JPH0354976A - Infrared ray image pickup device - Google Patents

Infrared ray image pickup device

Info

Publication number
JPH0354976A
JPH0354976A JP1191043A JP19104389A JPH0354976A JP H0354976 A JPH0354976 A JP H0354976A JP 1191043 A JP1191043 A JP 1191043A JP 19104389 A JP19104389 A JP 19104389A JP H0354976 A JPH0354976 A JP H0354976A
Authority
JP
Japan
Prior art keywords
scanning period
optical scanning
image pickup
bias voltage
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1191043A
Other languages
Japanese (ja)
Inventor
Isao Tofuku
東福 勲
Kenji Awamoto
健司 粟本
Shoji Doi
土肥 正二
Yoshihiro Miyamoto
義博 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1191043A priority Critical patent/JPH0354976A/en
Publication of JPH0354976A publication Critical patent/JPH0354976A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To reduce the power consumption of a solid image pickup element and to compact its cooling means by impressing a driving pulse and a bias voltage to the solid image pickup element only for the effective scanning period of an optical scanning period and stopping the supply of the driving pulse and bias voltage during the residual scanning period to hold the element at a fixed voltage. CONSTITUTION:The solid image pickup element 13 having a self-scanning function in one direction is constituted of a charge transfer element 12 and plural infrared ray receiving elements 11. An optical scanning means 14 executes optical scanning in the direction rectangular to one direction to be the array direction of the elements 11 and makes light from an object whose image is to be picked up incident upon the elements 11 and a control means 15 supplies charge transferring driving pulse and a bias voltage to the elements 13 only for the effective scanning period out of the optical scanning period of the means 14 and stops the supply of the driving pulse and bias voltage during the blanking period to be the residual scanning period to hold the element 13 at the fixed voltage. Consequently, the power consumption of the solid image pickup element 13 can be reduced and the solid image pickup element cooling means is made compact.

Description

【発明の詳細な説明】 (Ft要〕 自己走査機能を有する固休銀像素子を用いた赤外線va
像装置に関し、 固体囮像素子の消費電力を低減し、もって固体!!il
&素子冷却手段をより小型で安価な構成とすることを目
的とし、 一方向に配列された複数個の赤外受光素fにより夫々九
電変換して得られた{g号電荷を、電荷転送素子を用い
てN積及び転送する、一方向に自己走!in能を有する
固体*mx子に対して、光学走査手段により該一方向に
直交する方向に光学走査を行なって撮像対象からの光を
入rAtる赤外PJ撤*5AMにおいて、前記光学走査
手段の光学走査周期のうち有効走査期間のみ前記固体囮
像素子に電荷転送用駆初パルス及びバイアス電圧を印加
し、残りの走査期間であるブランキング期間は該駆動パ
ルス及びバイアス電圧の供給を停止し一定電圧に保持す
る制御手段を備えるよう構戒する。
[Detailed description of the invention] (Ft required) Infrared va using a solid silver image element with self-scanning function
Regarding image devices, the power consumption of solid-state decoy image elements is reduced, making them solid-state! ! il
& With the aim of making the element cooling means smaller and cheaper, the {g charges obtained by nine-electron conversion using multiple infrared receiving elements f arranged in one direction, are transferred by charge transfer. Self-running in one direction with N product and transfer using elements! In an infrared PJ method in which an optical scanning means optically scans a solid body having an in-capacity in a direction orthogonal to the one direction to input light from an imaging target, the optical scanning means The initial pulse for charge transfer and bias voltage are applied to the solid-state decoy image element only during the effective scanning period of the optical scanning period, and the supply of the driving pulse and bias voltage is stopped during the blanking period which is the remaining scanning period. Be sure to include a control means to maintain a constant voltage.

〔産業上の利用分野〕[Industrial application field]

本発明は赤外線撮像装置に係り、特に自己走査機能を有
する固体wi像素子を用いた赤外1a黴像装誼に関する
The present invention relates to an infrared imaging device, and more particularly to infrared 1a mold imaging using a solid-state Wi image element having a self-scanning function.

一方向に配列された複数個の赤外受光素子の夫々により
搬像対象からの赤外光を光電変換して得られた電荷を電
荷結合素子(COD)に注入後転送して読み出す囚体撮
@素子は一次元IRCCD( l nfrared C
harge Coupled  Device)と呼ば
れる。この一次元IRCCDを用いた赤外$11i像装
叙は、搬像対象の温度分布を適確に把えられることから
、産業分野で広く応用されつつある。
Prisoner imaging in which the charges obtained by photoelectrically converting the infrared light from the image carrying object using a plurality of infrared light-receiving elements arranged in one direction are injected into a charge-coupled device (COD) and then transferred and read out. @Element is one-dimensional IRCCD (l nfrared C
It is called a harge coupled device). Infrared $11i imaging using this one-dimensional IRCCD is being widely applied in the industrial field because it can accurately grasp the temperature distribution of the imaged object.

上記の赤外線撮像装置においては、撮像対象の温度を正
確に検出するために、IRCCDを80K稈度まで冷川
する高い冷却性能を持つ冷却手段が必授とされる。従っ
て、赤外線撮像装置の小型化のためには、上記冷甜手段
の小型化が必要となる。
In the above-mentioned infrared imaging device, in order to accurately detect the temperature of the object to be imaged, a cooling means having a high cooling performance capable of cooling the IRCCD to a temperature of 80K is required. Therefore, in order to downsize the infrared imaging device, it is necessary to downsize the cooling means.

〔従来の技術〕 第5図は従来の赤外164起像装nの要部の一例の構成
図を示す。同図中、51は検知器容器で、その内部にボ
トダイオードアレイ(PVアレイ)52,CCD53.
最終段のソースホロワのMOS型電界効果トランジスタ
(FET)54よりなる一次元{RCCDが内蔵されて
いる。PVアレイ52は赤外検知索fであるホトダイオ
ードが、一方向に複数個配列された構成であり、その各
々のホトダイオードの出ノJtaがCCD53に接続さ
れている。
[Prior Art] FIG. 5 shows a configuration diagram of an example of a main part of a conventional infrared 164 imaging device n. In the figure, 51 is a detector container, inside of which are a bottom diode array (PV array) 52, a CCD 53.
A one-dimensional RCCD consisting of a MOS field effect transistor (FET) 54 as a source follower at the final stage is built-in. The PV array 52 has a configuration in which a plurality of photodiodes, which are infrared detection lines f, are arranged in one direction, and the output Jta of each photodiode is connected to the CCD 53.

また、FET54のソースは、検知器51の外部に設け
られた負荷紙抗55を介して接地される一方、アンプ5
6の人力端子に接続されている。
Further, the source of the FET 54 is grounded via a load paper resistor 55 provided outside the detector 51, while the source of the amplifier 54 is grounded via a load paper resistance 55 provided outside the detector 51.
6 is connected to the human power terminal.

57は冷凍器で、検知器官器51内部の{RCCDを冷
却するために設けられている。なお、負荷抵抗55を検
知器容器51の外部に設けるのは、仮に負荷抵抗55を
検知器容器51の内部に設けた場合は、この負r#抵抗
55によって生ずる熱も冷凍器57により冷却しなけれ
ばならなくなり、冷″a器57により高い冷却性能が必
要で、消費電力が多くなってしまうからである。
Reference numeral 57 denotes a refrigerator, which is provided to cool the {RCCD inside the detection organ 51. Note that the reason why the load resistor 55 is provided outside the detector container 51 is that if the load resistor 55 is provided inside the detector container 51, the heat generated by the negative r# resistor 55 is also cooled by the refrigerator 57. This is because the cooler 57 needs to have higher cooling performance, resulting in increased power consumption.

躍像対象は互ラーやスキャナ等の光学走査手段・によっ
てPVアレイの長手方向(ホトダイオード配列方向)に
直交する方向に走査ざれ、これにより走査ざれたit対
象からの光はPvアレイ52に受光される。PV7レイ
52は入射された赤外光を充電変換し、得られた信号電
荷をCCD53へ転送する。
The imaging object is scanned in a direction perpendicular to the longitudinal direction of the PV array (photodiode arrangement direction) by an optical scanning means such as a mirror or a scanner, and the light from the scanned IT object is received by the PV array 52. Ru. The PV7 ray 52 charges and converts the incident infrared light, and transfers the obtained signal charge to the CCD 53.

COD53G.1入力信号電荷を順次入力駆動パルスに
同期してFET54方向へ転送し、最終段で電荷を電圧
に変換してFET54のゲートに印加する。これにより
、負荷抵抗55に発牛した電圧はアンプ56を通して信
目処理回路(図示せf)へ出力される。
COD53G. One input signal charge is sequentially transferred toward the FET 54 in synchronization with the input drive pulse, and at the final stage, the charge is converted into a voltage and applied to the gate of the FET 54. As a result, the voltage generated across the load resistor 55 is outputted to the signal processing circuit (f in the figure) through the amplifier 56.

ここで、検知器容器51の内部の主な消費電力の発生個
所は第6図に丞す如く、CCD53による転送部と、ソ
ースホロワのFET54であるウ同図中、φ嘗〜φ4G
.t4相のクロツク(駆動パルス)で、各々対応する転
送電極58嘗〜584に別々に印加される。4つの転送
電Ni5 8 +〜584は1つのホトダイオードに対
応jノで設けられている。すなわち、Pv7レイ52の
各ホトダイオードに対応して4つずつ転送電極が設けら
れている。
Here, as shown in FIG. 6, the main power consumption generating parts inside the detector container 51 are the transfer section by the CCD 53 and the source follower FET 54.
.. A t4 phase clock (drive pulse) is applied separately to the corresponding transfer electrodes 58 to 584, respectively. Four transfer voltages Ni5 8 + to 584 are provided corresponding to one photodiode. That is, four transfer electrodes are provided corresponding to each photodiode of the Pv7 ray 52.

4相クロックφ1〜φ4は第7図(C)に示すように、
互いに909ずつ僚相が異なる駆動パルスで、PVアレ
イ52がMillのホトダイオードから構成されている
場合は、各々M回ずつ出力されることにより、1ノレー
ム分の電荷転送(すなわら、垂直方向に配列ざれたM個
のホトダイオード全部の信号電荷の転送)が行なわれる
The four-phase clocks φ1 to φ4 are as shown in FIG. 7(C),
If the PV array 52 is made up of Mill photodiodes, the driving pulses have different partner phases by 909, and are outputted M times each to transfer the charge for one Norem (in other words, in the vertical direction). Transfer of signal charges of all M photodiodes arranged in a random manner is performed.

第6図に示した最終段のホトダイオードに対応して設1
ノられた転送電極584への駆動バルスφ4が第1の電
位とざれることにより、転送電極584′直下の¥導体
基板のボデンシ1Iルの井戸に蓄積ざれている信号電荷
63【よ、駆動バルスφ4が第2の電位に変化するのに
伴って転送電極584′直下のポテンシャルが破線64
で示す如く上げられたために、これより低い一定のボテ
ンシャル65の出力ゲート(OG>59直下を通して拡
敗m<浮動拡散)60に入力され、ここで電圧に変換さ
れた後FET54のゲートに印加される。
Set 1 corresponding to the final stage photodiode shown in Figure 6.
When the drive pulse φ4 to the transferred electrode 584 is reduced to the first potential, the signal charge 63 accumulated in the well of the conductive substrate directly below the transfer electrode 584' is reduced to the first potential. As φ4 changes to the second potential, the potential directly below the transfer electrode 584' changes to the broken line 64.
Since the voltage has been raised as shown in , it is input to the output gate (OG > 59 through directly below it) of a constant potential 65 (spreading diffusion m < floating diffusion) 60 , where it is converted into a voltage and then applied to the gate of the FET 54 . Ru.

このときは、FET61はオフとされている。At this time, the FET 61 is turned off.

FE丁61は出力ゲート59直下を経由して拡散層60
に次のビットの信弓電荷が入力される以前にパルスφR
によりオンとされ、拡散層60の電荷をFET61を介
して半導体基板に砕き出し、その後再びオフとされて次
のビットの信@電荷の拡散1ff60への入力に備える
The FE device 61 passes through the diffusion layer 60 directly under the output gate 59.
The pulse φR is applied before the next bit of charge is input to
It is turned on and the charge in the diffusion layer 60 is dumped into the semiconductor substrate via the FET 61, and then it is turned off again to prepare for inputting the next bit of signal@charge to the diffusion 1ff60.

なお、第7図(A)は前記した光学走査手段の時間に対
する走査角の特性を示しており、周1n丁。で水平方向
に光学走査を行なうことを示している。また、同図(B
)はCCD53のフレームタイムと光学走査周期丁0と
の関係を示しており、光学走査周朋゛roの前と後の各
朗間T+ .Tzは画像化に寄与しないブランキングW
1間であり、残りのリニアな゜「aの期間は画像化のた
めの有効走査期間で、Nフレームタイムある。有効走査
率ηはTa /Tbで表わされる。
Incidentally, FIG. 7(A) shows the characteristics of the scanning angle with respect to time of the above-mentioned optical scanning means, and the circumference is 1n. indicates that optical scanning is performed in the horizontal direction. Also, the same figure (B
) shows the relationship between the frame time of the CCD 53 and the optical scanning period 0, and each period T+ . Tz is blanking W that does not contribute to imaging
The remaining linear period ゜a is an effective scanning period for imaging, which is N frame time.The effective scanning rate η is expressed as Ta/Tb.

ところで、検知器容器51内部では第6図に示したよう
にCCD53で次式 P1−K−f−C−V12        (1)で表
わされる電力P+ が消費され、またF E −r54
で次式 Pz−1z ・Vz            (21で
表わされる電力P2が消費される。従って、検知器容器
51内部での消a電力Potよ、P(+−PI十P2 =K・『・C−V+2+L ・V2G3となる。
By the way, inside the detector container 51, as shown in FIG. 6, the CCD 53 consumes power P+ expressed by the following formula P1-K-f-C-V12 (1), and F E -r54
The power P2 represented by the following formula Pz-1z ・Vz (21 is consumed. Therefore, the power consumption Pot inside the detector container 51 is P(+-PI + P2 = K・'・C-V+2+L・It becomes V2G3.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかるに、赤外線Ii像装置では上記の転送電極全容1
1Cが人であり、しかも近年の高画素数化によって転送
周波数fも高くなる傾向にあるため、従来は消費電力が
大である。よって、従来は80K程度まで冷却すること
が要求される冷凍器57として、装置サイズが大型で、
また高価な高性能の冷凍器が必要となるという欠点があ
った。
However, in the infrared Ii imager, the above transfer electrode 1
Conventionally, power consumption is large because 1C is a person and the transfer frequency f has also tended to increase due to the increase in the number of pixels in recent years. Therefore, conventionally, the refrigerator 57 is required to cool down to about 80K, and the device size is large.
Another drawback is that it requires an expensive, high-performance refrigerator.

本発明は上記の点に鑑みてなされたもので、固体躍像素
子の消費電力を低減し、もって固休me素子冷却手段を
より小型で安価な構成とし得る赤外I1廐像装置を提供
することを目的とする。
The present invention has been made in view of the above points, and an object of the present invention is to provide an infrared I1 imaging device that can reduce the power consumption of a solid-state electromechanical element, thereby making the solid state me element cooling means smaller and cheaper. The purpose is to

〔課題を解決するための手段〕[Means to solve the problem]

第1図は本発明の原理構成図を示す。同図中、11は赤
外受光素子で、一方向に複数個配列されている.12は
電荷転送素子で、赤外受光素子11と共に一方向に自己
走査機能を有する固休搬像素子13を構成している。
FIG. 1 shows a basic configuration diagram of the present invention. In the figure, numeral 11 indicates infrared light receiving elements, and a plurality of them are arranged in one direction. Reference numeral 12 denotes a charge transfer element, which together with the infrared light receiving element 11 constitutes a stationary image element 13 having a self-scanning function in one direction.

14は光学走査手段で、前記赤外受光素子11の配列1
ノ向である一方向に直交する方向に光学走査を行なって
搬像対象からの光を赤外受光,素r11に入射させる. 15はυtW手段で、光学走査手段14の光学走査周期
のうち右効走査I1間のみ固体llil像素子13に電
荷転送用駆動パルス及びバイアス電圧を供給し、残りの
走査期間であるブランキング期間【よ上記駆初パルス及
びバイアス電圧の供給を停nし、一定電汁に保持する。
14 is an optical scanning means, and the array 1 of the infrared light receiving elements 11 is
Optical scanning is performed in a direction perpendicular to one direction, and the light from the image carrier is made incident on the infrared receiving element r11. Reference numeral 15 denotes υtW means, which supplies charge transfer drive pulses and bias voltage to the solid-state llil image element 13 only during the right-handed scan I1 of the optical scanning period of the optical scanning means 14, and supplies the charge transfer drive pulse and bias voltage to the solid-state llil image element 13 during the blanking period which is the remaining scanning period. Then, the supply of the initial pulse and bias voltage is stopped, and the electric current is maintained at a constant level.

〔作用〕[Effect]

光学走査手段14は第2図(A)に示すように光学走査
周MTOで所定方向に走査を行なう。従来、この光学走
査周期゛「oのうら有効走査19′1間丁aだけでなく
、画像出力に無関係なブランキング期間T+ .T,!
も第7図(C)に示したように転送用駆動パルスφ1〜
φ4とバイアス電圧を夫々囚休撥&素子に印加していた
が、本発明はこのブランキング期r1に着目し、制II
If段15により第2図(B).(C)に示すように、
プランEング明間には転送用駆動パルスφ1〜φ4とバ
イアス電圧を一定電圧(例えばOV)に保持する。
The optical scanning means 14 scans in a predetermined direction with an optical scanning circumference MTO as shown in FIG. 2(A). Conventionally, this optical scanning period ``O'' has not only the effective scanning 19'1 interval a, but also the blanking period T+ .T,! which is unrelated to image output.
As shown in FIG. 7(C), the transfer drive pulse φ1~
φ4 and bias voltage were applied to the blanking period and the element respectively, but the present invention focuses on this blanking period r1 and applies control II.
If stage 15 is used as shown in FIG. 2(B). As shown in (C),
During the planning period, the transfer drive pulses φ1 to φ4 and the bias voltage are held at constant voltages (for example, OV).

これにより、固休藏像素子13の消費電力は、士記有効
走査期間Taのみ消費され、またブランキング用間(’
ro  Ta)では前記転送周波数fが0,ソース電圧
v2がO,であるから、前記0式より本発明の消費電力
Pは次式で表わされる。
As a result, the power consumption of the solid state image element 13 is consumed only during the effective scanning period Ta, and during the blanking period ('
ro Ta), the transfer frequency f is 0 and the source voltage v2 is O, so from the above equation 0, the power consumption P of the present invention is expressed by the following equation.

すなわち、本発明によれば、消費電力を従来のTa/T
o倍に低減できることになる。
That is, according to the present invention, the power consumption can be reduced compared to the conventional Ta/T.
This means that it can be reduced by o times.

〔実施例〕〔Example〕

第3図は本発明の一実施例の構成図を示す。同図中、第
1図と同一構成部分には同一符号を付し、その説明を省
略する。第3図において、搬像対象からの光はレンズ2
1を透過してミラー22に入射され、ここで全反射によ
り光路が変えられた後、レンズ23を透過して可動ミラ
ー24に入射される。
FIG. 3 shows a configuration diagram of an embodiment of the present invention. In the figure, the same components as in FIG. 1 are denoted by the same reference numerals, and their explanations will be omitted. In Fig. 3, the light from the image carrying object is transmitted through the lens 2.
1 and enters the mirror 22 , where the optical path is changed by total reflection, and then passes through the lens 23 and enters the movable mirror 24 .

可動ミラー24は後述するタイミング発生回路25,ス
キャブドライバ26及びスキャプ27と共に前記光学走
査手段14を構成しており、ス[ヤプ27によりその長
手方向に沿う中心線を回動軸として所定角度範囲内で往
復回動ずる。これにより可動ミラー24からは光学走査
された光が取り出され、レンズ28を透過して前記固体
lliii像累子13(IRCCD)に入射される。
The movable mirror 24 constitutes the optical scanning means 14 together with a timing generating circuit 25, a scab driver 26, and a scab 27, which will be described later. It rotates back and forth inside. As a result, optically scanned light is extracted from the movable mirror 24, passes through the lens 28, and enters the solid-state lliii imager 13 (IRCCD).

固体搬像素F13は検知器29の容器内にIJ人され、
冷凍器30により冷凍されている。この固体撮像素F1
3の最終段のソースホロワのFET(第5図の54に相
当〉から取り出された映像信号はアンプ31(第5図の
アンプ56に相当〉を通してA/D変換器32に入力さ
れ、デイジタル信号に変換された後、信号処理・表示回
路33に供給される。
The solid carrier element F13 is placed in the container of the detector 29,
It is frozen by a refrigerator 30. This solid-state image sensor F1
The video signal taken out from the final stage source follower FET (corresponding to 54 in Figure 5) is input to the A/D converter 32 through amplifier 31 (corresponding to amplifier 56 in Figure 5), where it is converted into a digital signal. After being converted, it is supplied to the signal processing/display circuit 33.

信号処理・表丞回路33はデイジタル信号処理により入
力ディジタル映像信号に対してオフセッ1・及び感度補
正した後、走査変換してTV表示可能な順序で補正後の
データをD/A変換器34へ出力する。D/A変換器3
4はこのデータを再びアナログ信号に変換し、そのアナ
ログ信号を陰極線管(CRT)を用いた表丞装置35に
入力し、ここで赤外線映像を表示させる。
The signal processing/display circuit 33 performs offset correction and sensitivity correction on the input digital video signal through digital signal processing, and then performs scan conversion and sends the corrected data to the D/A converter 34 in an order that can be displayed on a TV. Output. D/A converter 3
4 converts this data into an analog signal again, and inputs the analog signal to a display device 35 using a cathode ray tube (CRT), where an infrared image is displayed.

一方、タイミング発牛回路25は固体囮像素子13の駆
動,ス1ヤナ27の駆動.補正及び表示のためのタイミ
ングパルスを発生する。スキャナドライバ26はこのタ
イミングパルスを受け、スFvブ27を騙動するための
電圧波形を発生する。
On the other hand, the timing signal generating circuit 25 drives the solid-state decoy image element 13 and the scanner 27. Generates timing pulses for correction and display. The scanner driver 26 receives this timing pulse and generates a voltage waveform for tricking the Fv block 27.

また、ドライバ・バイアス電源36はMmJ手段15を
構威しており、上記のタイミングパルスに塁づいて電荷
転送用駆動パルスとバイアス電圧を夫々発生し、固休撮
像素子13に供給する。
Further, the driver/bias power supply 36 includes the MmJ means 15, which generates a drive pulse for charge transfer and a bias voltage, respectively, based on the above-mentioned timing pulse, and supplies them to the solid-state image sensor 13.

本実施例の赤外線搬像装買は、ブロック構成は従来の赤
外線胤像装置と基本的に同一であり、ただ、ドライバ・
バイアス電源36が有効走査II間とブラン1ングI]
間とで出力を可変できる機能を有し、かつ、そのドライ
バ・バイアス電源36にそのような動nを行なわせるた
めのコントロール4t,号をタイミンク発生回路25が
発1できるような構成としている点が従来の赤外線囮像
装慟と異なる。
The block configuration of the infrared carrier image device of this embodiment is basically the same as that of the conventional infrared image device, except that the driver and
Bias power supply 36 between effective scanning II and blanking I]
The timing generating circuit 25 is configured to have a function of varying the output between the two, and the timing generating circuit 25 can generate a control signal 4t to cause the driver bias power supply 36 to perform such a movement. is different from conventional infrared decoy imaging.

第4図は第3図のドライバ・バイアス電源36の一実施
例のブロック図を示す。データセレクタ41及び42は
夫々前記タイミングパルス発生回路25からの」ントO
−ル信号により、前記有効走査明間「aのときは端子(
A)に入力されるφ1へ・φ4データとVo発生データ
を夫々選択出力し、ブランEングlillllr+.T
2のときは喘f(B)に入力されるデータを選択出力す
る。
FIG. 4 shows a block diagram of one embodiment of the driver bias power supply 36 of FIG. The data selectors 41 and 42 each receive input signals from the timing pulse generation circuit 25.
- when the effective scanning bright interval is "a", the terminal (
A) selects and outputs the φ1 and φ4 data input to φ1 and the Vo generation data, respectively, and outputs the blank Englillr+. T
At the time of 2, the data input to the input f(B) is selectively output.

データセレクタ41の出力データはドライバ43を通し
て取り出され、前記有効走査期間Taの間は4相の駆初
バルスφ1〜φ4として、また前記ブランキング期間T
+ .T2の間は一定レベルの信弓として固休撤a素子
13に入力される。
The output data of the data selector 41 is taken out through the driver 43, and is used as four-phase initial pulses φ1 to φ4 during the effective scanning period Ta, and during the blanking period T.
+. During T2, it is input to the fixed-rest withdrawal a-element 13 as a fixed level bow.

一方、データセレクタ42の出力データ(よD/Aコン
パータ44によりデイジタル・7ノ゜ログ変換され、前
記有効走査期間Taの間は前記最終段のソースホロワの
FETのドレイン電圧vOとして出力され、他方、ブラ
ン1ング期間T+,Tzの間はOvとして出力される。
On the other hand, the output data of the data selector 42 (is converted into digital and 7-log by the D/A converter 44, and is output as the drain voltage vO of the FET of the source follower at the final stage during the effective scanning period Ta; on the other hand, During the blanking periods T+ and Tz, it is output as Ov.

このようにして、本実施例では固休躍像素子13は可動
ミラー24やスキャナ27の有効走査t!11間丁aの
間のみ従来と同様の躍@動作を行ない、ブランキングJ
flfFIIT+ . T2ではそのili!@動作を
停止することにより、電力の消費を約60〜70%程度
に抑えることができる。従って、固体ffi像#F1 
3の発熱損が消費電力の低減に対応して少なくなるから
、冷凍el30として従来に比べそれほど冷凍能力が必
要でない、小型で安価なものを使用することができる。
In this way, in this embodiment, the fixed-rest dynamic image element 13 is operated by the movable mirror 24 and the scanner 27 for effective scanning t! The same dance @ movement as before is performed only between 11 and a, and blanking J
flfFIIT+. That ili in T2! By stopping the operation, power consumption can be reduced to approximately 60 to 70%. Therefore, solid ffi image #F1
Since the heat loss of 3 is reduced in accordance with the reduction in power consumption, it is possible to use a small and inexpensive refrigeration EL30 that does not require as much refrigeration capacity as the conventional refrigeration EL30.

〔発明の効果〕〔Effect of the invention〕

上述の如く、本発明によれば、固休撮像素子の消費電力
を低減できるため、固体撮像素子の冷却手段をより小型
かつ安価な構成とすることができ、また従来と同一の冷
FD手段を用いる場合は固休囮像素子の冷FA温度をよ
り低くすることができるので装首を高性能化できる等の
特長を有するものである。
As described above, according to the present invention, the power consumption of the solid-state image sensor can be reduced, so the cooling means for the solid-state image sensor can be made smaller and cheaper, and the same cold FD means as the conventional one can be used. When used, the cold FA temperature of the solid-state decoy image element can be lowered, so it has the advantage of improving the performance of neck mounting.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原即構成図、 第2図は本発明の作用動作説明図、 第3図は木発閑の一実施例の構成図、 第4図は本発明の一実施例の要部のブロック図、第5図
は従来の要部の一例の構戒図、 第6図は検知器内部の消費電力発生個所の説明図、 第7図は従来装置における光学走査とフレームタイム及
び駆動パルス説明図である。 図において、 11は赤外受光素子、 12は電荷転送素子、 13は固体撮像素子、 14【よ光学走査手段、 15は訓御手段、 25はタイミング発1回路、 36はドライバ・バイアス電源 を示す。
Fig. 1 is an original configuration diagram of the present invention, Fig. 2 is an explanatory diagram of the function and operation of the present invention, Fig. 3 is a configuration diagram of an embodiment of the present invention, and Fig. 4 is a diagram of an embodiment of the present invention. A block diagram of the main parts, Fig. 5 is a composition diagram of an example of the conventional main part, Fig. 6 is an explanatory diagram of the power consumption generating parts inside the detector, and Fig. 7 shows the optical scanning and frame time of the conventional device. It is a drive pulse explanatory diagram. In the figure, 11 is an infrared light receiving element, 12 is a charge transfer element, 13 is a solid-state image sensor, 14 is an optical scanning means, 15 is a control means, 25 is a timing generator circuit, and 36 is a driver bias power supply. .

Claims (1)

【特許請求の範囲】  一方向に配列された複数個の赤外受光素子(11)に
より夫々光電変換して得られた信号電荷を、電荷転送素
子(12)を用いて蓄積及び転送する、一方向に自己走
査機能を有する固体撮像素子(13)に対して、光学走
査手段(14)により該一方向に直交する方向に光学走
査を行なって撮像対象からの光を入射する赤外線撮像装
置において、 前記光学走査手段(14)の光学走査周期のうち有効走
査期間のみ前記固体撮像素子(13)に電荷転送用駆動
パルス及びバイアス電圧を印加し、残りの走査期間であ
るブランキング期間は該駆動パルス及びバイアス電圧の
供給を停止し一定電圧に保持する制御手段(15)を備
えたことを特徴とする赤外線撮像装置。
[Scope of Claims] A system that stores and transfers signal charges obtained by photoelectric conversion by a plurality of infrared light receiving elements (11) arranged in one direction using a charge transfer element (12). In an infrared imaging device in which a solid-state imaging device (13) having a self-scanning function in a direction is optically scanned in a direction perpendicular to the one direction by an optical scanning means (14) and light from an imaging target is incident on the solid-state imaging device (13). Charge transfer driving pulses and bias voltage are applied to the solid-state image sensor (13) only during the effective scanning period of the optical scanning period of the optical scanning means (14), and the driving pulses are applied during the blanking period, which is the remaining scanning period. and a control means (15) for stopping the supply of bias voltage and maintaining it at a constant voltage.
JP1191043A 1989-07-24 1989-07-24 Infrared ray image pickup device Pending JPH0354976A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1191043A JPH0354976A (en) 1989-07-24 1989-07-24 Infrared ray image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1191043A JPH0354976A (en) 1989-07-24 1989-07-24 Infrared ray image pickup device

Publications (1)

Publication Number Publication Date
JPH0354976A true JPH0354976A (en) 1991-03-08

Family

ID=16267939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1191043A Pending JPH0354976A (en) 1989-07-24 1989-07-24 Infrared ray image pickup device

Country Status (1)

Country Link
JP (1) JPH0354976A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05122622A (en) * 1991-10-28 1993-05-18 Matsushita Electric Ind Co Ltd Solid-state image pickup device
EP1143706A3 (en) * 2000-03-28 2007-08-01 Fujitsu Limited Image sensor with black level control and low power consumption
WO2010128586A1 (en) * 2009-05-08 2010-11-11 パナソニック株式会社 Imaging apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05122622A (en) * 1991-10-28 1993-05-18 Matsushita Electric Ind Co Ltd Solid-state image pickup device
EP1143706A3 (en) * 2000-03-28 2007-08-01 Fujitsu Limited Image sensor with black level control and low power consumption
WO2010128586A1 (en) * 2009-05-08 2010-11-11 パナソニック株式会社 Imaging apparatus

Similar Documents

Publication Publication Date Title
EP1233613B1 (en) Active pixel image sensor with high dynamic range
US7733401B2 (en) Image capturing apparatus
US6507365B1 (en) Solid-state imaging device
US7286174B1 (en) Dual storage node pixel for CMOS sensor
CN100502474C (en) Solid state imaging device, method of driving solid state imaging device and image pickup apparatus
US6947087B2 (en) Solid-state imaging device with dynamic range control
US9129879B2 (en) Solid state imaging device and camera system
JP4692196B2 (en) Solid-state imaging device, driving method of solid-state imaging device, and imaging device
JP4398095B2 (en) Solid-state imaging device
CN105009569B (en) Photographing element, photographic device and endoscopic system
US6995797B2 (en) Charge detecting device for a solid state imaging device
US5777671A (en) Solid state imager having high frequency transfer mode
JP3392676B2 (en) Solid-state imaging device and imaging device using the same
US6657177B2 (en) Solid-state imaging system
US5796432A (en) Method of and apparatus for solid state imaging device
JPH0354976A (en) Infrared ray image pickup device
JP2000209508A (en) Solid-state image pickup device
EP0871326B1 (en) Motion-detecting image sensor incorporating signal digitization
JPH09181986A (en) Solid-state image pickup element
Vogelsong et al. Scientific/industrial camera-on-a-chip using active column sensor CMOS imager core
JP2001257943A (en) Electronic shutter driving method for solid-state image pickup device and solid-state image pickup device
US4823191A (en) Image-sensing apparatus
JPH03187583A (en) Infrared image pickup device
JP2001054019A (en) Image pickup device
JPH11266401A (en) Solid-state image pickup element