JPH0355143B2 - - Google Patents

Info

Publication number
JPH0355143B2
JPH0355143B2 JP55165984A JP16598480A JPH0355143B2 JP H0355143 B2 JPH0355143 B2 JP H0355143B2 JP 55165984 A JP55165984 A JP 55165984A JP 16598480 A JP16598480 A JP 16598480A JP H0355143 B2 JPH0355143 B2 JP H0355143B2
Authority
JP
Japan
Prior art keywords
pulse
inhalation
gas
pulse train
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55165984A
Other languages
Japanese (ja)
Other versions
JPS5685354A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Publication of JPS5685354A publication Critical patent/JPS5685354A/en
Publication of JPH0355143B2 publication Critical patent/JPH0355143B2/ja
Granted legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/08Bellows; Connecting tubes ; Water traps; Patient circuits
    • A61M16/0816Joints or connectors
    • A61M16/0841Joints or connectors for sampling
    • A61M16/085Gas sampling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/04Tracheal tubes
    • A61M16/0402Special features for tracheal tubes not otherwise provided for
    • A61M16/0404Special features for tracheal tubes not otherwise provided for with means for selective or partial lung respiration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0096High frequency jet ventilation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/0027Accessories therefor, e.g. sensors, vibrators, negative pressure pressure meter

Landscapes

  • Health & Medical Sciences (AREA)
  • Pulmonology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Emergency Medicine (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Description

【発明の詳細な説明】 本発明は、高周波ガスパルスの放出のための少
なくとも1つのノズルに対する供給導管および自
由な返流室を有する開いた吸入管に接続され、か
つパルス列の放出を制御するための測定導管に接
続されている、患者の側により制御される呼吸ガ
ス源を有する吸入装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The invention provides a supply conduit for at least one nozzle for the emission of high-frequency gas pulses and an open suction tube with a free return chamber and for controlling the emission of the pulse train. The present invention relates to an inhalation device with a breathing gas source controlled by the patient, which is connected to a measuring conduit.

吸入ないしは呼吸維持のため、高周波吸入であ
るHFPPV(High−Frequency Positive−
Pressure Ventilation:高周波正圧ベンチレーシ
ヨン)が実施されることができる吸入装置が公知
である。このような装置を使用し、吸気時間対呼
気時間のサイクル比3:1〜1:5で呼吸パルス
繰換し数600/分以下を得ることができる。
HFPPV (High-Frequency Positive-
Inhalation devices are known in which pressure ventilation (high-frequency positive pressure ventilation) can be carried out. Using such a device, a respiratory pulse repetition rate of less than 600/min can be obtained with an inspiratory time to expiratory time cycle ratio of 3:1 to 1:5.

西ドイツ国特許出願明細書P2847681.5−35号に
は、吸入管と結合され、周波数600/分以上で使
用される吸入装置が提案されている。この場合、
吸入管の基端部に最低1つの噴射ノズルが存在
し、かつ、呼吸ガス組成の監視に使用される検査
導管が吸入管の範囲内に接続する。この方法で噴
射呼吸ガス源の制御がパルス繰返し数に関し可能
である。
West German patent application No. P 2847681.5-35 proposes an inhalation device which is connected to an inhalation tube and is used at a frequency of 600/min or higher. in this case,
There is at least one injection nozzle at the proximal end of the inhalation tube, and a test conduit used for monitoring the breathing gas composition is connected within the confines of the inhalation tube. In this way control of the injection breathing gas source is possible with respect to the pulse repetition rate.

類似の制御が、経皮ないし経気管の高周波噴射
吸入であるHFJV(High−Frequence Jet−
Ventilation:高周波噴射ベンチレーシヨン)の
ための吸入装置につき、公知刊行物:クライン,
ブライアン・スミス(M.Klain,R.Brian
Smith)による(クリテイカル)(Critical)(ケ
アー)(Care)(メデイシン)(Medicine)第5巻
第6号(1977年)280〜287貢に記載されている。
この刊行物に記載された吸入装置の場合、気管中
へ挿入された吹込みカテーテルが、噴射呼吸ガス
源から呼吸ガスパルズを使用し給気される。この
場合パルス繰返し数が、生理学的な測定価、なか
んずく心臓輸血効率および血中ガスの組成により
それぞれ20/分〜200/分だけ増大されることが
できる。この場合毎分換気量が不変であるととも
に、呼吸ガス量が、パルス繰返し数の増加率に直
接に比例して低減される。
Similar control is achieved with HFJV (High-Frequence Jet-
Regarding inhalation devices for high-frequency injection ventilation), known publications: Klein,
Brian Smith (M.Klain, R.Brian
Smith, Critical (Care) (Medicine), Vol. 5, No. 6 (1977), pp. 280-287.
In the case of the inhalation device described in this publication, an insufflation catheter inserted into the trachea is insufflated using breathing gas pulses from a propellant breathing gas source. In this case, the pulse repetition rate can be increased by 20/min to 200/min, depending on physiological measurements, inter alia cardiac transfusion efficiency and blood gas composition. In this case, the minute ventilation remains unchanged and the respiratory gas volume is reduced in direct proportion to the rate of increase in the pulse repetition rate.

他の試験が示したことは、呼吸ガスパルスにお
けるパルス繰返し数の制御が全ての場合吸入装置
の最適な制御ではないことである。連続するパル
ス列およびそのパルス繰返し数の変動率が、ガス
分析の測定結果が変動した際に同じく大きく変動
し、所望の全装置の安定化に逆作用し、かつさら
にこの吸入作業を生理学的な呼吸サイクルへ適合
させるのが不十分であると思料される。
Other tests have shown that controlling the pulse repetition rate in the breathing gas pulse is not in all cases the optimal control of the inhalation device. The successive pulse trains and the rate of variation of their pulse repetition rate also vary widely as the measurement results of the gas analysis fluctuate, counteracting the desired overall device stabilization and further reducing this inhalation task to physiological breathing. It is considered that the adaptation to the cycle is insufficient.

本発明が出発する課題は、噴射原理による高周
波吸入ないしは、吸入を維持するための吸入装置
を、生理学的に最適に適合可能なかつ技術的に相
対的に簡単に形成された、呼吸ガス源の制御を実
施させることにより有利に発展させることであ
る。
The object of the present invention is to create an inhalation device for high-frequency inhalation and/or maintenance of inhalation using the injection principle in a physiologically optimally adaptable and technically relatively simple way to control the source of breathing gas. The aim is to develop advantageously by implementing the following.

この課題は、制御装置7が呼吸ガス供給を異な
る時間および構成の呼吸ガスパルス列Iiの形で少
なくとも600パルス/minで生じさせるものであ
り、パルス列Iiの間にポーズImを備えており、こ
のポーズの間に制御装置7の制御量がノズル3の
付近で開口する測定導管4を介するガスサンプル
の取出しによつて生じていることによつて解決さ
れる。従つて1呼吸工程中に、相応する1つの呼
吸パルス列を含有する1つのパルスパケツトが供
給され、かつ呼吸パルス列並びにポーズが、呼吸
ガス源で生理学的ないしは病理学的な肺臓状態に
より存在する最適吸入パターンが得られるように
容易に制御されることができる。
The task is such that the control device 7 causes the breathing gas supply to occur in the form of breathing gas pulse trains I i of different times and configurations at least 600 pulses/min, with pauses Im between the pulse trains I i ; During this pause, the control variable of the control device 7 is achieved by taking off the gas sample via the measuring line 4 which opens in the vicinity of the nozzle 3. Therefore, during one breathing stroke, one pulse packet containing one corresponding breathing pulse train is delivered, and the breathing pulse train and the pauses are determined by the optimal inhalation pattern that exists depending on the physiological or pathological lung condition at the breathing gas source. can be easily controlled to obtain

従つて、本発明の特徴は、制御装置が呼吸ガス
源を、パルス列および、これらパルス列間のポー
ズを供給して制御し、測定区間として使用される
ポーズの巾が1つのパルス列の巾の最低5分の1
であり、かつ、ガス組成の測定がポーズ巾中で行
なわれることにある。
Therefore, a feature of the invention is that the control device controls the respiratory gas source by supplying pulse trains and pauses between these pulse trains, and the width of the pauses used as measurement intervals is at least 5 times the width of one pulse train. one part
and the measurement of the gas composition is performed during the pause.

このような吸入装置は、極めて鋭敏に種々の肺
臓障害に適合されることができ、かつこの場合最
適吸入パターンへ向けた制御を可能ならしめる。
Such an inhalation device can be adapted very sensitively to different lung disorders and in this case allows control towards an optimal inhalation pattern.

それぞれのパルス列の後に、その巾が1つの呼
吸パルス列の巾の最低5分の1であるポーズが引
続き、かつこのポーズ内でガスサンプルが取出さ
れる。
Each pulse train is followed by a pause whose width is at least one-fifth of the width of one respiratory pulse train, and within this pause a gas sample is taken.

有利に呼吸ガスパルスは、少くとも列ごとに、
しかしまた1つの呼吸パルス列内で異なる構造を
有する。この場合、異なる構造なる概念は、それ
ぞれの成分の分量、例えば酸素濃度にも、また例
えば二酸化炭素またはヘリウムのような新たな成
分の導入量にも関連する。
Advantageously, the breathing gas pulses are applied at least per column.
However, they also have different structures within one respiratory pulse train. In this case, the different structural concepts relate both to the quantities of the respective components, for example the oxygen concentration, and also to the amount of new components introduced, such as carbon dioxide or helium, for example.

IPPY吸入を付加的に実施するため、呼吸通路
の閉鎖部材、例えば制御可能な呼気弁が備えられ
ることができる。
In order to additionally carry out IPPY inhalation, a closure member of the breathing passage, for example a controllable exhalation valve, can be provided.

有利に、呼吸ガスパルスの制御は、圧力パルス
振巾の大きさまたは、周波数変調により可変の、
呼吸パルス列内のパルスツークエンスに関連させ
ることができる。他の有利な制御方は、種々のパ
ルス列巾および/またはポーズ巾に関連し、それ
により広範囲に適合可能な調節法が得られる。
Advantageously, the control of the breathing gas pulse is made variable by means of amplitude or frequency modulation of the pressure pulse amplitude.
It can be related to pulse sequences within a respiratory pulse train. Other advantageous control strategies relate to different pulse train widths and/or pause widths, which result in a widely adaptable adjustment method.

呼吸パルス列間のポーズ巾は、有利に公知のガ
ス分折の測定区間として定めることができる。こ
の場合有利であると思料されるのは、測定区間と
して使用可能なポーズの巾を、呼吸パルス列中で
不変のパルス間隔の巾の最低10倍、ないしは1つ
の呼吸パルス列の巾の最低5分の1に選択するこ
とである。
The pause width between the respiratory pulse trains can advantageously be defined as the measurement interval of known gas spectroscopy. It is considered advantageous in this case to limit the width of the pauses that can be used as measurement intervals to at least 10 times the width of the constant pulse intervals in the respiratory pulse train or at least 5 times the width of one respiratory pulse train. 1.

場合によりもう1つの利点が、制御装置を、
HFJVおよびIPPVが相互に関連する連続位相で
制御可能であるように形成することにより得られ
ることができる。吸入法のこのような交換が、病
理学的な容態へのもう1つの適合法を提供する。
Another possible advantage is that the control device
It can be obtained by forming HFJV and IPPV to be controllable in a mutually related continuous phase. Such an exchange of inhalation methods provides another method of adaptation to pathological conditions.

この場合有利に制御装置が、HFJVによる呼吸
パルス列間のポーズ中に呼吸ガス源がIPPVで制
御されるように形成されていることができる。
In this case, the control device can advantageously be designed in such a way that the breathing gas source is controlled with IPPV during the pauses between the HFJV breathing pulse trains.

パルスポーズImの導入は、差当たり呼吸系か
らガスサンプルを取り出すために使用され、その
際にこのガスサンプルの組成が分析され、かつ分
析の結果に応じて次のパルス列Iiの制御のために
利用される。即ち、連続したパルスの制御は、パ
ルス列Iiが連続される間に変動して不安定に作用
する測定結果を生じ、この測定結果が変化するこ
とにより、制御装置中の制御回路の不安定化を導
くことが判明した。
The introduction of a pulse pause Im is used to take a gas sample from the respiratory system per differential, during which the composition of this gas sample is analyzed and, depending on the results of the analysis, for the control of the next pulse train I. used. In other words, continuous pulse control produces measurement results that fluctuate and act unstable while the pulse train I i continues, and changes in these measurement results may destabilize the control circuit in the control device. It turned out to lead to.

更に、パルスポーズは、場合によつてはこのポ
ーズの間に0.5〜約2Hzの繰返し数を有する、標
準法により公知の吸入サイクルを導入させるのに
好適であり、それによつて肺は、生理的に公知の
呼吸サイクルを実施することができる。
Furthermore, the pulse pause is suitable for introducing an inhalation cycle known by standard methods, optionally with a repetition rate of 0.5 to about 2 Hz during this pause, whereby the lungs are brought into physiological A breathing cycle known in the art can be performed.

これと関連して、2つの片肺に別々に配置され
た2つの噴射ノズルを使用する自体公知の吸入の
場合に有利なのが、制御装置を、HFJVの場合の
呼吸ガスパルスのパルスシークエンス並びにポー
ズおよび/またはIPPVの場合の過剰圧力がそれ
ぞれの片肺で別々に調節可能であるように形成す
ることである。有利に、HFTVの場合の場合の
別々の調節は、呼吸パルス列中のパルス繰返し数
を整数分周することにより得られる。
In this connection, it is advantageous in the case of an inhalation known per se with two injection nozzles arranged separately in two lungs to control the control device for the pulse sequence of the respiratory gas pulses in the case of HFJV as well as for the pauses and / or in such a way that the overpressure in case of IPPV can be adjusted separately in each lung. Advantageously, separate adjustment in the case of HFTV is obtained by dividing the number of pulse repetitions in the respiratory pulse train by an integer.

吸入装置のもう1つの有利な構造は、呼吸ガス
源の制御装置に接続して、HFJVの場合の呼吸パ
ルス列およびポーズ、および/またはIPPVの場
合の過剰圧力価を自発呼吸の呼吸サイクルと同調
させる同調装置を備えることができる。最後に、
吸入管ないしは吹込みカテーテルに接続して備え
られ、呼吸ガスサンプルをガス分析装置中へ搬送
する測定導管が備えられ、その場合このガス分析
装置が帰還回路で制御装置と接続されているこの
ような装置が有利に使用されることができる。
Another advantageous construction of the inhalation device is to connect it to the control device of the breathing gas source to synchronize the respiratory pulse train and pauses in the case of HFJV and/or the overpressure value in the case of IPPV with the breathing cycle of spontaneous breathing. A tuning device may be provided. lastly,
A measuring line of this type is provided which is connected to the suction tube or the insufflation catheter and which conveys the respiratory gas sample into a gas analyzer, which gas analyzer is connected to the control device in a return circuit. The device can be used advantageously.

本発明の特徴部が適用されることにより、制御
可能な呼吸ガス源を有し、その場合制御装置が、
吸入ガス供給が肺内部の所定の流動特性(拡延性
および流動抵抗)に最適に適合されうるように呼
吸ガス源の制御を実施する吸入装置が得られる。
この場合高繰返し数の噴射吸入が、場合により、
ガス交換が大体において純粋な拡散により、すな
わち肺の、置換せざる静止状態下に行なわれるよ
うに実施されることができる。
Features of the invention are applied to have a controllable source of breathing gas, in which case the control device:
An inhalation device is obtained which carries out control of the source of breathing gas so that the inspiratory gas supply can be optimally adapted to the predetermined flow characteristics (diffusivity and flow resistance) inside the lungs.
In this case, a high repetition rate of injection and suction may be required.
Gas exchange can be carried out in such a way that it takes place essentially by pure diffusion, ie under static conditions without displacement of the lungs.

以下に、本発明を図面実施例につき詳説する。 In the following, the invention will be explained in detail with reference to drawing examples.

第1図に、10個の呼吸パルスを有するパルス列
Iiを示す、その場合パルス巾はパルス間隔のほぼ
半分である。パルス繰返し数は800/分である。
パルス列Iiへ、測定期間Inとして利用されるポー
ズが引続き、このポーズ中に、例えば吸入管ない
しは吹込みカテーテルの範囲内に備えられた測定
導管を経て呼吸ガスサンプルが取出される。
Figure 1 shows a pulse train with 10 respiratory pulses.
I i , where the pulse width is approximately half the pulse interval. The pulse repetition rate is 800/min.
The pulse train I i is followed by a pause which serves as a measurement period I n during which a respiratory gas sample is removed via a measurement line provided, for example, in the region of an inhalation tube or an insufflation catheter.

測定間隔Inに、先行する呼吸パルス列の測定結
果が不変である場合に相応するもう1つの呼吸パ
ルス列Iiが引続く。例えば、強制吸入が所望され
る場合、測定間隔In中のポーズ期間が低減される
ことができる。
The measuring interval I n is followed by another respiratory pulse train I i which corresponds to the case where the measurement result of the preceding respiratory pulse train remains unchanged. For example, if forced inhalation is desired, the pause period during the measurement interval I n can be reduced.

第2図に、第1図に相応に10個の呼吸パルスを
有するパルス列Iiを示す。測定区隔In後に、低滅
せる振巾を有するもう1つのパルス列、ないしは
それぞれの呼吸ガスパルスが大きい距離を有する
呼吸パルス列が引続く。
FIG. 2 shows a pulse train I i with ten respiratory pulses corresponding to FIG. The measurement interval I n is followed by another pulse train with a decreasing amplitude or a breathing pulse train in which each breathing gas pulse has a large distance.

第3図に示した、部分的に付属装置を補足せる
ブロツク回路図に、密閉パツキング2を有する吸
入管1の終端部が示され、この終端部中に噴射ノ
ズル3および、ガスサンプルを吸収するための測
定導管4がある。
In the block circuit diagram shown in FIG. 3, which can be partially supplemented with accessories, the end of the suction pipe 1 with a sealing packing 2 is shown, into which the injection nozzle 3 and the gas sample are absorbed. There is a measuring conduit 4 for this purpose.

過剰圧力吸入を実施するため、吸入管1の自由
端部に弾圧負荷せる呼気弁5が備えられている。
In order to carry out an overpressure inhalation, an exhalation valve 5 is provided which pressurizes the free end of the inhalation tube 1.

呼吸ガス源6に、自体公知の方法で中央給気回
路が設けられている。呼吸ガス源6を制御するた
め2つの制御装置7,8を存在させ、その場合制
御装置7が、噴射吸入、すなわち繰返し数、吸
気/呼気比の点で相応するパルス、並びに呼吸ガ
ス分析の結果による呼吸パルス列およびポーズの
変更を提供する。制御装置8が、IPPVで呼気弁
5を開く圧力価および相応する繰返し数、並びに
この動作モードにおける吸気/呼気比を制御す
る。
The breathing gas source 6 is provided with a central air supply circuit in a manner known per se. Two control devices 7, 8 are present for controlling the breathing gas source 6, the control device 7 controlling the injection inhalation, i.e. the corresponding pulses in terms of repetition rate, inspiration/expiration ratio, as well as the results of the breathing gas analysis. Provides breathing pulse train and pose changes by A control device 8 controls the pressure value and the corresponding repetition rate of opening the exhalation valve 5 in IPPV, as well as the inhalation/expiration ratio in this mode of operation.

吸入装置9が、1方で吸入管1とかつ他方で同
調装置10と結合され、この同調装置が、噴射吸
入の場合並びに過剰圧力吸入の場合に呼吸パルス
列およびポーズと自発呼吸のサイクルとの同調を
実施し、それにより制御装置7,8が、吸入装置
を経て得られた圧力変動に相応に制御される。
An inhalation device 9 is connected to the inhalation tube 1 on the one hand and to a synchronization device 10 on the other hand, which synchronization device synchronizes the breathing pulse train and the cycle of pauses and spontaneous breathing in the case of jet inhalation as well as in the case of overpressure inhalation. , so that the control devices 7, 8 are controlled accordingly to the pressure fluctuations obtained via the suction device.

これらの関係を明白にするために留意すべきな
のは、本明細書中の“呼吸ガスパルズ”
(Atemgasimpuls)なる概念が、呼吸ガス源によ
り供給すべき最低ガス量に関連することである。
所定数の呼吸ガスパルスが“呼吸パルス列”
(Atemipulsreihe),すなわちパルスパケツトを
形成し、これが吸入サイクルにわたり供給され
る。それぞれのパルスパケツト中で、呼吸ガスパ
ルズが、量および組成並びにそのパルス繰返し数
により呼吸サイクルの“微視的”な現象を特定す
るとともに、呼吸パルス列(パルスパケツト)が
ポーズとともに吸入の“巨視的”な現象を調整し
かつ“呼吸繰返し数”(Atemfrequenz)を制限
する。
In order to clarify these relationships, it should be noted that "respiratory gas pulses" in this specification
The concept of atemgasimpuls relates to the minimum amount of gas that must be supplied by a breathing gas source.
A predetermined number of breathing gas pulses is a “breathing pulse train”
(Atemipulsreihe), i.e. pulse packets are formed, which are delivered throughout the inhalation cycle. In each pulse packet, the respiratory gas pulses specify the "microscopic" phenomena of the respiratory cycle by their amount and composition and their pulse repetition rate, while the respiratory pulse train (pulse packet) specifies the "macroscopic" phenomena of the inhalation with the pauses. and limit the “breath repetition rate” (Atemfrequenz).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明による装置に適用されるパル
スの1実施例を示すパルス図表、第2図は、第1
図のパルスのAMおよびFMの状態を例示するパ
ルス図表、および第3図は、本発明による装置の
1実施例を略示するブロツク回路図である。 1……吸入管、3……噴射ノズル、4……測定
導管、5……呼気弁、6……吸入ガス源、7,8
……制御装置、9……吸入装置、10……同調装
置、Ii……パルス列、In……測定区間。
FIG. 1 is a pulse diagram showing one example of pulses applied to the device according to the invention; FIG.
FIG. 3 is a pulse diagram illustrating the AM and FM states of the pulses shown, and FIG. 3 is a block circuit diagram schematically illustrating one embodiment of the apparatus according to the invention. 1... Suction pipe, 3... Injection nozzle, 4... Measuring conduit, 5... Exhalation valve, 6... Inhalation gas source, 7, 8
...control device, 9 ...inhalation device, 10 ...tuning device, Ii ...pulse train, In ...measurement section.

Claims (1)

【特許請求の範囲】 1 高周波ガスパルスの放出のための少なくとも
1つのノズルに対する供給導管および自由な返流
室を有する開いた吸入管に接続され、かつパルス
列の放出を制御するための測定導管に接続されて
いる、患者の側により制御される呼吸ガス源を有
する吸入装置において、制御装置7が呼吸ガス供
給を異なる時間および構成の呼吸ガスパルス列Ii
の形で少なくとも600パルス/minで生じさせる
ものであり、パルス列Iiの間にポーズImを備えて
おり、このポーズの間に制御装置7の制御量がノ
ズル3の付近で開口する測定導管4を介するガス
サンプルの取出しによつて生じていることを特徴
とする、吸入装置。 2 制御装置7が少なくとも次のパラメーター: (a)パルス繰返し数 (b)パルス巾 (c)振幅 (d)列の長さ (e)ガス成分 の1つに関連しパルス列Iiの構成に影響を及ぼ
す、特許請求の範囲第1項記載の吸入装置。 3 制御装置7がパルス列Iiの間で異なるポーズ
巾を定める、特許請求の範囲第1項または第2項
記載の吸入装置。 4 制御装置7を用いてパルス列Iiならびにパル
ス列Ii間のポーズImの巾はそれぞれ片肺に対して
別個に調節可能である、特許請求の範囲第1項か
ら第3項までのいずれか1項に記載の吸入装置。
Claims: 1. Connected to a supply conduit for at least one nozzle for the emission of high-frequency gas pulses and an open suction line with a free return chamber and connected to a measuring conduit for controlling the emission of the pulse train. In an inhalation device with a breathing gas source controlled by the patient, the controller 7 controls the breathing gas supply by different times and configurations of breathing gas pulse trains I i
at least 600 pulses/min in the form of , with a pause Im between the pulse train I i , during which the controlled variable of the control device 7 is applied to the measuring conduit 4 which opens in the vicinity of the nozzle 3 . An inhalation device, characterized in that the gas sample is removed through an inhalation device. 2 The control device 7 influences the composition of the pulse train I i in relation to at least the following parameters: (a) pulse repetition rate, (b) pulse width, (c) amplitude, (d) train length, and (e) one of the gas components. The inhalation device according to claim 1, which exerts the following effects. 3. The inhalation device according to claim 1 or 2, wherein the control device 7 determines different pause widths between the pulse trains I i . 4. Any one of claims 1 to 3, wherein the pulse train I i and the width of the pause Im between the pulse trains I i can be adjusted separately for each lung using the control device 7. Inhalation devices as described in Section.
JP16598480A 1979-11-27 1980-11-27 Inhalator Granted JPS5685354A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2947659A DE2947659C2 (en) 1979-11-27 1979-11-27 Ventilator

Publications (2)

Publication Number Publication Date
JPS5685354A JPS5685354A (en) 1981-07-11
JPH0355143B2 true JPH0355143B2 (en) 1991-08-22

Family

ID=6086943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16598480A Granted JPS5685354A (en) 1979-11-27 1980-11-27 Inhalator

Country Status (4)

Country Link
JP (1) JPS5685354A (en)
DE (1) DE2947659C2 (en)
GB (1) GB2063686B (en)
SE (1) SE431165B (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE430213B (en) * 1981-03-10 1983-10-31 Siemens Elema Ab RESPIRATOR INTENDED TO BE CONNECTED TO THE HUMAN OR ANIMAL PATIENTS
DE3119814C2 (en) * 1981-05-19 1984-07-26 Drägerwerk AG, 2400 Lübeck HFJ ventilator with a controllable breathing gas source and device for generating negative pressure
US4481944A (en) * 1981-11-19 1984-11-13 Bunnell Life Systems, Inc. Apparatus and method for assisting respiration
DE3204110C2 (en) * 1982-02-06 1984-08-02 Gerhard Dr.med. 7800 Freiburg Meuret Tracheal tube for artificial ventilation and respirator for connection to this tube
DE3206482C2 (en) * 1982-02-23 1984-03-15 Drägerwerk AG, 2400 Lübeck Ventilation device with a device for safety monitoring
FR2522972A1 (en) * 1982-03-09 1983-09-16 Zagreba Vladimir Two aperture artificial respiration nozzle - combines jet ejector with venturi to pass air to trachea
DE3212097C2 (en) * 1982-04-01 1985-10-03 Drägerwerk AG, 2400 Lübeck Ventilator with a breathing gas source that can be controlled via a control unit
DE3236649C2 (en) * 1982-10-04 1984-12-06 Friedrich-Wilhelm Dr. 3057 Neustadt Sydow Extraction device for anesthetic gases
US4488548A (en) * 1982-12-22 1984-12-18 Sherwood Medical Company Endotracheal tube assembly
IT1194204B (en) * 1983-04-15 1988-09-14 Giacomo Bertocchi PROCEDURE TO REALIZE OR IMPROVE RESPIRATORY ASSISTANCE AND RELATED EQUIPMENT
US4538604A (en) * 1983-06-20 1985-09-03 Bunnel Life Systems, Inc. System for assisting respiration
GB8400618D0 (en) * 1984-01-11 1984-02-15 Matthews H R Tracheostomy tube assemblies
DE3401841A1 (en) * 1984-01-20 1985-07-25 Drägerwerk AG, 2400 Lübeck VENTILATION SYSTEM AND OPERATING METHOD THEREFOR
DE3422066A1 (en) * 1984-06-14 1985-12-19 Drägerwerk AG, 2400 Lübeck VENTILATION SYSTEM AND CONTROLLABLE VALVE UNIT TO
US4838257A (en) * 1987-07-17 1989-06-13 Hatch Guy M Ventilator
DE4106098C2 (en) * 1991-02-27 2000-08-31 Volker Lang Device for generating continuously positive pressures in the airways during spontaneous breathing
AT503096B1 (en) 2005-12-16 2009-04-15 Carl Reiner Gmbh JET ENDOSKOP
EP2068992B1 (en) * 2006-08-03 2016-10-05 Breathe Technologies, Inc. Devices for minimally invasive respiratory support
RU2751651C1 (en) * 2020-07-17 2021-07-15 Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Томский государственный университет» Hardware and software complex for physiotherapeutic training and prevention of respiratory diseases based on artificial lung ventilation apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1447987A (en) * 1973-03-10 1976-09-02 Carden E Ventilating device for use in anesthesiology
AT337345B (en) * 1975-02-05 1977-06-27 Draegerwerk Ag BREATHING ASSISTANCE DEVICE AND / OR ARTIFICIAL VENTILATION DEVICE FOR HUMAN USE
GB1585091A (en) * 1976-02-10 1981-02-25 Venegas J G Remedial apparatus for use in assisting the breathing of living creatures
DE2847681C2 (en) * 1978-11-03 1983-01-05 Drägerwerk AG, 2400 Lübeck Tracheal tube

Also Published As

Publication number Publication date
GB2063686A (en) 1981-06-10
SE8006175L (en) 1981-05-28
JPS5685354A (en) 1981-07-11
DE2947659C2 (en) 1986-11-20
DE2947659A1 (en) 1981-07-30
SE431165B (en) 1984-01-23
GB2063686B (en) 1983-06-29

Similar Documents

Publication Publication Date Title
JPH0355143B2 (en)
DE69223782T2 (en) CATHETER TIP FOR INTRATRACHEAL VENTILATION AND INTRATRACHEAL PULMONAR VENTILATION
US6581599B1 (en) Method and apparatus for delivery of inhaled nitric oxide to spontaneous-breathing and mechanically-ventilated patients
EP0475993B1 (en) Improvements in or relating to medical ventilators
DE3119814C2 (en) HFJ ventilator with a controllable breathing gas source and device for generating negative pressure
US6123072A (en) Method and apparatus for breathing during anesthesia
US4520812A (en) Method and apparatus for controlling a pressure level in a respirator
US4206754A (en) Lung ventilators
US5871009A (en) Method and apparatus for mixing a gas containing nitric oxide with a gas containing oxygen
US20060207594A1 (en) Method and apparatus for delivery of inhaled nitric oxide to spontaneous-breathing and mechanically-ventilated patients with intermittent dosing
CA2064264A1 (en) Jet ventilator system
JP2001517108A (en) Controlled gas supply system
WO2001043805A2 (en) Expiration-dependent gas dosage
RU95116346A (en) METHOD FOR FORMING A RESPIRATORY GAS MIXTURE AND APPARATUS FOR ITS IMPLEMENTATION
JP2003500085A (en) Method and apparatus for measuring pulmonary blood flow by lung exchange between oxygen and inert gas and blood
JPH0246220B2 (en)
BSM A bench study comparison of demand oxygen delivery systems and continuous flow oxygen
EP0290062A3 (en) High-frequency jet ventilation apparatus
Giunta et al. Clinical uses of high frequency jet ventilation in anaesthesia
Jordan et al. Closed-circuit halothane and enflurane using an in-circle Goldman vaporizer
Venkataraman et al. Ventilators and modes
Sanpanich et al. A ventilator circuit for volume control mode
Carlon et al. Selection Of Mechanical Ventilatory Support Based On Respiratory Pathophysiology
CN100473335C (en) Method and apparatus for measuring pulmonary blood flow by pulmonary exchange of oxygen and inert gas with the blood
Drinker et al. Ventilation: External regulation of the environment of the lung