JPH0355403B2 - - Google Patents

Info

Publication number
JPH0355403B2
JPH0355403B2 JP7713482A JP7713482A JPH0355403B2 JP H0355403 B2 JPH0355403 B2 JP H0355403B2 JP 7713482 A JP7713482 A JP 7713482A JP 7713482 A JP7713482 A JP 7713482A JP H0355403 B2 JPH0355403 B2 JP H0355403B2
Authority
JP
Japan
Prior art keywords
reaction
product
phosphorus pentachloride
nitrobenzene
pcl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7713482A
Other languages
Japanese (ja)
Other versions
JPS58194721A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP7713482A priority Critical patent/JPS58194721A/en
Publication of JPS58194721A publication Critical patent/JPS58194721A/en
Publication of JPH0355403B2 publication Critical patent/JPH0355403B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/097Compounds containing nitrogen and non-metals and optionally metals containing phosphorus atoms
    • C01B21/0975Compounds containing nitrogen and non-metals and optionally metals containing phosphorus atoms containing also one or more sulfur atoms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は下記式で表わされる1,3,3,5,
5−ペンタクロロ−1−チア−2,4,6−トリ
アザ−3,5−ジホスホリン−1−オキシド(以
下S1という)の改良された製造法に関する。 S1のハロゲン原子をエチレンイミンで置換した
1,3,3,5,5−ペンタアジリジノ−1−チ
ア−2,4,6−トリアザ−3,5−ジホスホリ
ン−1−オキシドが、制ガン剤としてきわめて高
い効能を有することが最近発見された(J.F.
Labarre、Eur.J.Cancer、15、637〜643(1979)
参照)。その結果、S1は前記制ガン物質合成のた
めの前駆体として注目を集めるようになり、同時
にその製造方法についても改めて検討が加えられ
るようになつてきている。 従来S1の合成方法としては、五塩化リン、塩化
アンモニウムおよびスルフアミン酸を用いたグラ
ンベルらの方法が知られている(J.C.vande
Grampel、Recl.Trav.Chim.、91、935〜941
(1972);H.H.Baalmann、J.C.van de Grampel、
Recl.Trav.Chim、92、1237〜1239(1973)および
J.B.van den Berg、B.de Ruiter、J.C.van de
Grampel、Z.Naturforsch31、1216〜1218(1976)
参照)。 グランベルらの方法によるS1の合成法は大別す
るとつぎの五段階の工程に分けられる。すなわち
五塩化リンと塩化アンモニウムを反応させる第1
工程、第1工程生成物とスルフアミン酸を反応さ
せる第2工程、その反応物を熱分解する第3工
程、さらに第4工程として蒸留、第5工程として
加水分解という煩雑な方法をとつている。これら
の工程におけるおもな反応式をつぎに示す。この
反応式においてS2は下記式で表わされる1,3,
5,5−テトラクロロ−1,5−ジチア−2,
4,6−トリアザ−3−ホスホリン−1,5−ジ
オキシドであり、Aは水で分解されやすい物質で
ある。 (第1工程) 3PCl5+NH4Cl→ 〔PCl3NPCl3〕 〔PCl6 (第4工程) NPCl2+NSOCl→S1+S2+A (第5工程) S1+S2+A→S1+S2 かかる従来法をまず一実施態様をあげて説明す
る。 第1工程は〔PCl3NPCl3〕 〔PCl6〕 の合
成であり、五塩化リン280gと175gの塩化アンモ
ニウムを含む1,1,2,2−テトラクロロエタ
ン1150mlとニトロベンゼン850mlからなる混合溶
媒を、減圧下(10〜20mmHg)にて75℃から90℃
のあいだで6時間加熱する。このとき昇華した五
塩化リンが溶媒還流管をつまらせることが多い。
つぎに常圧に戻し、反応温度を140℃にて15分間
保持し、その後反応容器を冷却し、−20℃にて一
夜放置し、析出した結晶を別後、600mlの四塩
化炭素、四塩化炭素300mlとn−ペンタン300mlの
混合溶媒、最後にn−ペンタン600mlの順で洗浄
を行なう。残つる結晶を0.2mmHgの減圧下、50℃
で3時間乾燥し、第1工程生成物である粗結晶
1060gをうる。第2段階のスルフアミン酸との反
応は固相反応で、さきに生成した結晶にスルフア
ミン酸194gを加えてよく混ぜた後、100℃で加熱
液化させ、塩化水素ガス発生がなくなるまで加熱
を行なう。未反応物質を別後、生成物950gを
うる。第3工程の熱分解反応は高真空下(少くと
も1mmHg以下)にて行なわれ、加熱温度100℃付
近にて脱三塩化ホスホリルを行なつた後、140℃
から150℃に加熱して熱分解反応を起させる。こ
のとき少量(数グラム)のスルフアミン酸を加え
ることにより熱分解反応を惹き起させる必要があ
る。このばあい未反応五塩化リンの昇華による冷
却管のつまりに注意しなければならない。熱分解
反応は冷却管に付着する結晶の出現まで継続する
が、ニトロベンゼンが残つているばあいには、ニ
トロベンゼン還流により結晶出現の判別が難しく
なるためこの終点を知ることは難しく、三塩化ホ
スホリル留出の停止をもつてその終点とする。第
4工程の蒸留は、さらに高真空度(0.2〜0.6mm
Hg)にて温度160〜200℃に加熱し長時間(約7
時間)を要して行ない、320gの黄色留分をうる。
第5工程の加水分解は上記留分を氷水にて冷却、
撹拌し水活性物質を分解する。白色沈殿物を取
し、ニトロベンゼン臭がなくなるまで氷水にて洗
浄する。五酸化リン存在下にて減圧乾燥させて粗
結晶225gをうる。これはS1と副生成するS2との
混合物であり、粗結晶のIRスペクトルチヤート
における吸収強度(S1=750cm-1、S1=725cm-1
からS1とS2との含有量比が1/2と分析される。
この混合物を660mlのn−ヘキサンに加熱溶解後、
冷却して55gのS2を結晶として分解させる。残つ
た母液を濃縮し、ヘキサンを除去した後、エチル
エーテル30mlに残渣を溶解させ、−20℃に冷却し
て結晶化させると鈍度90%のS145g(収率8%)
がえられる。さらに純度を上げるためには前記溶
媒(ヘキサン)による再結晶または昇華を行なえ
ばよい。 かかる従来法におけるS1の合成の重要点は、五
塩化リンと塩化アンモニウムの反応による
〔PCl3NPCl3〕 〔PCl6〕 の合成、すなわち第
1工程をいかに円滑に行なうかにあり、それが以
後の工程、さらにはS1の収量に大きな影響を及ぼ
すこととなる。しかしながらこの第1段階反応に
おいては、反応時に五塩化リンの昇華が激しいこ
とが反応操作上の問題となり、とくに減圧操作の
ばあいに冷却器内に凝縮結晶化を生じ、冷却管が
五塩化リンによつて閉塞される危険性が大であ
り、反応系内に塩化水素ガスが過圧状態となりや
すく、工業的規模の合成に適さない。また、五塩
化リンの昇華による損失により、目的反応を充分
に進めることができず、最終的にえられるS1の収
率は数パーセント(10%以下)ときわめて低いの
が普通である。 本発明は叙上の問題に鑑みなされたものであ
り、第1工程の五塩化リンと塩化アンモニウムと
の反応において混合溶媒の選択に関して鋭意検討
を重ねた結果、1,1,2,2−テトラクロロエ
タン−ニトロベンゼン系の代りにクロロベンゼン
−ニトロベンゼン系を用いることにより、五塩化
リンの昇華が抑えられ、最終的により高収率でS1
がえられることを見出し、本発明を完成するにい
たつた。 本発明によれば第1工程において、混合溶媒の
クロロベンゼンとニトロベンゼンとの比率を変化
させることにより、目的物S1の収率を変化せしめ
うることが見出され、クロロベンゼンとニトロベ
ンゼンとの重量比率が1:0.2〜1:1.5のばあ
い、好ましくは1:0.5〜1:0.8の範囲において
S1がより高収率でえられ、ニトロベンゼンの重量
比が0.2未満または1.5を超えるばあいにおいて
は、S1の収率が低下した。これは前記比率におけ
る混合溶媒の極性が最適な反応条件を与えるもの
と考えられる。また混合溶媒使用量は五塩化リン
重量に対して1以上、好ましくは1〜2倍量が適
当である。 また、第1工程の反応における五塩化リンと塩
化アンモニウムとの反応モル比(R)を変化さ
せ、目的物S1の反応収率(五塩化リンを基準とす
る収率)を検討した結果、モル比3:1では18
%、3:2では16%、そして3:3では13%をえ
た。以上の収率を従来法の収率(8%以下)と比
較するといちじるしい向上がみられる。 さらにまた、第2工程の反応において 〔PCl3NPCl3〕 〔PCl6〕 とスルフアミン
酸との反応は、従来法では固相間反応で反応時間
が著しく長いが(100℃加熱で液化するのに一昼
夜必要とする)、本発明においては三塩化ホスホ
リルを第1工程で用いた五塩化リンの重量の0.1
倍以上、好ましくは0.15から0.2倍量を添加する
ことにより、第2工程の反応時間が6〜7時間に
短縮され、またS1の生成にも悪影響のないことが
確認された。 つぎに実施例をあげて本発明をより詳細に説明
するが、本発明はそれらの実施例のみに限定され
るものではない。 実施例 1 モノクロロベンゼン6Kgとニトロベンゼン4.8
Kgからなる混合溶媒に、五塩化リン10Kg(48モ
ル)と塩化アンモニウム848Kg(16モル)とを加
え、常圧下加熱する。昇温は25℃から100℃まで
約30分を要し、更に100℃から140℃にて1時間保
持した。この時発生する塩化水素ガスは常圧除去
した。加熱終了後、約4時間かけて室温(25℃)
まで冷却を行つた後、更に1日放置させた。得ら
れた生成物は1回目、2回目は四塩化炭素3Kgと
ヘキサン2.4Kgからなる混合溶媒、3回目はヘキ
サン5Kgで洗浄を行つた。洗浄済みの生成物は約
55℃加温下2時間減圧乾燥させ洗浄溶媒を留去さ
せ〔PCl3NPCl3〕 〔PCl6〕 の淡黄白色結晶
が得られた。かくして得られた〔PCl3NPCl3
〔PCl6〕 は精製することなくそのまま次の工程
に供される。 叙上のごとくして得られた〔PCl3NPCl3
〔PCl6〕 にスルフアミン酸1.24Kg(12.8モル)
と三塩化ホスホリル2.0Kg(13モル)を加え、内
温100〜110℃にて液化反応させ、塩化水素ガスの
発生がおさまるまでこの反応温度を保持した。反
応終了後、すみやかに冷却を行つた後、過し生
成物6.8Kgを得た。次にこの生成物を0.1mmHg減圧
下で外温100℃から139℃まで1時間12分加熱し、
発生する三塩化ホスホリルを留去したのち、スル
フアミン酸80gを加えて0.16〜0.22mmHgの減圧
下、1時間40分、150℃附近にて熱分解を行つた。
このとき発生する三塩化ホスホリルは同減圧下に
て留去した。このとき生成物の留出による損失を
防ぐため、0℃の冷却器を通して行つた。反応生
成物から完全に三塩化ホスホリルを留去させて、
3.22Kgの生成物を得た。これを更に0.07〜0.5mm
Hgの減圧下、外温140〜200℃で蒸留し、2.37Kg
の黄色蒸留物を得た。これを更に塩化メチレン5
に溶解したのち、氷を添加し、撹拌して5〜15
℃の温度で加水分解を行つた。黄色留分を塩化メ
チレンに溶解することにより、氷水と撹拌後、分
液する操作で容易に加水分解が進行する。塩化メ
チレン層を分解濃縮後、ヘキサン3に熱時溶解
したのち、冷却して析出したS2321g(収率12.9
%)を過して除去し、液を濃縮して得られた
残渣にエチルエーテル1を加えて溶解し、−20
℃にて冷却放置することにより目的物である
S1478g(収率18%)を得た。尚、収率は原料の
五塩化リンを基準とし、以下同様である。 元素分析値:N3P2S1Cl5O(分子量329として) 理論値(%):N12.76 P18.84 S9.72 Cl53.50 実測値(%):N12.70 P18.88 S9.70 Cl53.50 実測値(%):N12.75 P18.90 S9.74 Cl53.48 IR(cm-1、KBr)400〜1400cm-1: 1320(VS)、1220(VS)、1140(VS)、1087(m)、
870(W)、750(m)、665(W).620(VS)、540
(VS)、445(W) 質量スペクトル:m/e329(m+31P NMR:δ26.5ppm(CDCl3、85%リン酸標
準) 実施例 2 モノクロロベンゼン6Kgとニトロベンゼン4.8
Kgからなる混合溶媒に、五塩化リン10Kg(48モ
ル)と塩化アンモニウム1750g(33モル)とを加
え、常圧下加熱する。昇温は25℃から100℃まで
約30分を要し、更に100℃から134℃にて1時間保
持した。この時発生する塩化水素ガスは常圧下で
除去した。加熱終了後、約2時間かけて30℃まで
冷却を行つた後、更に1日放置させた。得られた
生成物は溶媒にて洗浄した。即ち、1回目と2回
目は四塩化炭素4Kgとヘキサン3.2Kgからなる混
合溶媒、3回目はヘキサン6Kgを用いて洗浄を行
つた。そののち50℃から55℃加温下2時間減圧乾
燥を行うことにより、〔PCl3NPCl3〕 〔PCl6
の淡黄色結晶が得られた。これにスルフアミン
酸1.24Kg(12.8モル)と三塩化ホスホリル2.0Kg
(13モル)を加え、100〜115℃にて液化反応させ、
塩化水素ガスの発生がおさまるまでこの反応温度
を保持した。冷却を行つた後、過して生成物
6.37Kgを得た。この生成物を0.1mmHg減圧下で外
温104℃から157℃まで約1時間加熱し、発生する
三塩化ホスホリルを留去したのち、スルフアミン
酸80gを加えて0.08〜0.17mmHgの減圧下、1時間
50分、外温150℃附近で熱分解反応を行つた。こ
のとき発生する三塩化ホスホリルは0.1mmHgの減
圧下、143〜152℃の外温にて留去した。このとき
生成物の留出による損失を防ぐため、0℃の冷却
器を通して行つた。反応生成物から完全に三塩化
ホスホリルを留去させて、3.389Kgの生成物を得
た。これを更に0.08〜0.2mmHgの減圧下、外温180
〜200℃で蒸留し、1.808Kgの黄色蒸留物を得た。
これを氷水にて加水分解し、生成した白色析出物
を別後、五酸化リン存在下にて乾燥させ、生成
物1.808Kgを得た。これをヘキサン再結晶により
S2206g(収率8.3%)のみを析出させ、ついで
過して除去したのち、液から目的物である
S1428g(収率16%)を得た。 実施例 3 モノクロロベンゼン6Kgとニトロベンゼン4.8
Kgからなる混合溶媒に、五塩化リン10Kg(48モ
ル)と塩化アンモニウム2.566Kg(48モル)とを
加え、常圧下加熱する。昇温は25℃から100℃ま
で約30分を要し、更に100℃から130℃にて1時間
保持した。この時発生する塩化水素ガスは常圧下
で除去した。1日放置させた後、得られた生成物
は溶媒にて洗浄した。即ち、1回目と2回目は四
塩化炭素2Kgとヘキサン1.6Kgからなる混合溶媒、
3回目はヘキサン、4Kgを用いて洗浄を行つた。
その後50℃から55℃加温下2時間30分減圧乾燥を
行うことにより、〔PCl3NPCl3〕 〔PCl6〕 の
淡黄白色結晶が得られた。これにスルフアミン酸
1.24Kg(12.8モル)と三塩化ホスホリル2.0Kg(13
モル)を加え、100〜105℃にて液化反応させ、塩
化水素ガスの発生がおさまるまでこの反応温度を
保持した。冷却を行つた後、過し、生成物
7.331Kgを得た。この生成物を0.1mmHg減圧下で外
温99℃から144℃まで約1時間15分加熱し、発生
する三塩化ホスホリルを留去したのち、スルフア
ミン酸80gを加えて0.057〜0.1mmHgの減圧下、2
時間30分、外温150℃附近で熱分解を行つた。こ
のとき発生する三塩化ホスホリルは0.1mmHgの減
圧下、145〜150℃の外温にて留去した。このとき
生成物の留出による損失を防ぐため、0℃の冷却
器を通して行つた。反応生成物から完全に三塩化
ホスホリルを留去させて、4.593Kgの生成物を得
た。これを更に0.18〜0.2mmHgの減圧下、外温150
〜190℃で蒸留し、2.0359Kgの黄色蒸留物を得た。
これを氷水にて加水分解し、生成した白色析出物
を別後、五酸化リン存在下にて乾燥させ、生成
物951.2gを得た。これをヘキサン再結晶により
S2160g(収率6.5%)のみを析出させ、ついで
過して除去したのち、液から目的物である
S1345g(収率13%)を得た。 実施例 4および5 実施例1においてクロロベンゼンとニトロベン
ゼンとの重量組成を第1表に示す量としたほかは
実施例1と同様にして実験を行ない、S2と目的物
S1をえた。えられた結果を第1表に示す。
The present invention relates to 1, 3, 3, 5,
This invention relates to an improved method for producing 5-pentachloro-1-thia-2,4,6-triaza-3,5-diphosphorine-1-oxide (hereinafter referred to as S1 ). 1,3,3,5,5-pentaaziridino-1-thia-2,4,6-triaza-3,5-diphosphorin-1-oxide, in which the halogen atom of S 1 is substituted with ethyleneimine, is extremely effective as an anticancer agent. Recently discovered to have efficacy (JF
Labarre, Eur. J. Cancer, 15 , 637–643 (1979)
reference). As a result, S 1 has begun to attract attention as a precursor for the synthesis of anticancer substances, and at the same time, the method for producing it has also begun to be reconsidered. As a conventional method for synthesizing S 1 , the method of Granbell et al. using phosphorus pentachloride, ammonium chloride, and sulfamic acid is known (JCvande et al.
Grampel, Recl.Trav.Chim., 91 , 935–941.
(1972); HH Baalmann, JC van de Grampel,
Recl.Trav.Chim, 92 , 1237–1239 (1973) and
JBvan den Berg, B.de Ruiter, JCvan de
Grampel, Z. Naturforsch 31 , 1216–1218 (1976)
reference). The synthesis method of S 1 by the method of Granbell et al. can be roughly divided into the following five steps. In other words, the first step is to react phosphorus pentachloride with ammonium chloride.
The second step is to react the product of the first step with sulfamic acid, the third step is to thermally decompose the reaction product, the fourth step is distillation, and the fifth step is hydrolysis. The main reaction formulas in these steps are shown below. In this reaction formula, S 2 is 1, 3,
5,5-tetrachloro-1,5-dithia-2,
It is 4,6-triaza-3-phosphorine-1,5-dioxide, and A is a substance that is easily decomposed by water. (1st step) 3PCl 5 +NH 4 Cl→ [PCl 3 NPCl 3 ] [PCl 6 ] (Fourth step) NPCl 2 +NSOCl→S 1 +S 2 +A (Fifth step) S 1 +S 2 +A→S 1 +S 2This conventional method will first be described by citing one embodiment. The first step is the synthesis of [PCl 3 NPCl 3 ] [PCl 6 ], using a mixed solvent consisting of 1,150 ml of 1,1,2,2-tetrachloroethane and 850 ml of nitrobenzene containing 280 g of phosphorus pentachloride and 175 g of ammonium chloride. 75℃ to 90℃ under reduced pressure (10-20mmHg)
Heat for 6 hours between. At this time, sublimed phosphorus pentachloride often clogs the solvent reflux tube.
Next, the pressure was returned to normal pressure, the reaction temperature was maintained at 140℃ for 15 minutes, the reaction vessel was then cooled and left overnight at -20℃, and after separating the precipitated crystals, 600ml of carbon tetrachloride, Washing is carried out in the following order: a mixed solvent of 300 ml of carbon and 300 ml of n-pentane, and finally 600 ml of n-pentane. The remaining crystals were heated at 50°C under a reduced pressure of 0.2 mmHg.
The first step product, crude crystals, was dried for 3 hours.
Obtain 1060g. The second step, the reaction with sulfamic acid, is a solid-phase reaction, in which 194 g of sulfamic acid is added to the previously formed crystals, mixed well, and then liquefied by heating at 100°C until no hydrogen chloride gas is generated. After separating off unreacted materials, 950 g of product is obtained. The thermal decomposition reaction in the third step is carried out under high vacuum (at least 1 mmHg or less), and after removing phosphoryl trichloride at a heating temperature of around 100°C,
to 150°C to cause a thermal decomposition reaction. At this time, it is necessary to induce a thermal decomposition reaction by adding a small amount (several grams) of sulfamic acid. In this case, care must be taken to avoid clogging of the cooling pipe due to sublimation of unreacted phosphorus pentachloride. The thermal decomposition reaction continues until the appearance of crystals that adhere to the cooling tube, but if nitrobenzene remains, it is difficult to know the end point because the nitrobenzene reflux makes it difficult to determine the appearance of crystals. The end point is the stop of the output. The fourth step, distillation, is performed at an even higher vacuum level (0.2 to 0.6 mm).
Hg) to a temperature of 160 to 200℃ for a long time (about 7
320 g of yellow fraction was obtained.
In the fifth step of hydrolysis, the above fraction is cooled with ice water.
Stir to break down water-active substances. Collect the white precipitate and wash with ice water until the nitrobenzene odor disappears. Dry under reduced pressure in the presence of phosphorus pentoxide to obtain 225 g of crude crystals. This is a mixture of S 1 and S 2 as a by-product, and the absorption intensity in the IR spectrum chart of the crude crystal (S 1 = 750 cm -1 , S 1 = 725 cm -1 )
Therefore, the content ratio of S 1 and S 2 is analyzed to be 1/2.
After heating and dissolving this mixture in 660 ml of n-hexane,
Cool and decompose 55 g of S2 as crystals. After concentrating the remaining mother liquor and removing hexane, the residue was dissolved in 30 ml of ethyl ether and cooled to -20°C to crystallize, giving 45 g of S 1 with a dullness of 90% (8% yield).
It can be grown. In order to further increase the purity, recrystallization or sublimation using the solvent (hexane) may be performed. The important point in the synthesis of S 1 in this conventional method is how smoothly the first step, the synthesis of [PCl 3 NPCl 3 ] [PCl 6 ] by the reaction of phosphorus pentachloride and ammonium chloride, can be carried out. This will have a significant impact on subsequent steps and even the yield of S1 . However, in this first stage reaction, the severe sublimation of phosphorus pentachloride during the reaction poses a problem in reaction operation, and especially in the case of reduced pressure operation, condensation crystallization occurs in the condenser, and the cooling pipe There is a high risk of blockage due to the hydrogen chloride gas in the reaction system, and it is not suitable for industrial-scale synthesis. Furthermore, due to the loss of phosphorus pentachloride due to sublimation, the desired reaction cannot proceed sufficiently, and the final yield of S 1 obtained is usually extremely low at several percent (10% or less). The present invention was made in view of the above problems, and as a result of intensive studies regarding the selection of a mixed solvent in the first step of the reaction between phosphorus pentachloride and ammonium chloride, 1,1,2,2-tetra By using the chlorobenzene-nitrobenzene system instead of the chloroethane-nitrobenzene system, the sublimation of phosphorus pentachloride is suppressed, and finally S 1 is obtained in a higher yield.
The present invention was completed based on the discovery that this can be achieved. According to the present invention, it has been found that the yield of the target product S 1 can be changed by changing the ratio of chlorobenzene and nitrobenzene in the mixed solvent in the first step, and the weight ratio of chlorobenzene and nitrobenzene can be changed. In the case of 1:0.2 to 1:1.5, preferably in the range of 1:0.5 to 1:0.8
S 1 was obtained in a higher yield, and the yield of S 1 decreased when the weight ratio of nitrobenzene was less than 0.2 or greater than 1.5. This is considered to be because the polarity of the mixed solvent in the above ratio provides optimal reaction conditions. The appropriate amount of the mixed solvent to be used is 1 or more, preferably 1 to 2 times the weight of phosphorus pentachloride. In addition, as a result of changing the reaction molar ratio (R) of phosphorus pentachloride and ammonium chloride in the reaction of the first step and examining the reaction yield of the target product S 1 (yield based on phosphorus pentachloride), 18 at a molar ratio of 3:1
%, 16% for 3:2 and 13% for 3:3. When the above yield is compared with the yield of the conventional method (8% or less), a remarkable improvement can be seen. Furthermore, in the second step, the reaction between [PCl 3 NPCl 3 ] and [PCl 6 ] and sulfamic acid is a solid-phase reaction in the conventional method, and the reaction time is extremely long (although it liquefies by heating to 100°C). In the present invention, 0.1 of the weight of phosphorus pentachloride used in the first step is phosphoryl trichloride.
It was confirmed that by adding at least twice the amount, preferably 0.15 to 0.2 times, the reaction time in the second step was shortened to 6 to 7 hours, and there was no adverse effect on the production of S1 . EXAMPLES Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited only to these Examples. Example 1 6 kg of monochlorobenzene and 4.8 kg of nitrobenzene
10 Kg (48 moles) of phosphorus pentachloride and 848 Kg (16 moles) of ammonium chloride are added to a mixed solvent consisting of Kg and heated under normal pressure. It took about 30 minutes to raise the temperature from 25°C to 100°C, and the temperature was further maintained at 100°C to 140°C for 1 hour. Hydrogen chloride gas generated at this time was removed under normal pressure. After heating, bring to room temperature (25℃) for about 4 hours.
After cooling to 100%, the mixture was allowed to stand for an additional day. The obtained product was washed the first time, the second time with a mixed solvent consisting of 3 kg of carbon tetrachloride and 2.4 kg of hexane, and the third time with 5 kg of hexane. The washed product is approx.
The mixture was dried under reduced pressure for 2 hours under heating at 55°C, and the washing solvent was distilled off to obtain pale yellowish white crystals of [PCl 3 NPCl 3 ] [PCl 6 ]. Thus obtained [PCl 3 NPCl 3 ]
[PCl 6 ] is directly used in the next step without being purified. Obtained as described above [PCl 3 NPCl 3 ]
1.24Kg (12.8mol) of sulfamic acid in [PCl 6 ]
and 2.0 kg (13 mol) of phosphoryl trichloride were added, and a liquefaction reaction was carried out at an internal temperature of 100 to 110°C, and this reaction temperature was maintained until the generation of hydrogen chloride gas subsided. After the reaction was completed, the mixture was quickly cooled and filtered to obtain 6.8 kg of a product. Next, this product was heated for 1 hour and 12 minutes from an external temperature of 100°C to 139°C under a reduced pressure of 0.1 mmHg.
After distilling off the generated phosphoryl trichloride, 80 g of sulfamic acid was added and thermal decomposition was carried out at around 150° C. for 1 hour and 40 minutes under reduced pressure of 0.16 to 0.22 mmHg.
Phosphoryl trichloride generated at this time was distilled off under the same reduced pressure. At this time, in order to prevent loss of product due to distillation, the mixture was passed through a 0°C condenser. By completely distilling off phosphoryl trichloride from the reaction product,
3.22Kg of product was obtained. Further increase this by 0.07~0.5mm
Distilled under reduced pressure of Hg at an external temperature of 140-200℃, 2.37Kg
A yellow distillate of was obtained. Add this to 5 methylene chloride
After dissolving in water, add ice and stir for 5 to 15 minutes.
Hydrolysis was carried out at a temperature of °C. By dissolving the yellow fraction in methylene chloride, hydrolysis can easily proceed by stirring with ice water and separating the liquid. After decomposing and concentrating the methylene chloride layer, it was dissolved in hexane 3 while hot, and then cooled to precipitate 321 g of S 2 (yield: 12.9
%) was removed by filtration, the liquid was concentrated, and the resulting residue was dissolved by adding 1 part of ethyl ether to -20
By leaving it to cool at ℃, it becomes the desired object.
478 g (yield 18%) of S 1 was obtained. Note that the yield is based on the raw material phosphorus pentachloride, and the same applies hereinafter. Elemental analysis value: N 3 P 2 S 1 Cl 5 O (as molecular weight 329) Theoretical value (%): N12.76 P18.84 S9.72 Cl53.50 Actual value (%): N12.70 P18.88 S9. 70 Cl53.50 Actual value (%): N12.75 P18.90 S9.74 Cl53.48 IR (cm -1 , KBr) 400 to 1400 cm -1 : 1320 (VS), 1220 (VS), 1140 (VS) , 1087 (m),
870 (W), 750 (m), 665 (W). 620 (VS), 540
(VS), 445 (W) Mass spectrum: m/e 329 (m + ) 31 P NMR: δ 26.5 ppm (CDCl 3 , 85% phosphoric acid standard) Example 2 Monochlorobenzene 6 kg and nitrobenzene 4.8
10 kg (48 mol) of phosphorus pentachloride and 1750 g (33 mol) of ammonium chloride are added to a mixed solvent consisting of 1.0 kg and heated under normal pressure. It took about 30 minutes to raise the temperature from 25°C to 100°C, and the temperature was further maintained at 100°C to 134°C for 1 hour. Hydrogen chloride gas generated at this time was removed under normal pressure. After heating, the mixture was cooled down to 30° C. over about 2 hours, and then left for another day. The obtained product was washed with a solvent. That is, the first and second cleanings were performed using a mixed solvent consisting of 4 kg of carbon tetrachloride and 3.2 kg of hexane, and the third cleaning was performed using 6 kg of hexane. Thereafter, by drying under reduced pressure for 2 hours under heating at 50°C to 55°C, [PCl 3 NPCl 3 ] [PCl 6 ]
Pale yellow crystals were obtained. This includes 1.24Kg (12.8mol) of sulfamic acid and 2.0Kg of phosphoryl trichloride.
(13 mol) and caused a liquefaction reaction at 100-115℃,
This reaction temperature was maintained until the evolution of hydrogen chloride gas subsided. After cooling, filter the product
Obtained 6.37Kg. This product was heated under a reduced pressure of 0.1 mmHg from an external temperature of 104°C to 157°C for about 1 hour, and after distilling off the generated phosphoryl trichloride, 80 g of sulfamic acid was added and under a reduced pressure of 0.08 to 0.17 mmHg for 1 hour.
Thermal decomposition reaction was carried out for 50 minutes at an external temperature of around 150°C. Phosphoryl trichloride generated at this time was distilled off at an external temperature of 143 to 152°C under reduced pressure of 0.1 mmHg. At this time, in order to prevent loss of product due to distillation, the mixture was passed through a 0°C condenser. Phosphoryl trichloride was completely distilled off from the reaction product to obtain 3.389 kg of product. This is further reduced to 0.08 to 0.2 mmHg at an external temperature of 180.
Distilled at ~200°C to obtain 1.808Kg of yellow distillate.
This was hydrolyzed with ice water and the white precipitate formed was separated and dried in the presence of phosphorus pentoxide to obtain 1.808 kg of product. This was recrystallized using hexane.
Only 206 g of S 2 (yield 8.3%) was precipitated and then removed by filtration, and the target product was removed from the liquid.
428 g (yield 16%) of S 1 was obtained. Example 3 6 kg of monochlorobenzene and 4.8 kg of nitrobenzene
10 Kg (48 moles) of phosphorus pentachloride and 2.566 Kg (48 moles) of ammonium chloride are added to a mixed solvent consisting of Kg and heated under normal pressure. It took about 30 minutes to raise the temperature from 25°C to 100°C, and the temperature was further maintained at 100°C to 130°C for 1 hour. Hydrogen chloride gas generated at this time was removed under normal pressure. After standing for one day, the obtained product was washed with a solvent. That is, for the first and second times, a mixed solvent consisting of 2 kg of carbon tetrachloride and 1.6 kg of hexane,
The third cleaning was performed using 4 kg of hexane.
Thereafter, by drying under reduced pressure for 2 hours and 30 minutes under heating at 50°C to 55°C, pale yellowish white crystals of [PCl 3 NPCl 3 ] [PCl 6 ] were obtained. In this, sulfamic acid
1.24Kg (12.8mol) and phosphoryl trichloride 2.0Kg (13
mol) was added, a liquefaction reaction was carried out at 100 to 105°C, and this reaction temperature was maintained until the generation of hydrogen chloride gas subsided. After cooling, filter the product
Obtained 7.331Kg. This product was heated under a reduced pressure of 0.1 mmHg from an external temperature of 99°C to 144°C for about 1 hour and 15 minutes, and after distilling off the generated phosphoryl trichloride, 80 g of sulfamic acid was added and the mixture was heated under a reduced pressure of 0.057 to 0.1 mmHg. 2
Thermal decomposition was carried out for 30 minutes at an external temperature of around 150°C. Phosphoryl trichloride generated at this time was distilled off at an external temperature of 145 to 150°C under reduced pressure of 0.1 mmHg. At this time, in order to prevent loss of product due to distillation, the mixture was passed through a 0°C condenser. Phosphoryl trichloride was completely distilled off from the reaction product to obtain 4.593 kg of product. This is further reduced to 0.18~0.2mmHg at an external temperature of 150℃.
Distilled at ~190°C to obtain 2.0359Kg of yellow distillate.
This was hydrolyzed with ice water, and after separating the white precipitate produced, it was dried in the presence of phosphorus pentoxide to obtain 951.2 g of a product. This was recrystallized using hexane.
Only 160 g of S 2 (yield 6.5%) was precipitated and then removed by filtration, and the target product was removed from the liquid.
345 g (yield 13%) of S 1 was obtained. Examples 4 and 5 Experiments were conducted in the same manner as in Example 1, except that the weight composition of chlorobenzene and nitrobenzene was changed to the amounts shown in Table 1, and S 2 and the target product were
Got S 1 . The results obtained are shown in Table 1.

【表】 以上の実施例によつてえられたS1のIRスペク
トルチヤートを第1図に、また 31P NMRスペ
クトルチヤートを第2図に示す。
[Table] FIG. 1 shows the IR spectrum chart of S 1 obtained in the above example, and FIG. 2 shows the 31 P NMR spectrum chart.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はS1のIRスペクトルチヤート、第2図
はS131P NMRスペクトルチヤートである。
FIG. 1 is an IR spectrum chart of S 1 , and FIG. 2 is a 31 P NMR spectrum chart of S 1 .

Claims (1)

【特許請求の範囲】 1 (a) 五塩化リンと塩化アンモニウムを反応さ
せる第1工程、 (b) 第1工程生成物とスルフアミン酸を反応させ
る第2工程、 (c) 第2工程生成物を熱分解する第3工程、 (d) 蒸留を行なう第4工程、および (e) 加水分解を行なう第5工程 からなる1,3,3,5,5−ペンタクロロ−1
−チア−2,4,6−トリアザ−3,5−ジホス
ホリン−1−オキシドの製造法において、 第1工程である五塩化リンと塩化アンモニウム
との反応がクロロベンゼンとニトロベンゼンの混
合溶媒中で行なわれ、第2工程の反応が三塩化ホ
スホリルの存在下に行なわれることを特徴とする
1,3,3,5,5−ペンタクロロ−1−チア−
2,4,6−トリアザ−3,5−ジホスホリン−
1−オキシドの製造法。 2 前記混合溶媒の混合割合が重量比でクロロベ
ンゼン1に対してニトロベンゼン0.2〜1.5である
特許請求の範囲第1項記載の製造法。
[Claims] 1 (a) A first step of reacting phosphorus pentachloride and ammonium chloride, (b) A second step of reacting the product of the first step with sulfamic acid, (c) A step of reacting the product of the second step with sulfamic acid. 1,3,3,5,5-pentachloro-1 consisting of a third step of thermal decomposition, (d) a fourth step of distillation, and (e) a fifth step of hydrolysis.
- In the method for producing thia-2,4,6-triaza-3,5-diphosphorine-1-oxide, the first step, the reaction between phosphorus pentachloride and ammonium chloride, is carried out in a mixed solvent of chlorobenzene and nitrobenzene. , 1,3,3,5,5-pentachloro-1-thia-, wherein the reaction in the second step is carried out in the presence of phosphoryl trichloride.
2,4,6-triaza-3,5-diphosphorine-
Method for producing 1-oxide. 2. The manufacturing method according to claim 1, wherein the mixing ratio of the mixed solvent is 0.2 to 1.5 parts of nitrobenzene to 1 part of chlorobenzene by weight.
JP7713482A 1982-05-08 1982-05-08 Preparation of 1,3,3,5,5-pentachloro-1-thia-2,4,6-triaza-5- diphosphorin-1-oxide Granted JPS58194721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7713482A JPS58194721A (en) 1982-05-08 1982-05-08 Preparation of 1,3,3,5,5-pentachloro-1-thia-2,4,6-triaza-5- diphosphorin-1-oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7713482A JPS58194721A (en) 1982-05-08 1982-05-08 Preparation of 1,3,3,5,5-pentachloro-1-thia-2,4,6-triaza-5- diphosphorin-1-oxide

Publications (2)

Publication Number Publication Date
JPS58194721A JPS58194721A (en) 1983-11-12
JPH0355403B2 true JPH0355403B2 (en) 1991-08-23

Family

ID=13625329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7713482A Granted JPS58194721A (en) 1982-05-08 1982-05-08 Preparation of 1,3,3,5,5-pentachloro-1-thia-2,4,6-triaza-5- diphosphorin-1-oxide

Country Status (1)

Country Link
JP (1) JPS58194721A (en)

Also Published As

Publication number Publication date
JPS58194721A (en) 1983-11-12

Similar Documents

Publication Publication Date Title
JP5757860B2 (en) Crystalline form of tenofovir disoproxil and process for producing the same
JPH0150712B2 (en)
RU2419604C2 (en) Method of producing anhydride of trifluoromethanesulfonic acid
JPH07145185A (en) Production of 6h-dibenz(c,e)(1,2)oxaphospholin-6-one and its derivative
JPH0355403B2 (en)
JPH01228995A (en) Production of n-phosphonomethyl-imino-diacetate and acid chloride
JPH02196757A (en) Preparation of 2-chlorobenzylamine
JPH0597782A (en) Production of bevantolol hydrochloride
JPS62135B2 (en)
AU2004208873B2 (en) Methods for producing quinazoline alkaloids
JPH04924B2 (en)
JP4498521B2 (en) Method for producing tris [tris (dimethylamino) phosphoranylideneamino] phosphine oxide
JPH0717943A (en) Production of taurine
JP2546067B2 (en) Method for producing methanediphosphonic acid compound
JP3456633B2 (en) Purification method of trifluoromethanesulfonic anhydride
JPH08225749A (en) Production of high-purity 3-hydroxy-n-benzimidazolon-5-yl-2-naphthamide necessary for azo pigment
JP3456632B2 (en) Purification method of trifluoromethanesulfonic anhydride
JP2759087B2 (en) Purification method of 1,4-dihydroxy-2-naphthoic acid aryl ester
KR900008171B1 (en) Process for preparing benzodiazepine acetate
JPH1059988A (en) Production of 2,2',2"-nitrilo(triethyltris(3,3',5,5'-tetra-tert-butyl-1,1'-biphenyl-2,2'-diyl) phosphite)
JPH107691A (en) Production of o,o-dimethyl phosphoroamidothioate
JPH07188266A (en) Formation of 1-phenylvinyl-1-phosphonic acid
JP2853929B2 (en) Method for producing 2-chloro-4,5-difluoro-3-methoxybenzoic acid
JPS60210519A (en) Method for purifying and obtaining sulfamide
KR20230060027A (en) Method for preparing nonsymmetric phosphate based compound