group, an acyl group, a sulfoxy group
And a group or atom selected from halogen atoms.

【0025】[0025]

【化8】 Embedded image

【0026】上記光学活性マンニトールをアセトンと酸
触媒の存在下で反応させてトリアセトニド(a)とし、
これを含水酢酸で部分加水分解してテトラオール(b)
とし、これの一級水酸基及び二級水酸基を各々別個にト
リフェニルホスフィン−CCl4 ,酸ハライド−ピリジ
ン,ピリジン−メタンスルホニルクロリドなどで選択的
にアシル基,スルホキシ基又はハロゲン原子で一部又は
全部を変換してアセトニド(c)とする。次いでこのア
セトニド(c)を塩基でジエポキシド(d)とした後、
3 MgBr,R3 MgBr−Cu2 (CN)2 ,R3
Li(但し、R 3 はR1 より炭素数が1個少ない基を表
わす)や水素化リチウムアルミニウムなどでR1 基を導
入し、さらに水酸基をR2 X′(X′はハロゲン原子又
はスルホキシ基)と反応させてアセトニド(e)とし、
これを加水分解してジオール(f)とした後、Pb(O
Ac)4 やNaIO4 などで酸化して目的の光学活性ア
ルデヒド(3)を得ることができる。
The above-mentioned optically active mannitol is mixed with acetone and acid
Reacting in the presence of a catalyst to form triacetonide (a),
This is partially hydrolyzed with aqueous acetic acid to give tetraol (b)
The primary and secondary hydroxyl groups are separately
Riphenylphosphine-CClFour, Acid halide-pyridi
And pyridine-methanesulfonyl chloride
Partly with an acyl, sulfoxy or halogen atom or
All are converted to acetonide (c). Next,
After converting setonide (c) with a base to diepoxide (d),
RThreeMgBr, RThreeMgBr-CuTwo(CN)Two, RThree
Li (however, R ThreeIs R1Shows groups with one less carbon number than
) And lithium aluminum hydride1Lead the group
And further add a hydroxyl group to RTwoX '(X' is a halogen atom or
Is a sulfoxy group) to give acetonide (e),
This is hydrolyzed to diol (f), and then Pb (O
Ac)FourAnd NaIOFourTo oxidize the desired optically active
Rudehydride (3) can be obtained.

【0027】上記得られた本発明の目的物である一般式
(A)で表わされる光学活性アリルアルコール誘導体
は、下記合成経路 IIIに従って化合物(6)であるγ−
不飽和カルボン酸誘導体に変換し、次いでプロスタグラ
ンジン合成における鍵中間体である化合物(P)のγ−
ラクトン誘導体に変換することができる。下記におい
て、R4 は炭素数1〜5の低級アルキル基を表わす。
The obtained optically active allyl alcohol derivative represented by the general formula (A), which is the object of the present invention, is a compound (6) γ-
The compound (P), which is a key intermediate in the synthesis of prostaglandin, is converted into an unsaturated carboxylic acid derivative,
It can be converted to a lactone derivative. In the following, R 4 represents a lower alkyl group having 1 to 5 carbon atoms.

【0028】[0028]

【化9】 Embedded image

【0029】上記反応において、アリルアルコール誘導
体(A)は、これをオルト酢酸トリアルキルと共に酸触
媒の存在下で加熱反応させ、ジョンソン−クライゼン転
位反応を行ってγ−不飽和カルボン酸誘導体(6)に変
換される。
In the above reaction, the allyl alcohol derivative (A) is reacted with a trialkyl orthoacetate under heating in the presence of an acid catalyst, and a Johnson-Claisen rearrangement reaction is carried out to give the γ-unsaturated carboxylic acid derivative (6). Is converted to

【0030】用いるオルト酢酸トリアルキルとしてはオ
ルト酢酸トリメチル,オルト酢酸トリエチル,オルト酢
酸トリプロピル,オルト酢酸トリブチル,オルト酢酸ト
リヘプチル等が挙げられ、これをアリルアルコール誘導
体(A)に対して2〜10倍当量用い、トルエン,キシ
レン,メシチレン等の溶媒中130〜180℃の温度で
反応が行われる。酸触媒としてはルイス酸、ルイス酸錯
体(例えばBF3 ・(C2 5 2 O)やヘプタン酸な
どの有機酸が用いられる。
The trialkyl orthoacetate used includes trimethyl orthoacetate, triethyl orthoacetate, tripropyl orthoacetate, tributyl orthoacetate, triheptyl orthoacetate, etc., which are 2 to 10 times the amount of the allyl alcohol derivative (A). The reaction is carried out at a temperature of 130 to 180 ° C. in a solvent such as toluene, xylene or mesitylene using an equivalent amount. As the acid catalyst, a Lewis acid, a Lewis acid complex (for example, BF 3. (C 2 H 5 ) 2 O), or an organic acid such as heptanoic acid is used.

【0031】このようにして得られたγ−不飽和カルボ
ン酸誘導体(6)のアセトニドを酸触媒で開環させ、分
子内ラクトン化させるとプロスタグランジン合成におけ
る鍵中間体である一般式(P)で表わされる光学活性γ
−ラクトン誘導体が得られる。この反応におけるアセト
ニドの加水分解は含水有機酸、メタノール,エタノール
等のアルコール、アセトン又はジオキサンなどの溶媒中
鉱酸やBF3 ・エーテル錯体,CuSO4 ,ZnSO4
等のルイス酸又はルイス酸錯体を用いて室温〜80℃の
温度で行うことができる。
The acetonide of the γ-unsaturated carboxylic acid derivative (6) thus obtained is subjected to ring opening with an acid catalyst and intramolecular lactonization to give a general intermediate (P) which is a key intermediate in the synthesis of prostaglandin. ) Optical activity γ
-A lactone derivative is obtained. In this reaction, acetonide is hydrolyzed by a hydrous organic acid, an alcohol such as methanol or ethanol, a mineral acid in a solvent such as acetone or dioxane, a BF 3 .ether complex, CuSO 4 , ZnSO 4
And a Lewis acid or a Lewis acid complex.

【0032】このようにして得られた一般式(P)の化
合物は、前記G.Storkらのプロスタグランジン合
成法に従ってプロスタグランジン(前記PGE、PG
F)に導くことができる。従って本発明における一般式
(A)の光学活性化合物は、上記原料としては一般式
(A)中の2位及び6位の立体配置は共にSであり、5
位の立体配置がRであることが必要とされる。
The compound of the general formula (P) thus obtained is described in G. According to the prostaglandin synthesis method of Stork et al.
F). Accordingly, in the optically active compound of the general formula (A) in the present invention, both the 2- and 6-configurations in the general formula (A) are S,
It is required that the configuration of the position be R.

【0033】[0033]

【実施例】以下実施例によって本発明を説明する。The present invention will be described below with reference to examples.

【0034】化合物(a)の合成 45gのD−マンニトールをアセトン1L及び濃塩酸1
ml中で室温下3日間激しく攪拌した後、炭酸カリウム
50gを加え、さらに1日攪拌した。固形物を吸引濾過
して除き、濾液中の溶媒を減圧下に留去し、得られた残
渣に水を加え、析出した結晶を吸引濾取して粗生成物4
5gを得た。これをエタノール20mlに加熱溶解した
後濾過し、濾液を室温に冷却して析出した結晶を濾取
し、下記化学式で示される光学活性(2R,3R,4
R,5R)体のトリアセトニド(a)37.3g(収率
50%)を得た。
Synthesis of Compound (a) 45 g of D-mannitol was added to 1 L of acetone and 1 L of concentrated hydrochloric acid.
After stirring vigorously at room temperature for 3 days in 50 ml, 50 g of potassium carbonate was added, and the mixture was further stirred for 1 day. The solid substance was removed by suction filtration, the solvent in the filtrate was distilled off under reduced pressure, water was added to the obtained residue, and the precipitated crystals were collected by suction filtration to obtain crude product 4.
5 g were obtained. This was dissolved by heating in 20 ml of ethanol, followed by filtration. The filtrate was cooled to room temperature, and the precipitated crystals were collected by filtration. The optical activity (2R, 3R, 4
(R, 5R) triacetonide (a) (37.3 g, yield 50%) was obtained.

【0035】[0035]

【化10】 Embedded image

【0036】1HNMR(CCl4 ) δ:1.40 (6H,s,CH3 ×2) 1.43 (12H,s,CH3 ×4) 3.7 〜4.4 (8H,m,CH2 ,CH) 1 H NMR (CCl 4 ) δ: 1.40 (6H, s, CH 3 × 2) 1.43 (12H, s, CH 3 × 4) 3.7 to 4.4 (8H, m, CH 2 , CH)

【0037】化合物(b)の合成 上記得られたトリアセトニド(a)15g(0.05m
ol)を70%酢酸50ml中40℃で3.5時間攪拌
した後、40℃で出来丈速やかに減圧濃縮し、残渣にア
セトンを加え結晶化したD−マンニトール(0.72
g)を濾別し、濾液よりアセトンを減圧留去してシロッ
プ状の生成物を得た。これをベンゼン50mlで再結晶
して下記化学式で示される光学活性(2R,3R,4
R,5R)体のテトラオール(b)8.8g(収率80
%)を得た。
Synthesis of Compound (b) 15 g (0.05 m) of the triacetonide (a) obtained above was obtained.
ol) was stirred in 50 ml of 70% acetic acid at 40 ° C. for 3.5 hours, concentrated at 40 ° C. under reduced pressure, and acetone was added to the residue to crystallize D-mannitol (0.72 ml).
g) was filtered off, and acetone was distilled off from the filtrate under reduced pressure to obtain a syrup-like product. This was recrystallized with 50 ml of benzene and the optical activity (2R, 3R, 4
R, 5R) -form tetraol (b) (8.8 g, yield 80)
%).

【0038】[0038]

【化11】 Embedded image

【0039】1HNMR(D2 O) δ:1.38 (6H,s,CH3 ×2) 3.3 〜4.2 (8H,m,CH2 ,CH) 1 H NMR (D 2 O) δ: 1.38 (6H, s, CH 3 × 2) 3.3 to 4.2 (8H, m, CH 2 , CH)

【0040】化合物(c)及び(d)の合成 上記得られたテトラオール(b)15.3g(0.06
9mol)、無水ピリジン55ml(0.68mo
l)、CH2 Cl2 50mlの溶液中に、−70℃で塩
化ベンゾイル16ml(0.138mol)、無水CH
2 Cl2 5mlの混合液を15分間かけて滴下し、滴下
後更に−30℃で1時間、室温で10時間攪拌し、反応
の完結を薄層クロマトグラフで確認した後溶媒を減圧留
去した。この残渣にメタンスルホニルクロリド11.2
ml(0.144mol)を0℃で20分間かけて加
え、更にこの懸濁液を室温で3日間攪拌した。反応の完
結を薄層クロマトグラフで確認した後、反応混合物にエ
チルエーテル:ヘキサン=7:3(容量)の混合溶媒1
00mlを加え、この黄色の懸濁液をセライト−545
で濾過し、溶媒を減圧留去した。得られた褐色の残渣を
CH2 Cl2 で希釈し、濃塩酸を加えて酸性にした後C
2 Cl2 で3回抽出した。抽出物を飽和重曹水、飽和
食塩水で順次洗浄した後無水硫酸マグネシウムで乾燥
し、溶媒を減圧留去して下記化学式で示される光学活性
(2R,3R,4R,5R)体の褐色半固体物アセトニ
ド(c)42gを得た。
Synthesis of Compounds (c) and (d) 15.3 g (0.06 g) of the tetraol (b) obtained above.
9 mol), 55 ml of anhydrous pyridine (0.68 mol)
l) in a solution of 50 ml of CH 2 Cl 2 at -70 ° C., 16 ml (0.138 mol) of benzoyl chloride, anhydrous CH
A mixture of 5 ml of 2 Cl 2 was added dropwise over 15 minutes. After the addition, the mixture was further stirred at −30 ° C. for 1 hour and at room temperature for 10 hours. After the completion of the reaction was confirmed by thin-layer chromatography, the solvent was distilled off under reduced pressure. . The residue was treated with methanesulfonyl chloride 11.2
ml (0.144 mol) was added at 0 ° C. over 20 minutes, and the suspension was further stirred at room temperature for 3 days. After the completion of the reaction was confirmed by thin-layer chromatography, the reaction mixture was mixed with a mixed solvent of ethyl ether: hexane = 7: 3 (volume).
Then, the yellow suspension was added to Celite-545.
And the solvent was distilled off under reduced pressure. The resulting brown residue was diluted with CH 2 Cl 2 and acidified by adding concentrated hydrochloric acid, followed by C
Extracted three times with H 2 Cl 2 . The extract is washed successively with saturated aqueous sodium hydrogen carbonate and saturated brine, dried over anhydrous magnesium sulfate, and the solvent is distilled off under reduced pressure to give an optically active (2R, 3R, 4R, 5R) brown semisolid represented by the following chemical formula. 42 g of acetonide (c) was obtained.

【0041】[0041]

【化12】 Embedded image

【0042】(但し、Msはメチルスルホキシ基、ph
はフェニル基を表わす)
(Where Ms is a methylsulfoxy group, ph
Represents a phenyl group)

【0043】上記アセトニド(c)42g、K2 CO3
20gをメタノール130ml中で15時間攪拌した
後、反応液をセライト−545を通して濾過し、濾液を
40℃で減圧濃縮し、エチルエーテル:ヘキサン=7:
3(容量)の混合溶媒30mlを加えて再度セライト−
545で濾過し、溶媒を40℃で減圧留去し、さらに減
圧蒸留により粗生成物を得た。これをさらにベンゼンで
再結晶して純粋な下記化学式で示される光学活性(2
S,3R,4R,5S)体のジエポキシド(d)2.7
g(収率21%)を得た。
42 g of the above acetonide (c), K 2 CO 3
After stirring 20 g of 15 g in 130 ml of methanol for 15 hours, the reaction solution was filtered through Celite-545, and the filtrate was concentrated under reduced pressure at 40 ° C., and ethyl ether: hexane = 7:
3 (volume) of the mixed solvent (30 ml) was added thereto, and Celite-
The mixture was filtered at 545, the solvent was distilled off under reduced pressure at 40 ° C., and the crude product was obtained by distillation under reduced pressure. This was further recrystallized from benzene to give a pure optical activity (2
(S, 3R, 4R, 5S) diepoxide (d) 2.7
g (yield 21%) was obtained.

【0044】[0044]

【化13】 Embedded image

【0045】1HNMR(CDCl3 ) δ:1.39 (6H,s,CH3 ×2) 2.6 〜2.9 (4H,m,CH2 ×2) 2.95〜3.12 (2H,m,CH) 3.7 〜3.95 (2H,m,CH) 1 H NMR (CDCl 3 ) δ: 1.39 (6H, s, CH 3 × 2) 2.6 to 2.9 (4H, m, CH 2 × 2) 2.95 to 3.12 (2H , M, CH) 3.7 to 3.95 (2H, m, CH)

【0046】化合物(e)及び(f)の合成 Cu2 (CN)2 320mg、無水テトラヒドロフラン
100mlの混合物に、別途調製した濃度1.47mo
lのn−ブチルマグネシウムブロミドのエーテル溶液6
4ml(94m mol)を0℃で5分間かけて加え
た。さらに5分間攪拌した後、上記得られたジエポキシ
ド(d)6.48gの無水テトラヒドロフラン50ml
溶液を0℃で攪拌下10分間かけて滴下し、さらに1時
間攪拌した。反応の完結を薄層クロマトグラフで確認し
た後、NH4 Clと飽和食塩水で分解し、30分間攪拌
後、エチルエーテルで3回抽出し、エーテル層を1規定
塩酸、飽和重曹水、飽和食塩水で順次洗浄し、無水硫酸
マグネシウムで乾燥して濾過し、濾液の溶媒を留去して
下記化学式で示される光学活性(6S,7R,8R,9
S)体の粗ジオール(e−1)を得た。
Synthesis of Compounds (e) and (f) A mixture of 320 mg of Cu 2 (CN) 2 and 100 ml of anhydrous tetrahydrofuran was separately prepared at a concentration of 1.47 mol.
l of n-butylmagnesium bromide in ether 6
4 ml (94 mmol) were added at 0 ° C. over 5 minutes. After further stirring for 5 minutes, 6.48 g of the obtained diepoxide (d) in 50 ml of anhydrous tetrahydrofuran
The solution was added dropwise at 0 ° C. with stirring over 10 minutes, and further stirred for 1 hour. After completion of the reaction was confirmed by thin-layer chromatography, the mixture was decomposed with NH 4 Cl and saturated saline, stirred for 30 minutes, extracted three times with ethyl ether, and the ether layer was extracted with 1N hydrochloric acid, saturated aqueous sodium hydrogen carbonate, and saturated saline. The extract was washed successively with water, dried over anhydrous magnesium sulfate, and filtered. The solvent of the filtrate was distilled off, and the optical activity represented by the following chemical formula (6S, 7R, 8R, 9) was obtained.
S) A crude diol (e-1) was obtained.

【0047】[0047]

【化14】 Embedded image

【0048】上記得られた粗ジオール(e−1)を無水
テトラヒドロフラン30mlに溶かし、これに水素化ナ
トリウム0.48g(1.07m mol)の無水テト
ラヒドロフラン100mlを還流下15分間かけて滴下
し、さらに1時間攪拌還流した後0℃に冷却した。この
懸濁液にDC−18−クラウンエーテル−6 132m
gと臭化ベンジル9.3ml(78m mol)を0℃
で加えて4時間攪拌還流した。反応液を減圧濃縮し、1
規定塩酸で分解した後ヘキサンで3回抽出し、抽出液を
飽和重曹水、飽和食塩水で洗浄し、無水硫酸マグネシウ
ムで乾燥した後溶媒を減圧留去して下記化学式で示され
る光学活性(6S,7R,8R,9S)体のアセトニド
(e−2)を得た。
The crude diol (e-1) obtained above was dissolved in 30 ml of anhydrous tetrahydrofuran, and 0.48 g (1.07 mmol) of sodium hydride was added dropwise to 100 ml of anhydrous tetrahydrofuran over 15 minutes under reflux. After stirring and refluxing for 1 hour, the mixture was cooled to 0 ° C. To this suspension was added DC-18-crown ether-6 132 m
g and 9.3 ml (78 mmol) of benzyl bromide at 0 ° C.
And stirred under reflux for 4 hours. The reaction solution was concentrated under reduced pressure, and
After decomposing with normal hydrochloric acid, the mixture is extracted three times with hexane. The extract is washed with saturated aqueous sodium hydrogen carbonate and saturated saline, dried over anhydrous magnesium sulfate, and the solvent is distilled off under reduced pressure to obtain an optical activity represented by the following chemical formula (6S , 7R, 8R, 9S) acetonide (e-2).

【0049】[0049]

【化15】 Embedded image

【0050】(但し、Bnはベンジル基を表わす)(However, Bn represents a benzyl group)

【0051】上記アセトニド(e−2)を80%酢酸1
00ml中100℃で10時間加熱攪拌した後、溶媒を
減圧留去し、次いでエチルエーテルで抽出し、抽出液を
苛性ソーダ水溶液で洗浄し、水層はさらにエチルエーテ
ルで抽出し、これらエーテル層を併せて1規定塩酸、飽
和重曹水、食塩水で順次洗浄して無水硫酸マグネシウム
で乾燥した。溶媒を留去後シリカゲルカラムクロマトグ
ラフィーで精製し(エチルエーテル:ヘキサン=1:4
(容量)で溶出)、下記化学式で示される光学活性(6
S,7R,8R,9S)体のジオール(f)8.66g
(化合物(d)よりの収率55%)を得た。
The above acetonide (e-2) was treated with 80% acetic acid 1
After heating and stirring at 100 ° C. for 10 hours in 00 ml, the solvent was distilled off under reduced pressure, then extracted with ethyl ether, the extract was washed with aqueous sodium hydroxide solution, the aqueous layer was further extracted with ethyl ether, and these ether layers were combined. The solution was washed sequentially with 1N hydrochloric acid, saturated aqueous sodium hydrogen carbonate and brine, and dried over anhydrous magnesium sulfate. After the solvent was distilled off, the residue was purified by silica gel column chromatography (ethyl ether: hexane = 1: 4).
(Elution with (volume)), and the optical activity (6
8.66 g of diol (f) in the form of (S, 7R, 8R, 9S)
(Yield 55% from compound (d)) was obtained.

【0052】[0052]

【化16】 Embedded image

【0053】(但し、Bnはベンジル基を表わす)1 HNMR(CDCl3 ) δ:0.88 (6H,br,CH3 ×2) 1.0 〜1.8 (16H,m,CH2 ×8) 3.4 〜3.7 (4H,m,CH) 4.46 (2H,d,J=10.8Hz,
CH) 4.62 (2H,d,J=10.8Hz,
CH) 7.30 (10H,s,C6 5
(However, Bn represents a benzyl group) 1 H NMR (CDCl 3 ) δ: 0.88 (6H, br, CH 3 × 2) 1.0 to 1.8 (16H, m, CH 2 × 8) ) 3.4-3.7 (4H, m, CH) 4.46 (2H, d, J = 10.8 Hz,
CH) 4.62 (2H, d, J = 10.8 Hz,
CH) 7.30 (10H, s, C 6 H 5)

【0054】化合物(3)の合成 上記得られたジオール(f)200mg、K2 CO3
0mg及び無水ベンゼン4.5ml中に四酢酸鉛260
mgを4℃で加えて3分間攪拌した。反応終了後ヘキサ
ン100mlを加え、セライト−545を用いて濾過
し、濾液を飽和重曹水で洗浄し、水層をヘキサンで2回
抽出し、ヘキサン層を併せて飽和食塩水で洗浄した後無
水硫酸マグネシウムで乾燥した。溶媒を留去後、シリカ
ゲルカラムクロマトグラフィー(エチルエーテル:ヘキ
サン=1:2(容量))で精製して(S)−2−ベンジ
ルオキシヘプタナール(3)160mg(収率80%)
を得た。
Synthesis of Compound (3) 200 mg of the diol (f) obtained above, K 2 CO 3 6
0 mg and 4.5 ml of anhydrous benzene.
mg was added at 4 ° C and stirred for 3 minutes. After completion of the reaction, 100 ml of hexane was added, the mixture was filtered using Celite-545, the filtrate was washed with saturated aqueous sodium hydrogen carbonate, the aqueous layer was extracted twice with hexane, and the combined hexane layers were washed with saturated saline and then dried over sulfuric anhydride. Dried over magnesium. After evaporating the solvent, the residue was purified by silica gel column chromatography (ethyl ether: hexane = 1: 2 (volume)) to give 160 mg of (S) -2-benzyloxyheptanal (3) (80% yield).
I got

【0055】[0055]

【化17】 Embedded image

【0056】(但し、Bnはベンジル基を表わす)1 HNMR(CDCl3 ) δ:0.87 (3H,t,J=5.8H
z,CH3 ) 1.0 〜1.8 (8H,m,CH2 ) 3.73 (1H,dt,J=2.2Hz,
6.2Hz,CH) 4.51 (1H,d,J=11.6Hz,
CH) 4.65 (1H,d,J=11.6Hz,C
H) 7.34 (5H,s,C6 5 ) 9.64 (1H,d,J=2.2Hz)
(However, Bn represents a benzyl group) 1 H NMR (CDCl 3 ) δ: 0.87 (3H, t, J = 5.8H)
z, CH 3 ) 1.0 -1.8 (8H, m, CH 2 ) 3.73 (1 H, dt, J = 2.2 Hz,
6.2 Hz, CH) 4.51 (1H, d, J = 11.6 Hz,
CH) 4.65 (1H, d, J = 11.6 Hz, C
H) 7.34 (5H, s, C 6 H 5) 9.64 (1H, d, J = 2.2Hz)

【0057】化合物(4)の合成 下記化学式(1)Synthesis of Compound (4) The following chemical formula (1)

【0058】[0058]

【化18】 Embedded image

【0059】で表わされる(S)−ジブロマイド4.8
g(16.8m mol)の無水テトラヒドロフラン1
00mlを−78℃に冷却し、窒素雰囲気下で濃度1.
62molのブチルリチウム−ヘキサン溶液16.4m
l(26.6m mol)を10分間かけて滴下し、−
78℃でさらに1時間、室温で1時間攪拌して光学活性
リチウムアセチリド(2′)に変換し、これを−78℃
に冷却して上記得られた(S)−2−ベンジルオキシヘ
プタナール(3)2.41g(4.4m mol)の無
水テトラヒドロフラン20mlを滴下し、30分間更に
攪拌した後、塩化アンモニウム水溶液で分解し、エチル
エーテルで3回抽出して飽和食塩水で洗浄した後無水硫
酸マグネシウムで乾燥した。溶媒を減圧留去し、シリカ
ゲルカラムクロマトグラフィー(エチルエーテル:ヘキ
サン=1:3(容量))で精製して下記化学式(4)で
表わされる(2S,6S)体の化合物3.81gを得た
(収率64%)。このものはエリトロ体:トレオ体=6
4:36(重量)の混合物であった。
(S) -dibromide 4.8
g (16.8 mmol) of anhydrous tetrahydrofuran 1
00 ml was cooled to -78 ° C and the concentration was 1.
16.4 m of a 62 mol butyllithium-hexane solution
1 (26.6 mmol) was added dropwise over 10 minutes.
The mixture was further stirred at 78 ° C for 1 hour and at room temperature for 1 hour to convert into optically active lithium acetylide (2 ′).
Then, 2.41 g (4.4 mmol) of anhydrous tetrahydrofuran (20 ml) of (S) -2-benzyloxyheptanal (3) obtained above was added dropwise, and the mixture was further stirred for 30 minutes and decomposed with an aqueous ammonium chloride solution. The mixture was extracted three times with ethyl ether, washed with saturated saline, and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (ethyl ether: hexane = 1: 3 (volume)) to obtain 3.81 g of a (2S, 6S) compound represented by the following chemical formula (4). (Yield 64%). This is erythro: threo = 6
It was a mixture of 4:36 (weight).

【0060】[0060]

【化19】 Embedded image

【0061】(但し、Bnはベンジル基を表わす)(However, Bn represents a benzyl group)

【0062】化合物(5)の合成 無水ジメチルスルホキシド680mg(8.7m mo
l)の無水塩化メチレン15ml溶液にオキザリルジク
ロリド0.38ml(4.4m mol)を−70℃で
5分間かけて滴下し、さらに10分間同温度で攪拌し
た。これに上記得られたエリトロ体:トレオ体=64:
36の化合物(4)1.00g(2.9mmol)の無
水塩化メチレン4mlを滴下し9分間−70℃で攪拌し
た。これに無水トリエチルアミン2.0ml(14m
mol)を滴下して徐々に室温に戻した後ヘキサンを加
え、セライト−545を通して濾過し、濾液を1規定塩
酸で洗浄した。水層を塩化メチレンで3回抽出し、抽出
物を飽和食塩水で洗浄し無水硫酸マグネシウムで乾燥し
た。溶媒を減圧留去し、シリカゲルカラムクロマトグラ
フィー(エチルエーテル:ヘキサン=1:10(容
量))で精製し、下記化学式で示される(2S,6S)
体のエチニルケトン誘導体(5)550mgを得た(収
率55%)。
Synthesis of Compound (5) Anhydrous dimethyl sulfoxide (680 mg, 8.7 mM)
To a solution of 1) in 15 ml of anhydrous methylene chloride, 0.38 ml (4.4 mmol) of oxalyl dichloride was added dropwise at -70 ° C over 5 minutes, and the mixture was further stirred at the same temperature for 10 minutes. The obtained erythro form: threo form = 64:
4 ml of anhydrous methylene chloride of 1.00 g (2.9 mmol) of 36 compound (4) were added dropwise, and the mixture was stirred at -70 ° C for 9 minutes. 2.0 ml of anhydrous triethylamine (14 m
mol) was added dropwise, and the temperature was gradually returned to room temperature, hexane was added, the mixture was filtered through Celite-545, and the filtrate was washed with 1N hydrochloric acid. The aqueous layer was extracted three times with methylene chloride, and the extract was washed with saturated saline and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (ethyl ether: hexane = 1: 10 (volume)) and represented by the following chemical formula (2S, 6S).
550 mg of the ethynyl ketone derivative (5) was obtained (55% yield).

【0063】[0063]

【化20】 Embedded image

【0064】(但し、Bnはベンジル基を表わす)1 HNMR(CDCl3 ) δ:0.86 (3H,br t,J=7.
2Hz,CH3 ) 1.0 〜1.9 (8H,m,CH2 ) 1.38 (3H,s,CH3 ) 1.47 (3H,s,CH3 ) 4.02 (1H,dd,J=5.6Hz,
8.24Hz,CH) 4.18 (1H,dd,J=6.4Hz,
8.24Hz,CH) 4.42 (1H,d,J=11.5Hz,
CH) 4.70 (1H,d,J=11.5Hz,
CH) 4.86 (1H,dd,J=5.6Hz,
6.4Hz,CH) 7.31 (5H,s,C6 5 ) IR νmax (neat) 695, 735, 835,1060,1220,1
320,1370,1380,1450,1675,2
200,2860,2920,3020cm-1
(However, Bn represents a benzyl group) 1 H NMR (CDCl 3 ) δ: 0.86 (3H, brt, J = 7.
2Hz, CH 3) 1.0 ~1.9 ( 8H, m, CH 2) 1.38 (3H, s, CH 3) 1.47 (3H, s, CH 3) 4.02 (1H, dd, J = 5.6 Hz,
8.24 Hz, CH) 4.18 (1H, dd, J = 6.4 Hz,
8.24 Hz, CH) 4.42 (1H, d, J = 11.5 Hz,
CH) 4.70 (1H, d, J = 11.5 Hz,
CH) 4.86 (1H, dd, J = 5.6 Hz,
6.4 Hz, CH) 7.31 (5H, s, C 6 H 5 ) IR νmax (neat) 699, 735, 835, 1060, 1220, 1
320, 1370, 1380, 1450, 1675, 2
200,2860,2920,3020cm -1

【0065】化合物(B)の合成 上記得られた(2S,6S)体のエチニルケトン誘導体
(5)550mg(1.6m mol)の無水エーテル
16ml中へ−30℃で濃度0.26molの水素化ホ
ウ素亜鉛−エチルエーテル溶液9.6ml(2.5m
mol)を窒素雰囲気下5分間かけて滴下し、さらに3
0分間攪拌した。反応終了後、水及び0.5規定塩酸2
0mlを加え、0℃で30分間攪拌した。水層をエチル
エーテルで3回抽出し、抽出液を飽和重曹水及び飽和食
塩水で順次洗浄し無水硫酸マグネシウムで乾燥した。溶
媒を減圧留去し、シリカゲルカラムクロマトグラフィー
(エチルエーテル:ヘキサン=1:3(容量))で精製
して下記化学式で示される(2S,5R,6S)体のエ
チニルアルコール誘導体(B)(エリトロ体:トレオ体
=90:10(重量))349mgを得た(収率63
%)。
Synthesis of Compound (B) Hydrogenation of 550 mg (1.6 mmol) of the (2S, 6S) ethynyl ketone derivative (5) obtained above in 16 ml of anhydrous ether at -30 ° C. at a concentration of 0.26 mol. 9.6 ml of boron zinc-ethyl ether solution (2.5 m
mol) was added dropwise over 5 minutes under a nitrogen atmosphere.
Stirred for 0 minutes. After the reaction is completed, add water and 0.5N hydrochloric acid 2
0 ml was added and the mixture was stirred at 0 ° C. for 30 minutes. The aqueous layer was extracted three times with ethyl ether, and the extract was washed successively with saturated aqueous sodium hydrogen carbonate and saturated saline, and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (ethyl ether: hexane = 1: 3 (volume)) to give a (2S, 5R, 6S) ethynyl alcohol derivative (B) (Eritro) represented by the following chemical formula: Compound: threo compound = 90: 10 (weight)) was obtained in an amount of 349 mg (yield: 63).
%).

【0066】[0066]

【化21】 Embedded image

【0067】(但し、Bnはベンジル基を表わす)1 HNMR(CDCl3 ) δ:0.87 (3H,br t,J=7.
2Hz,CH3 ) 1.0 〜1.8 (8H,m,CH2 ) 1.36 (3H,s,CH3 ) 1.45 (3H,s,CH3 ) 3.49 (1H,dt,J=3.8Hz,
6.4Hz,CH) 3.88 (1H,dd,J=6.4Hz,
7.7Hz,CH) 4.12 (1H,dd,J=6.4Hz,
7.7Hz,CH) 4.4 〜4.7 (1H,m,J=1.5Hz,
3.8Hz,CH) 4.59 (2H,s,CH2 ) 4.69 (1H ddd,J=1.5H
z,6.4Hz,6.4Hz,CH) 7.30 (5H,s,C6 5 13 CNMR(CDCl3 ) δ: 13.98, 22.54, 25.27, 2
5.96,26.22, 30.06, 31.85,
64.16,65.57, 69.94, 72.4
9, 81.50,83.70, 84.00,10
0.31,127.83,128.40,138.21
(However, Bn represents a benzyl group) 1 H NMR (CDCl 3 ) δ: 0.87 (3H, brt, J = 7.
2 Hz, CH 3 ) 1.0 to 1.8 (8H, m, CH 2 ) 1.36 (3H, s, CH 3 ) 1.45 (3H, s, CH 3 ) 3.49 (1 H, dt, J = 3.8 Hz,
6.4 Hz, CH) 3.88 (1H, dd, J = 6.4 Hz,
7.7 Hz, CH) 4.12 (1H, dd, J = 6.4 Hz,
7.7 Hz, CH) 4.4 to 4.7 (1 H, m, J = 1.5 Hz,
3.8Hz, CH) 4.59 (2H, s, CH 2) 4.69 (1H ddd, J = 1.5H
z, 6.4 Hz, 6.4 Hz, CH) 7.30 (5H, s, C 6 H 5 ) 13 C NMR (CDCl 3 ) δ: 13.98, 22.54, 25.27, 2
5.96, 26.22, 30.06, 31.85,
64.16, 65.57, 69.94, 72.4
9, 81.50, 83.70, 84.00, 10
0.31,127.83,128.40,138.21

【0068】化合物(A)の合成 上記得られた(2S,5R,6S)体のエチニルアルコ
ール誘導体(B)105mg(0.30m mol)の
無水テトラヒドロフラン2ml溶液を水素化リチウムア
ルミニウム24.1mg(0.63m mol)の無水
テトラヒドロフラン5ml中に0℃で加え、18分間攪
拌還流した。反応終了後、酢酸エチル、エタノール、
水、0.1規定塩酸を順次加えて分解し、水層をエチル
エーテルで2回抽出した。抽出液を飽和食塩水で洗浄
し、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去
し、シリカゲルカラムクロマトグラフィー(エチルエー
テル:ヘキサン=1:3(容量))で精製して下記化学
式で示される(2S,5R,6S)体のアリルアルコー
ル誘導体(A)80.1mgを得た(収率76%)。
Synthesis of Compound (A) A solution of 105 mg (0.30 mmol) of the obtained (2S, 5R, 6S) ethynyl alcohol derivative (B) in 2 ml of anhydrous tetrahydrofuran was treated with 24.1 mg of lithium aluminum hydride (0%). (6.63 mmol) in 5 ml of anhydrous tetrahydrofuran at 0 ° C. and stirred under reflux for 18 minutes. After completion of the reaction, ethyl acetate, ethanol,
Water and 0.1N hydrochloric acid were sequentially added to decompose, and the aqueous layer was extracted twice with ethyl ether. The extract was washed with saturated saline and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (ethyl ether: hexane = 1: 3 (volume)) and represented by the following chemical formula. 80.1 mg of the (2S, 5R, 6S) allyl alcohol derivative (A) was obtained (76% yield).

【0069】[0069]

【化22】 Embedded image

【0070】(但し、Bnはベンジル基を表わす)1 HNMR(CDCl3 ) δ:0.86 (3H,t,J=5.4H
z,CH3 ) 1.38 (3H,s,CH3 ) 1.40 (3H,s,CH3 ) 1.04〜1.8 (8H,m,CH2 ) 3.2 〜3.5 (1H,m,CH) 3.52 (1H,dd,J=7.7Hz,
7.7Hz,CH) 4.08 (1H,dd,J=6.4Hz,
8.0Hz,CH)13 CNMR(CDCl3 ) δ: 14.02, 22.61, 25.46, 2
5.92,26.72, 29.42, 31.93,
69.44,72.22, 72.56, 82.1
8,127.72,127.79,128.40,12
9.89,132.47,140.60
(Where Bn represents a benzyl group) 1 H NMR (CDCl 3 ) δ: 0.86 (3H, t, J = 5.4H)
z, CH 3) 1.38 (3H , s, CH 3) 1.40 (3H, s, CH 3) 1.04~1.8 (8H, m, CH 2) 3.2 ~3.5 ( 1H, m, CH) 3.52 (1H, dd, J = 7.7 Hz,
7.7 Hz, CH) 4.08 (1H, dd, J = 6.4 Hz,
8.0 Hz, CH) 13 C NMR (CDCl 3 ) δ: 14.02, 22.61, 25.46, 2
5.92, 26.72, 29.42, 31.93,
69.44, 72.22, 72.56, 82.1
8, 127.72, 127.79, 128.40, 12
9.89, 132.47, 140.60

【0071】上記得られた本発明の目的化合物であるア
リルアルコール誘導体(A)を用いて、以下の例に従っ
てプロスタグランジン合成のための鍵中間体である前記
一般式(P)で表わされる光学活性γ−ラクトン誘導体
を合成した。
Using the obtained allyl alcohol derivative (A), which is the object compound of the present invention, the optical system represented by the above general formula (P) which is a key intermediate for the synthesis of prostaglandins according to the following examples. An active γ-lactone derivative was synthesized.

【0072】化合物(6)の合成 上記得られた(2S,5R,6S)体のアリルアルコー
ル誘導体(A)80.1mg(0.23m mol)、
トリエチルオルトアセテート0.15ml(0.82m
mol)及び触媒量のヘプタノイックアシッドをキシ
レン3ml中160℃で20分間加熱反応させ、キシレ
ンと生成したエタノールを減圧留去し、反応終了後飽和
重曹水で分解した。水層をエチルエーテルで2回抽出
し、抽出物を飽和食塩水で洗浄した後無水硫酸マグネシ
ウムで乾燥した。溶媒を減圧留去後、シリカゲルカラム
クロマトグラフィー(エチルエーテル:ヘキサン=1:
10(容量))で精製して下記化学式で示される(1′
S,3S,6S)体のγ−不飽和カルボン酸エチル
(6)65.6mgを得た(収率68%)。
Synthesis of Compound (6) 80.1 mg (0.23 mmol) of the allyl alcohol derivative (A) of the (2S, 5R, 6S) form obtained above,
Triethyl orthoacetate 0.15ml (0.82m
mol) and a catalytic amount of heptanoic acid were heated and reacted in 3 ml of xylene at 160 ° C. for 20 minutes, and xylene and produced ethanol were distilled off under reduced pressure. The aqueous layer was extracted twice with ethyl ether, and the extract was washed with saturated saline and dried over anhydrous magnesium sulfate. After evaporating the solvent under reduced pressure, silica gel column chromatography (ethyl ether: hexane = 1: 1).
10 (volume)) and represented by the following chemical formula (1 ′
65.6 mg of (S, 3S, 6S) -form γ-unsaturated ethyl carboxylate (6) was obtained (68% yield).

【0073】[0073]

【化23】 Embedded image

【0074】(但し、Bnはベンジル基を表わす)1 HNMR(CDCl3 ) δ:0.86 (3H,br t,J=7.
2Hz,CH3 ) 1.0 〜1.8 (8H,m,CH2 ) 1.33 (3H,s,CH3 ) 1.41 (3H,s,CH3 ) 2.40 (1H,dd,J=9.0Hz,
14.7Hz,CH) 2.50 (1H,dd,J=5.1Hz,
14.7Hz,CH) 2.6 〜3.0 (1H,m,CH) 3.5 〜3.8 (2H,m,CH2 ) 3.9 〜4.3 (2H,m,CH×2) 4.09 (2H,q,J=7.2Hz,C
2 O) 4.31 (1H,d,J=11.7Hz,
CH2 6 5 ) 4.55 (1H,d,J=11.7Hz,
CH2 6 5 ) 5.2 〜5.7 (2H,m,=CH−) 7.27 (5H,s,C6 5 13 CNMR(CDCl3 ) δ: 14.00, 14.25, 22.59, 2
5.03,26.30, 31.77, 35.72,
36.50,41.77, 60.32, 66.8
1, 69.79,77.30, 79.74,10
9.08,127.28,127.72,128.2
0,130.84,134.45,139.00,17
1.79
(However, Bn represents a benzyl group) 1 H NMR (CDCl 3 ) δ: 0.86 (3H, brt, J = 7.
2 Hz, CH 3 ) 1.0 to 1.8 (8H, m, CH 2 ) 1.33 (3H, s, CH 3 ) 1.41 (3H, s, CH 3 ) 2.40 (1 H, dd, J = 9.0 Hz,
14.7 Hz, CH) 2.50 (1H, dd, J = 5.1 Hz,
14.7Hz, CH) 2.6 ~3.0 (1H , m, CH) 3.5 ~3.8 (2H, m, CH 2) 3.9 ~4.3 (2H, m, CH × 2 4.09 (2H, q, J = 7.2 Hz, C
H 2 O) 4.31 (1H, d, J = 11.7 Hz,
CH 2 C 6 H 5 ) 4.55 (1 H, d, J = 11.7 Hz,
CH 2 C 6 H 5) 5.2 ~5.7 (2H, m, = CH-) 7.27 (5H, s, C 6 H 5) 13 CNMR (CDCl 3) δ: 14.00, 14. 25, 22.59, 2
5.03, 26.30, 31.77, 35.72,
36.50, 41.77, 60.32, 66.8
1, 69.79, 77.30, 79.74, 10
9.08, 127.28, 127.72, 128.2
0, 130.84, 134.45, 139.00, 17
1.79

【0075】化合物(P)の合成 上記得られた(1′S,3S,6S)体のγ−不飽和カ
ルボン酸エチル(6)65mg(0.16m mo
l)、メタノール5ml、水1.25ml及びCuSO
4 ・5H2 O186mg(0.75m mol)を13
時間攪拌還流した。反応終了後、エチルエーテルを加え
てセライト−545により濾過し、濾液を飽和食塩水で
洗浄した後無水硫酸マグネシウムで乾燥した。溶媒を減
圧留去後、シリカゲルカラムクロマトグラフィー(酢酸
エチル:ヘキサン=1:5(容量))で精製して下記化
学式で示される(3S,3′S,4S)体のγ−ラクト
ン誘導体(P)35.5mgを得た(収率69%)。
Synthesis of Compound (P) 65 mg of the (1 ′S, 3S, 6S) form of ethyl γ-unsaturated carboxylate (6) (0.16 mmol)
l), 5 ml of methanol, 1.25 ml of water and CuSO
4 · 5H 2 O186mg a (0.75 m mol) 13
The mixture was stirred and refluxed for an hour. After completion of the reaction, ethyl ether was added, and the mixture was filtered through Celite-545. The filtrate was washed with saturated saline and dried over anhydrous magnesium sulfate. After evaporating the solvent under reduced pressure, the residue was purified by silica gel column chromatography (ethyl acetate: hexane = 1: 5 (volume)), and the (3S, 3'S, 4S) -form γ-lactone derivative (P 35.5 mg (69% yield).

【0076】[0076]

【化24】 Embedded image

【0077】(但し、Bnはベンジル基を表わす)1 HNMR(CDCl3 ) δ:0.86 (3H,br t,J=7.
2Hz,CH3 ) 1.0 〜1.8 (8H,m,CH2 ) 3.72〜3.9 (5H,m,CH2 ,CH) 4.4 〜4.7 (1H,m,CH) 4.36 (1H,d,J=11.7Hz,
CH2 ) 4.51 (1H,d,J=11.7Hz,
CH2 ) 5.55 (1H,dd,J=6.7Hz,
15.4Hz,=CH) 5.68 (1H,dd,J=7.7Hz,
15.4Hz,=CH) 7.29 (5H,s,C6 5 13 CNMR(CDCl3 ) δ: 14.00, 22.57, 24.98, 3
1.69,34.94, 41.02, 62.27,
70.42,79.50, 82.60,127.5
2,127.62,128.23,135.62,13
8.63,176.48
(However, Bn represents a benzyl group) 1 H NMR (CDCl 3 ) δ: 0.86 (3H, brt, J = 7.
2Hz, CH 3) 1.0 ~1.8 ( 8H, m, CH 2) 3.72~3.9 (5H, m, CH 2, CH) 4.4 ~4.7 (1H, m, CH 4.36 (1H, d, J = 11.7 Hz,
CH 2 ) 4.51 (1H, d, J = 11.7 Hz,
CH 2 ) 5.55 (1H, dd, J = 6.7 Hz,
15.4 Hz, = CH) 5.68 (1H, dd, J = 7.7 Hz,
15.4 Hz, = CH) 7.29 (5H, s, C 6 H 5 ) 13 C NMR (CDCl 3 ) δ: 14.00, 22.57, 24.98, 3
1.69, 34.94, 41.02, 62.27,
70.42, 79.50, 82.60, 127.5
2,127.62,128.23,135.62,13
8.63, 176.48

【0078】[0078]

【発明の効果】本発明の光学活性化合物は、プロスタグ
ランジンを合成する際の鍵中間体となる光学活性γ−ラ
クトン誘導体製造のための原料として重要な化合物であ
り、この化合物を用いることにより比較的簡便に、効率
よく鍵中間体が製造できる。
The optically active compound of the present invention is an important compound as a raw material for producing an optically active γ-lactone derivative which is a key intermediate in synthesizing a prostaglandin. The key intermediate can be produced relatively easily and efficiently.

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 下記一般式(A) 【化1】 (上記一般式(A)において、R1 はアルコキシ基を有
していてもよいアルキル基、シクロアルキル基及び芳香
環もしくはアルキル基にヘテロ原子を有するアラルキル
基から選ばれた炭素数1〜12の基、R2 は水素原子又
はアシル基、シリル基、アラルキル基及びアルキルオキ
シアルキル基から選ばれた容易に脱離可能な保護基を表
わし、*の符号は不斉炭素原子を表わす)で表わされる
光学活性化合物を製造するにあたり、下記一般式(B) 【化2】 (上記一般式(B)において、R1 ,R2 及び*の符号
は一般式(A)のR1 ,R2 及び*の符号と同じ意味を
表わす)で表わされる光学活性化合物を還元することを
特徴とする光学活性化合物の製法。
1. The following general formula (A): (In the general formula (A), R 1 has 1 to 12 carbon atoms selected from an alkyl group optionally having an alkoxy group, a cycloalkyl group, and an aralkyl group having a hetero atom in the aromatic ring or the alkyl group. And the group R 2 represents a hydrogen atom or a readily removable protecting group selected from an acyl group, a silyl group, an aralkyl group and an alkyloxyalkyl group, and the symbol * represents an asymmetric carbon atom. In producing the optically active compound, the following general formula (B): (In the general formula (B), R 1, R 2 and * symbols R 1, R 2 and * represent the same meaning as the sign of the general formula (A)) reducing the optically active compound represented by the A method for producing an optically active compound, comprising:
【請求項2】 一般式(A)のR1 が炭素数4〜10の
アルキル基である請求項1記載の製法。
2. The method according to claim 1, wherein R 1 in the general formula (A) is an alkyl group having 4 to 10 carbon atoms.
【請求項3】 アルキル基がペンチル基である請求項2
記載の製法。
3. The method according to claim 2, wherein the alkyl group is a pentyl group.
The manufacturing method described.
【請求項4】 一般式(A)のR2 がアラルキル基であ
る請求項1〜3いずれかに記載の製法。
4. The process according to claim 1, wherein R 2 in the general formula (A) is an aralkyl group.
【請求項5】 アラルキル基がベンジル基である請求項
4記載の製法。
5. The method according to claim 4, wherein the aralkyl group is a benzyl group.
【請求項6】 一般式(A)の化合物が光学活性(2
S,5R,6S)体である請求項1〜5いずれかに記載
の製法。
6. The compound of the general formula (A) having an optical activity (2
(S, 5R, 6S) body.
JP5293227A 1989-06-01 1993-11-24 Preparation of optically active compounds Expired - Lifetime JP2743797B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1140797A JPH0651692B2 (en) 1989-06-01 1989-06-01 Optically active compound
JP5293227A JP2743797B2 (en) 1989-06-01 1993-11-24 Preparation of optically active compounds

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1140797A JPH0651692B2 (en) 1989-06-01 1989-06-01 Optically active compound
JP5293227A JP2743797B2 (en) 1989-06-01 1993-11-24 Preparation of optically active compounds

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP1140797A Division JPH0651692B2 (en) 1989-06-01 1989-06-01 Optically active compound

Publications (2)

Publication Number Publication Date
JPH06220039A JPH06220039A (en) 1994-08-09
JP2743797B2 true JP2743797B2 (en) 1998-04-22

Family

ID=26473213

Family Applications (2)

Application Number Title Priority Date Filing Date
JP1140797A Expired - Lifetime JPH0651692B2 (en) 1989-06-01 1989-06-01 Optically active compound
JP5293227A Expired - Lifetime JP2743797B2 (en) 1989-06-01 1993-11-24 Preparation of optically active compounds

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP1140797A Expired - Lifetime JPH0651692B2 (en) 1989-06-01 1989-06-01 Optically active compound

Country Status (1)

Country Link
JP (2) JPH0651692B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6306828B1 (en) * 1995-04-06 2001-10-23 Baxter International, Inc. Enantiomerically-enhanced nutritional energy substrates

Also Published As

Publication number Publication date
JPH035473A (en) 1991-01-11
JPH06220039A (en) 1994-08-09
JPH0651692B2 (en) 1994-07-06

Similar Documents

Publication Publication Date Title
JPH0251559B2 (en)
JP2743797B2 (en) Preparation of optically active compounds
JP2785657B2 (en) Preparation of optically active compounds
JP2743798B2 (en) Preparation of optically active compounds
JP2785658B2 (en) Preparation of optically active compounds
EP0585104B1 (en) A method of preparing a saturated monocyclic hydrocarbon compound and an intermediate therefor
DE60024353T2 (en) Process for producing anti-osteoporic agent
JPH0631201B2 (en) Process for producing optically active γ-lactone derivative
Iwasaki et al. Asymmetric synthesis of (2R)-2-hydroxy-2-(2 (Z)-octenyl)-1-cyclopentanone
US4958037A (en) Precursors and synthesis of methyl-9-oxo-11α, 16-dihydroxy-16-vinyl-5-cis-13-trans-prostadienoates
JP3986606B2 (en) Synthetic intermediates useful for the synthesis of the A ring moiety of vitamin D derivatives, methods for their preparation and methods for their use
JP2654835B2 (en) Optically active 4-en-6-ol compounds, intermediates for their production and methods for their production
JPH0651693B2 (en) Optically active compound
JPH035472A (en) Optically active compound and its production
US5198588A (en) Optically active isoxazole derivatives and intermediates for preparation thereof
JP2654834B2 (en) Optically active vinyl compound, intermediate for producing the same, and method for producing them
US5266703A (en) Optically active isoxazole derivatives
US5220074A (en) Optically active isoxazole derivatives and intermediates for preparation thereof as well as processes for producing the same
JP3228486B2 (en) Hydroxyketone derivative and method for producing the same
EP0213313A2 (en) Precursors and synthesis of methyl-9-oxo-11 alpha, 16-dihydroxy-16-vinyl-5-cis-13-trans prostadienoates
US5210201A (en) Optically active isoxazole derivatives and intermediates for preparation thereof as well as processes for producing the same
JP2731013B2 (en) 11-Epiisocarbacyclines and method for producing the same
US5206416A (en) Isocarbacyclin derivative
HU202240B (en) Process for producing optically active carbacycline intermediates
JP2001240575A5 (en)