JPH0355028B2 - - Google Patents

Info

Publication number
JPH0355028B2
JPH0355028B2 JP60104238A JP10423885A JPH0355028B2 JP H0355028 B2 JPH0355028 B2 JP H0355028B2 JP 60104238 A JP60104238 A JP 60104238A JP 10423885 A JP10423885 A JP 10423885A JP H0355028 B2 JPH0355028 B2 JP H0355028B2
Authority
JP
Japan
Prior art keywords
battery
solid electrolyte
positive electrode
negative electrode
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60104238A
Other languages
Japanese (ja)
Other versions
JPS61263053A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP60104238A priority Critical patent/JPS61263053A/en
Publication of JPS61263053A publication Critical patent/JPS61263053A/en
Publication of JPH0355028B2 publication Critical patent/JPH0355028B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明では、常温で高イオン導電性を有する固
体電解質を用いた、オールソリツド・ステイトの
固体電解質二次電池に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an all-solid-state solid electrolyte secondary battery using a solid electrolyte having high ionic conductivity at room temperature.

従来の技術 常温で高イオン導電性を有する固体電解質を用
いた電池は、電池のオールソリツド・ステイト化
が可能なことから、液もれが本質的になく、保存
中の自己放電のきわめて少ない高信頼性の電池と
なる。
Conventional technology Batteries using solid electrolytes that have high ionic conductivity at room temperature can be made into an all-solid state, so they are highly reliable with essentially no leakage and extremely low self-discharge during storage. It becomes a sexual battery.

このような電池について、従来は一回の放電で
寿命が尽きてしまう一次電池がもつぱら提案され
ていた。しかし、電気回路素子の小形化が特徴で
あるマイクロエレクトロニクス分野の電源として
該電池を使用する場合、当然ながら電池も小形で
あることが要求される。電池は小形化すればする
ほど容量は小さくなるから、一回の放電で寿命が
尽きてしまう一次電池に代り、くり返し使用ので
きる二次電池が有用となつてくる。
As for such batteries, primary batteries, whose life spans end after one discharge, have conventionally been proposed. However, when the battery is used as a power source in the field of microelectronics, which is characterized by miniaturization of electric circuit elements, the battery is naturally required to be small. As batteries become smaller, their capacity decreases, so secondary batteries, which can be used repeatedly, are becoming more useful in place of primary batteries, which expire after a single discharge.

二次電池を構成する際必要となる要件は、正極
材料および負極材料が、電池の充・放電に際して
可逆的な電気化学反応を行う能力を有することで
ある。
A necessary requirement when constructing a secondary battery is that the positive electrode material and the negative electrode material have the ability to perform a reversible electrochemical reaction during charging and discharging of the battery.

特に、正極材料としては、液体電解質を用いた
電池では、金属カルコゲン化物が、負極としては
Li等のアルカリ金属を用いた場合有用であること
が古くから知られている。この金属カルコゲン化
物は、層状結晶構造を有しており、電池放電に際
しては負極から遊離したアルカリ金属イオンを層
間に吸蔵し、充電に際してはアルカリ金属イオン
を層間より放出することで可逆的に電池反応を行
うことができる特徴を有している。
In particular, metal chalcogenides are used as positive electrode materials in batteries using liquid electrolytes, and metal chalcogenides are used as negative electrode materials.
It has long been known that the use of alkali metals such as Li is useful. This metal chalcogenide has a layered crystal structure, and when the battery is discharged, the alkali metal ions released from the negative electrode are occluded between the layers, and when the battery is charged, the alkali metal ions are released from the interlayers, resulting in a reversible battery reaction. It has the feature of being able to do the following.

発明が解決しようとする問題点 以上のような金属カルコゲン化物を、銅を主体
とする負極と、Cu+導電性固体電解質とするオー
ルソリツド・ステイト二次電池の正極材料として
使えるであろうということは当該分野の技術者で
あれば容易に考えつくことであるが、金属カルコ
ゲン化物のうちどのようなものが、また、どの程
度までCu+イオンを自由にその層間に出し入れで
きるか全くわからなかつた。
Problems to be Solved by the Invention It is possible to use the metal chalcogenide described above as a positive electrode material for an all-solid-state secondary battery that has a copper-based negative electrode and a Cu + conductive solid electrolyte. As a person skilled in the art would easily think, it was not known at all which types of metal chalcogenides and to what extent Cu + ions can be freely transferred between the layers.

問題点を解決するための手段 本発明は、Cuを主体とする負極と、Cu+イオン
導電性固体電解質と、正極材料として、Cu+イオ
ンを層間に自由に出し入れできる、NbS2の一部
をクロム、Cr、で置換した層状結晶構造を有し
た新規な化合物、Nb1-yCryS2+1.5y(y:0.01−
0.10)とで構成される良好な充・放電サイクル特
性を発揮する固体電解質二次電池を提供する。
Means for Solving the Problems The present invention consists of a negative electrode mainly composed of Cu, a Cu + ion conductive solid electrolyte, and a part of NbS 2 as a positive electrode material, which allows Cu + ions to be freely transferred between the layers. A new compound with a layered crystal structure substituted with chromium, Cr, Nb 1-y Cr y S 2+1.5y (y: 0.01-
0.10) and which exhibits good charge/discharge cycle characteristics.

作 用 本発明に従う新規な正極材料であるNb1-yCry
S2+1.5yは、NbS2のNb4+(イオン半径が0.63Å)を
Cr3+(イオン半径が0.55Å)で一部置換すること
で、Cu+イオンのS−S層間への出し入れに伴う
結晶のゆがみを軽減し、Cu+イオンのS−S層間
への吸蔵可能量すなわち、電池放電に際しては放
電容量を、結晶構造的にあるいは静電的に増加す
ることが出来る。そして、該正極材料を用いた固
体電解質二次電池は、高容量でしかも良好な充・
放電サイクル特性を与えることができる。
Function Nb 1-y Cr y, which is a novel positive electrode material according to the present invention
S 2+1.5y is Nb 4+ of NbS 2 (ion radius is 0.63 Å)
By partially substituting Cr 3+ (ion radius: 0.55 Å), distortion of the crystal caused by the movement of Cu + ions into and out of the SS layer can be reduced, and Cu + ions can be stored between the SS layers. In other words, during battery discharge, the discharge capacity can be increased either crystallographically or electrostatically. A solid electrolyte secondary battery using this positive electrode material has high capacity and good charging/charging properties.
It can provide discharge cycle characteristics.

実施例 実施例 1 第1図の曲線aは、Cu+イオン導電性固体電解
質としてRbCu4I1.5Cl3.5を用い、Cuを主体とする
負極と、Nb0.98Cr0.02S2.03正極とで構成される第
2図で示した断面構造を有した直径7mmの固体電
解質二次電池を、20℃、100μAの一定電流値で放
電した際の電池電圧の変化をx値、すなわち、放
電の進行と共に負極からのCu+イオンは正極の層
間に吸蔵され正極はCuxNb0.98Cr0.02S2.03と表され
るが、このx値を横軸に示したものである。この
曲線aからわかるように、xの増加すなわち放電
の進行に伴い電池電圧は単調な減少を示し、この
減少はxが0.30付近まで続き、0.30を越えると平
坦部が現れる。
Examples Example 1 Curve a in Figure 1 uses RbCu 4 I 1.5 Cl 3.5 as the Cu + ion conductive solid electrolyte, and is composed of a negative electrode mainly composed of Cu and a Nb 0.98 Cr 0.02 S 2.03 positive electrode. When a solid electrolyte secondary battery with a diameter of 7 mm and having the cross-sectional structure shown in Figure 2 is discharged at 20°C with a constant current value of 100 μA, the change in battery voltage is the x value, that is, the change in battery voltage from the negative electrode as the discharge progresses. Cu + ions are occluded between the layers of the positive electrode, and the positive electrode is expressed as Cu x Nb 0.98 Cr 0.02 S 2.03 , and this x value is shown on the horizontal axis. As can be seen from this curve a, the battery voltage shows a monotonous decrease as x increases, that is, the discharge progresses, and this decrease continues until x is around 0.30, and a plateau appears when x exceeds 0.30.

曲線bは、正極材料としてy=0、すなわち
Crの入つていないNbS2を用いた電池について電
池aと同様の放電を行つた際の電池電圧を示して
いる。xが0〜0.30間の電池電圧の減少のし方
は、比較例として示したNbS2を正極とする電池
の曲線bより、本発明に従うNb0.98Cr0.02S2.03
正極とする電池の曲線aの方がゆるやかである。
Curve b shows that y=0 as the positive electrode material, i.e.
It shows the battery voltage when a battery using NbS 2 without Cr was discharged in the same way as battery a. The manner in which the battery voltage decreases when x is between 0 and 0.30 is as follows from curve b for a battery using NbS 2 as a positive electrode shown as a comparative example, and curve a for a battery using Nb 0.98 Cr 0.02 S 2.03 as a positive electrode according to the present invention. is more gradual.

すなわち、Nb1-yCryS2+1.5y(y:0.01〜0.10)
は、xが0.30付近まで単一の層状結晶構造を保持
でき、xが0.30までCu+イオンをスムーズに出し
入れできる。
That is, Nb 1-y Cr y S 2+1.5y (y: 0.01 to 0.10)
can maintain a single layered crystal structure until x is around 0.30, and Cu + ions can be smoothly inserted and removed until x is around 0.30.

NbS2の場合は、電池電圧の平坦部は、x=
0.25付近から現われ始め、また電池電圧はaより
も低く、Cu+イオンの出し入れ易さはNb1-yCry
S2+1.5yに較べると劣る。
For NbS 2 , the plateau of the cell voltage is x=
It starts to appear around 0.25, the battery voltage is lower than a, and the ease with which Cu + ions can be taken in and out is Nb 1-y Cr y
It is inferior to S 2+1.5y .

第3図の曲線aは、本発明に従う第1図に示し
た特性を示す電池と同様の電池を、xの値が0〜
0.25の間で、20℃、100μAで充・放電をくり返し
た際の、各サイクルの放電末の電池電圧と充・放
電サイクル数との関係を示したもので、100サイ
クルを越える良好なサイクル特性を与える。
Curve a in FIG. 3 shows a battery similar to the battery according to the invention and exhibiting the characteristics shown in FIG.
This graph shows the relationship between the battery voltage at the end of each cycle and the number of charge/discharge cycles when charging and discharging are repeated at 20℃ and 100μA between 0.25 and 20℃, and the number of charge/discharge cycles is good. give.

本発明に従う新規な正極材料であるNb1-yCry
S2+1.5yは、金属Nb粉末、金属Cr粉末を所定の割
合で混合したもの、あるいはNbとCrの合金粉末
を収納した石英ガラス容器に、イオウ蒸気を徐々
に送り込み900℃で加熱反応することで得ること
ができるし、あるいはより簡便な方法としては、
NbS2粉末とCr2S3粉末とを所定の割合で混合し、
約7mmφのペレツト状に約3トンの圧力で成形し
たものを、石英ガラス管に0.1Torrの圧力以下で
真空封入し、900℃で約72時間加熱反応すること
でも得ることができる。
Nb 1-y Cr y , a novel positive electrode material according to the present invention
S 2+1.5y is produced by gradually feeding sulfur vapor into a quartz glass container containing a mixture of metallic Nb powder and metallic Cr powder in a predetermined ratio, or containing an alloy powder of Nb and Cr, and reacting by heating at 900℃. Or, as a simpler method,
Mix NbS 2 powder and Cr 2 S 3 powder at a predetermined ratio,
It can also be obtained by molding pellets of about 7 mmφ under a pressure of about 3 tons, vacuum-sealing them in a quartz glass tube at a pressure of 0.1 Torr or less, and heating and reacting at 900° C. for about 72 hours.

実施例 2 y値が、原料仕込み量で0.01、0.02、0.05、
0.10、0.20、0.30であるNb1-yCryS2+1.5yを合成し
これらを正極材料とする図2に示した断面の構造
を有する直径7mmの固体電解質電池を構成した。
Example 2 The y value is 0.01, 0.02, 0.05, depending on the amount of raw material charged.
Nb 1-y Cr y S 2+1.5y of 0.10, 0.20, and 0.30 was synthesized, and a solid electrolyte battery with a diameter of 7 mm and having a cross-sectional structure shown in FIG. 2 was constructed using these as positive electrode materials.

正極(粉末):Nb1-yCryS2+1.5y+RbCu4I1.5Cl3.5
(重量比2:3)…0.06gr 固体電解質(粉末):RbCu4I1.5Cl3.5 …0.05gr 負極(粉末):Cu+Cu1.59S+RbCu4I1.5Cl3.5
(重量比1:3.4:1.2)…0.075gr 上記正極粉末と固体電解質粉末と負極粉末とを
層状に三層に約3トンの圧力でプレスし電池ペレ
ツトとし、次に、正極および負極側に導電性カー
ボンフイルムより成る集電体と、電極リードと熱
圧着した後、電池全体をエポキシ樹脂で被膜する
ことで電池を作つた。第2図は、このようにして
作つた固体電解質二次電池の断面図を示してお
り、1は正極層、2は固体電解質層、3は負極
層、4は集電体、5は電極リード、6は樹脂パツ
ケージである。
Positive electrode (powder): Nb 1-y Cr y S 2+1.5y +RbCu 4 I 1.5 Cl 3.5
(Weight ratio 2:3)...0.06gr Solid electrolyte (powder): RbCu 4 I 1.5 Cl 3.5 ...0.05gr Negative electrode (powder): Cu+Cu 1.59 S+RbCu 4 I 1.5 Cl 3.5
(Weight ratio 1:3.4:1.2)...0.075gr The above positive electrode powder, solid electrolyte powder, and negative electrode powder are pressed into three layers under a pressure of about 3 tons to form battery pellets, and then the positive electrode and negative electrode sides are conductive. A battery was fabricated by thermocompressing a current collector made of carbon film and an electrode lead, and then coating the entire battery with epoxy resin. Figure 2 shows a cross-sectional view of the solid electrolyte secondary battery made in this way, where 1 is a positive electrode layer, 2 is a solid electrolyte layer, 3 is a negative electrode layer, 4 is a current collector, and 5 is an electrode lead. , 6 is a resin package.

第4図は、このようにして作つた電池を、20
℃、100μAの定電流値でxの値の範囲が0〜0.25
で充放電を行つた際の各サイクルの放電末期の電
池電圧と充・放電サイクル数との関係を示したも
ので、本発明に従い、Crをy値として0.01、
0.02、0.05、0.10含んだNb1-yCryS2+1.5yを正極と
した電池は、すぐれたサイクル特性を与えること
がわかる。
Figure 4 shows the battery made in this way.
℃, the value of x ranges from 0 to 0.25 at a constant current value of 100μA
It shows the relationship between the battery voltage at the end of discharge of each cycle and the number of charging/discharging cycles when charging and discharging is performed.According to the present invention, Cr is 0.01 as a y value,
It can be seen that batteries using Nb 1-y Cr y S 2+1.5y containing 0.02, 0.05, and 0.10 as the positive electrode have excellent cycle characteristics.

なお、本発明の実施例において、Cu+イオン導
電性固体電解質としてRbCu4I1.5Cl3.5を用いたが、
他のCu+イオン導電性固体電解質、例えば
RbCu4I1.25Cl3.75、Rb0.75K0.25Cu4I1.5Cl3.5、CuBr
にヘキサメチレンテトラミン等の第4級アンモニ
ウム塩を添加した固体電解質等を用いても本発明
と同様の効果が得られることは言うまでもない。
さらに、Cuを主体とする負極として、Cu+
Cu1.59S+Cu+イオン導電性固体電解質より成る
混合物の他に、Cu+Cu+イオン導電性固体電解質
より成る混合物や、Cu5Mo6S8+Cu+イオン導電
性固体電解質よりなる混合物等を用いても本発明
と同様の効果が得られることは言うまでもない。
In addition, in the examples of the present invention, RbCu 4 I 1.5 Cl 3.5 was used as the Cu + ion conductive solid electrolyte, but
Other Cu + ion conductive solid electrolytes, e.g.
RbCu 4 I 1.25 Cl 3.75 , Rb 0.75 K 0.25 Cu 4 I 1.5 Cl 3.5 , CuBr
It goes without saying that the same effects as the present invention can be obtained by using a solid electrolyte to which a quaternary ammonium salt such as hexamethylenetetramine is added.
Furthermore, as a negative electrode mainly composed of Cu,
In addition to the mixture of Cu 1.59 S + Cu + ion-conductive solid electrolyte, mixtures of Cu + Cu + ion-conductive solid electrolyte, Cu 5 Mo 6 S 8 + Cu + ion-conductive solid electrolyte, etc. can also be used. It goes without saying that the same effect as the invention can be obtained.

発明の効果 本発明に従い、正極材料としてNb1-yCry
S2+1.5yを有し、Cuを主体とする負極と、Cu+イオ
ン導電性固体電解質とで構成される固体電解質二
次電池は、分極の小さいすなわち放電時の電池電
圧の低下のゆるやかな、かつ優れた充・放電特性
を与える。
Effects of the Invention According to the present invention, Nb 1-y Cr y is used as a positive electrode material.
A solid electrolyte secondary battery, which has S 2+1.5y and is composed of a Cu-based negative electrode and a Cu + ion conductive solid electrolyte, has low polarization, that is, a gradual drop in battery voltage during discharge. , and provides excellent charge/discharge characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例の固体電解質二次
電池の放電時の電圧の変化を示す図、第2図は同
電池の構造を示す断面図、第3図は同電池の充・
放電サイクル特性図、第4図は同電池の充・放電
サイクル特性図である。 a……本発明の一実施例の電池、b……比較例
の電池、1……正極層、2……固体電解質層、3
……負極層。
Fig. 1 is a diagram showing voltage changes during discharging of a solid electrolyte secondary battery according to an embodiment of the present invention, Fig. 2 is a cross-sectional view showing the structure of the battery, and Fig. 3 is a diagram showing charging and
Discharge cycle characteristic diagram, FIG. 4 is a charge/discharge cycle characteristic diagram of the same battery. a...Battery of an example of the present invention, b...Battery of a comparative example, 1...Positive electrode layer, 2...Solid electrolyte layer, 3
...Negative electrode layer.

Claims (1)

【特許請求の範囲】[Claims] 1 銅を主体とする負極と、Cu+イオン導電性固
体電解質と、Nb1-yCryS2+1.5yで表わされる硫化
物(ただし、y:0.01〜0.10)を主体とする正極
より構成されることを特徴とする固体電解質二次
電池。
1 Consisting of a negative electrode mainly composed of copper, a Cu + ion conductive solid electrolyte, and a positive electrode mainly composed of a sulfide represented by Nb 1-y Cr y S 2+1.5y (y: 0.01 to 0.10) A solid electrolyte secondary battery characterized by:
JP60104238A 1985-05-16 1985-05-16 Solid electrolyte secondary battery Granted JPS61263053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60104238A JPS61263053A (en) 1985-05-16 1985-05-16 Solid electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60104238A JPS61263053A (en) 1985-05-16 1985-05-16 Solid electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPS61263053A JPS61263053A (en) 1986-11-21
JPH0355028B2 true JPH0355028B2 (en) 1991-08-22

Family

ID=14375377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60104238A Granted JPS61263053A (en) 1985-05-16 1985-05-16 Solid electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPS61263053A (en)

Also Published As

Publication number Publication date
JPS61263053A (en) 1986-11-21

Similar Documents

Publication Publication Date Title
US4194062A (en) Rechargeable dichalcogenide cell
JPH11219722A (en) Lithium secondary battery
EP0573040B1 (en) A positive electrode for lithium secondary battery and its method of manufacture, and a nonaqueous electrolyte lithium secondary battery employing the positive electrode
JPH0567468A (en) Electrochemical secondary battery
JPH06275313A (en) Lithium battery
JPS623547B2 (en)
JPS62290072A (en) Organic electrolyte secondary battery
US4789610A (en) Solid-electrolyte secondary cell
JPH06275315A (en) Lithium secondary battery
US4751159A (en) Secondary lithium battery including a silver molybdenum cathode
JPH06275314A (en) Lithium secondary battery
JPH0355028B2 (en)
JPH04289662A (en) Manufacture of nonaqueous electrolyte secondary battery and its positive electrode active material
JPH0355029B2 (en)
JPH0355026B2 (en)
JPH0355027B2 (en)
JPS6012677A (en) Solid electrolyte secondary battery
JPH06275312A (en) Full solid lithium battery
JPS6012678A (en) Solid electrolyte secondary battery
JPH0534779B2 (en)
JPH0558224B2 (en)
JPH0534780B2 (en)
JPH0481309B2 (en)
JPH0465070A (en) All solid voltage memory element
JPH07282796A (en) Electrochemical element